Exploring the Potential of Plant Cytokinins Against Common Human Pathogens: In Vitro Assessment and In Silico Insights
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Reagents and Materials
3.2. Microbial Strains
3.3. Screening of Antimicrobial Activities by the Microdilution Method
3.4. Molecular Docking
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mok, D.W.; Mok, M.C. Cytokinin metabolism and action. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2001, 52, 89–118. [Google Scholar] [CrossRef] [PubMed]
- Hönig, M.; Plíhalová, L.; Husičková, A.; Nisler, J.; Doležal, K. Role of cytokinins in senescence, antioxidant defence and photosynthesis. Int. J. Mol. Sci. 2018, 19, 4045. [Google Scholar] [CrossRef]
- Naseem, M.; Kaltdorf, M.; Hussain, A.; Dandekar, T. The impact of cytokinin on jasmonate-salicylate antagonism in Arabidopsis immunity against infection with Pst DC3000. Plant Signal. Behav. 2013, 8, e26791. [Google Scholar] [CrossRef]
- Othman, E.M.; Naseem, M.; Awad, E.; Dandekar, T.; Stopper, H. The plant hormone cytokinin confers protection against oxidative stress in mammalian cells. PLoS ONE 2016, 11, e0168386. [Google Scholar] [CrossRef]
- Brizzolari, A.; Marinello, C.; Carini, M.; Santaniello, E.; Biondi, P.A. Evaluation of the antioxidant activity and capacity of some natural N6-substituted adenine derivatives (cytokinins) by fluorimetric and spectrophotometric assays. J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci. 2016, 1019, 164–168. [Google Scholar] [CrossRef] [PubMed]
- Brizzolari, A.; Foti, M.C.; Saso, L.; Ciuffreda, P.; Lazarević, J.; Santaniello, E. Evaluation of the radical scavenging activity of some representative isoprenoid and aromatic cytokinin ribosides (N6-substituted adenosines) by in vitro chemical assays. Nat. Prod. Res. 2022, 36, 6443–6447. [Google Scholar] [CrossRef]
- Fathy, M.; Saad Eldin, S.M.; Naseem, M.; Dandekar, T.; Othman, E.M. Cytokinins: Wide-spread signaling hormones from plants to humans with high medical potential. Nutrients 2022, 14, 1495. [Google Scholar] [CrossRef]
- Seegobin, M.; Logan, S.R.; Emery, R.J.N.; Brunetti, C.R. Cytokinins reduce viral replication and alter plaque morphology of frog virus 3 in vitro. Viruses 2024, 16, 826. [Google Scholar] [CrossRef] [PubMed]
- Voller, J.; Makova, B.; Kadlecova, A.; Gonzalez, G.; Strnad, M. Plant hormone cytokinins for modulating human aging and age-related diseases. In Hormones in Ageing and Longevity, 1st ed.; Part of Healthy Ageing and Longevity; Rattan, S., Sharma, R., Eds.; Springer: Cham, Switzerland, 2017; pp. 311–335. [Google Scholar]
- Voller, J.; Béres, T.; Zatloukal, M.; Dzubak, P.; Hajduch, M.; Dolezal, K.; Schmulling, T.; Strnad, M. Anti-cancer activities of cytokinin ribosides. Phytochem. Rev. 2019, 18, 1101–1113. [Google Scholar] [CrossRef]
- Voller, J.; Zatloukal, M.; Lenobel, R.; Dolezal, K.; Béres, T.; Krystof, V.; Spíchal, L.; Niemann, P.; Dzubák, P.; Hajdúch, M.; et al. Anticancer activity of natural cytokinins: A structure-activity relationship study. Phytochemistry 2010, 71, 1350–1359. [Google Scholar] [CrossRef]
- Casati, S.; Ottria, R.; Baldoli, E.; Lopez, E.; Maier, J.A.; Ciuffreda, P. Effects of cytokinins, cytokinin ribosides and their analogs on the viability of normal and neoplastic human cells. Anticancer. Res. 2011, 31, 3401–3406. [Google Scholar] [PubMed]
- Naseem, M.; Othman, E.M.; Fathy, M.; Iqbal, J.; Howari, F.M.; AlRemeithi, F.A.; Kodandaraman, G.; Stopper, H.; Bencurova, E.; Vlachakis, D.; et al. Integrated structural and functional analysis of the protective effects of kinetin against oxidative stress in mammalian cellular systems. Sci. Rep. 2020, 10, 13330. [Google Scholar] [CrossRef]
- Totoń, E.; Lisiak, N.; Romaniuk-Drapała, A.; Framski, G.; Wyszko, E.; Ostrowski, T. Cytotoxic effects of kinetin riboside and its selected analogues on cancer cell lines. Bioorg. Med. Chem. Lett. 2024, 100, 129628. [Google Scholar] [CrossRef]
- Dudzik, P.; Dulińska-Litewka, J.; Wyszko, E.; Jędrychowska, P.; Opałka, M.; Barciszewski, J.; Laidler, P. Effects of kinetin riboside on proliferation and proapoptotic activities in human normal and cancer cell lines. J. Cell. Biochem. 2011, 112, 2115–2124. [Google Scholar] [CrossRef]
- Souza, T.M.L.; Pinho, V.D.; Setim, C.F.; Sacramento, C.Q.; Marcon, R.; Fintelman-Rodrigues, N.; Chaves, O.A.; Heller, M.; Temerozo, J.R.; Ferreira, A.C.; et al. Preclinical development of kinetin as a safe error-prone SARS-CoV-2 antiviral able to attenuate virus-induced inflammation. Nat. Commun. 2023, 14, 199. [Google Scholar] [CrossRef]
- Gong, G.; Kam, H.; Bai, Y.; Cheang, W.S.; Wu, S.; Cheng, X.; Giesy, J.P.; Lee, S.M. 6-benzylaminopurine causes endothelial dysfunctions to human umbilical vein endothelial cells and exacerbates atorvastatin-induced cerebral hemorrhage in zebrafish. Environ. Toxicol. 2024, 39, 1258–1268. [Google Scholar] [CrossRef] [PubMed]
- Jabłońska-Trypuć, A.; Matejczyk, M.; Czerpak, R. N6-benzyladenine and kinetin influence antioxidative stress parameters in human skin fibroblasts. Mol. Cell Biochem. 2016, 413, 97–107. [Google Scholar] [CrossRef]
- Kadlecová, A.; Maková, B.; Artal-Sanz, M.; Strnad, M.; Voller, J. The plant hormone kinetin in disease therapy and healthy aging. Ageing Res. Rev. 2019, 55, 100958. [Google Scholar] [CrossRef] [PubMed]
- Babosha, A.V. Regulation of resistance and susceptibility in wheat powdery mildew pathosystem with exogenous cytokinins. J. Plant. Physiol. 2009, 166, 1892–1903. [Google Scholar] [CrossRef]
- Sharma, N.; Rahman, M.H.; Liang, Y.; Kav, N.N.V. Cytokinin inhibits the growth of Leptosphaeria maculans and Alternaria brassicae. Can. J. Plant Pathol. 2010, 32, 306–314. [Google Scholar] [CrossRef]
- Sood, M. Cultural physiology: Effect of plant growth hormones on the growth and sporulation of Aspergillus umbrosus. J. Phytol. 2011, 3, 27–29. [Google Scholar]
- Grosskinsky, D.K.; Naseem, M.; Abdelmohsen, U.R.; Plickert, N.; Engelke, T.; Griebel, T.; Zeier, J.; Novák, O.; Strnad, M.; Pfeifhofer, H.; et al. Cytokinins mediate resistance against Pseudomonas syringae in tobacco through increased antimicrobial phytoalexin synthesis independent of salicylic acid signaling. Plant Physiol. 2011, 157, 815–830. [Google Scholar] [CrossRef]
- Naseem, M.; Wölfling, M.; Dandekar, T. Cytokinins for immunity beyond growth, galls and green islands. Trends Plant Sci. 2014, 19, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Grosskinsky, D.K.; Tafner, R.; Moreno, M.V.; Stenglein, S.A.; de Salamone, I.E.G.; Nelson, L.M.; Novák, O.; Strnad, M.; van der Graaff, E.; Simon, U.; et al. Cytokinin production by Pseudomonas fluorescens G20-18 determines biocontrol activity against Pseudomonas syringae in Arabidopsis. Sci. Rep. 2016, 6, 23310. [Google Scholar] [CrossRef] [PubMed]
- Cortleven, A.; Leuendorf, J.E.; Frank, M.; Pezzetta, D.; Bolt, S.; Schmülling, T. Cytokinin action in response to abiotic and biotic stresses in plants. Plant Cell Environ. 2019, 42, 998–1018. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Choi, D.; Lee, S.; Ryu, C.M.; Hwang, I. Cytokinins and plant immunity: Old foes or new friends? Trends Plant Sci. 2011, 16, 388–394. [Google Scholar] [CrossRef]
- Albrecht, T.; Argueso, C.T. Should I fight or should I grow now? The role of cytokinins in plant growth and immunity and in the growth-defence trade-off. Ann. Bot. 2017, 119, 725–735. [Google Scholar] [CrossRef]
- Akhtar, S.S.; Mekureyaw, M.F.; Pandey, C.; Roitsch, T. Role of cytokinins for interactions of plants with microbial pathogens and pest insects. Front. Plant. Sci. 2020, 19, 1777. [Google Scholar] [CrossRef]
- Giron, D.; Frago, E.; Glevarec, G.; Pieterse, C.M.J.; Dicke, M. Cytokinins as key regulators in plant–microbe–insect interactions: Connecting plant growth and defence. Funct. Ecol. 2013, 27, 599–609. [Google Scholar] [CrossRef]
- McIntyre, K.E.; Bush, D.R.; Argueso, C.T. Cytokinin regulation of source-sink relationships in plant-pathogen interactions. Front. Plant Sci. 2021, 12, 677585. [Google Scholar] [CrossRef]
- Alonso-Díaz, A.; Satbhai, S.B.; de Pedro-Jové, R.; Berry, H.M.; Göschl, C.; Argueso, C.T.; Novak, O.; Busch, W.; Valls, M.; Coll, N.S. A genome-wide association study reveals cytokinin as a major component in the root defense responses against Ralstonia solanacearum. J. Exp. Bot. 2021, 72, 2727–2740. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Huh, S.U.; Kojima, M.; Sakakibara, H.; Paek, K.H.; Hwang, I. The cytokinin-activated transcription factor ARR2 promotes plant immunity via TGA3/NPR1-dependent salicylic acid signaling in Arabidopsis. Dev. Cell 2010, 19, 284–295. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Anand, G.; Pizarro, L.; Laor, D.; Kovetz, N.; Sela, N.; Yehuda, T.; Gazit, E.; Bar, M. Cytokinin inhibits fungal development and virulence by targeting the cytoskeleton and cellular trafficking. mBio 2021, 12, e0306820, Erratum in: mBio 2022, 13, e0030522. [Google Scholar] [CrossRef]
- Gupta, R.; Pizarro, L.; Leibman-Markus, M.; Marash, I.; Bar, M. Cytokinin response induces immunity and fungal pathogen resistance, and modulates trafficking of the PRR LeEIX2 in tomato. Mol. Plant Pathol. 2020, 21, 1287–1306. [Google Scholar] [CrossRef] [PubMed]
- Barna, B.; Smigocki, A.C.; Baker, J.C. Transgenic production of cytokinin suppresses bacterially induced hypersensitive response symptoms and increases antioxidative enzyme levels in Nicotiana spp. Phytopathology 2008, 98, 1242–1247. [Google Scholar] [CrossRef]
- Singha, B.; Singh, V.; Soni, V. Alternative therapeutics to control antimicrobial resistance: A general perspective. Front. Drug Discov. 2024, 4, 1385460. [Google Scholar] [CrossRef]
- Fleysher, M.H.; Bloch, A.; Hakala, M.T.; Nichol, C.A. Synthesis and biological activity of some new N6-substituted purine nucleosides. J. Med. Chem. 1969, 12, 1056–1061. [Google Scholar] [CrossRef]
- Fleysher, M.H.; Hakala, M.T.; Bloch, A.; Hall, R.H. Synthesis and biological activity of some N6-alkyladenosines. J. Med. Chem. 1968, 11, 717–720. [Google Scholar] [CrossRef]
- Fleysher, M.H. N6-Substituted adenosines: Synthesis, biological activity, and some structure-activity relationships. J. Med. Chem. 1972, 15, 187–191. [Google Scholar] [CrossRef]
- Degani, O.; Drori, R.; Goldblat, Y. Plant growth hormones suppress the development of Harpophora maydis, the cause of late wilt in maize. Physiol. Mol. Biol. Plants 2015, 21, 137–149. [Google Scholar] [CrossRef]
- Kennell, D. The effects of indoleacetic acid and kinetin on the growth of some microorganisms. Exp. Cell Res. 1960, 21, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Maruzzella, J.C.; Garner, J.G. Effect of kinetin on bacteria. Nature 1963, 200, 385. [Google Scholar] [CrossRef]
- Atmar, V.T.; Throneberry, G.O.; Kuehn, G.D. Effects of adenine and cytokinins on growth and protein kinase activity of Verticillium albo-atrum. Mycopathologia 1976, 59, 171–174. [Google Scholar] [CrossRef]
- Liu, Z.; Bushnell, W.R. Effects of cytokinins on fungus development and host response in powdery mildew of barley. Physiol. Mol. Plant Pathol. 1986, 29, 41–52. [Google Scholar] [CrossRef]
- Elliott, R.F. Effects of kinetin and related compounds on growth and sexual reproduction of Saprolegnia australis. Planta 1967, 77, 164–175. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; Eleventh Informational Supplement; Document M 100-S11; NCCLS: Wayne, PA, USA, 2003. [Google Scholar]
- SciFinder. Chemical Abstracts Service, n.d. Available online: https://scifinder.cas.org (accessed on 8 December 2024).
- Anand, G.; Gupta, R.; Bar, M. Cytokinin regulates energy utilization in Botrytis cinerea. Microbiol. Spectr. 2022, 10, e0028022. [Google Scholar] [CrossRef]
- Vitiello, A.; Ferrara, F.; Boccellino, M.; Ponzo, A.; Cimmino, C.; Comberiati, E.; Zovi, A.; Clemente, S.; Sabbatucci, M. Antifungal drug resistance: An emergent health threat. Biomedicines 2023, 11, 1063. [Google Scholar] [CrossRef] [PubMed]
- Vanreppelen, G.; Wuyts, J.; Van Dijck, P.; Vandecruys, P. Sources of antifungal drugs. J. Fungi 2023, 9, 171. [Google Scholar] [CrossRef]
- Rossiter, S.E.; Fletcher, M.H.; Wuest, W.M. Natural products as platforms to overcome antibiotic resistance. Chem. Rev. 2017, 117, 12415–12474. [Google Scholar] [CrossRef]
- Schaller, M.; Borelli, C.; Korting, H.C.; Hube, B. Hydrolytic enzymes as virulence factors of Candida albicans. Mycoses 2005, 48, 365–377. [Google Scholar] [CrossRef]
- Bertacine Dias, M.V.; Santos, J.C.; Libreros-Zúñigal, G.A.; Ribeiro, J.A.; Chavez-Pacheco, S.M. Folate biosynthesis pathway: Mechanisms and insights into drug design for infectious diseases. Future Med. Chem. 2018, 10, 935–959. [Google Scholar] [CrossRef]
- Kirkman, T.; Sketcher, A.; de Morais Barroso, V.; Ishida, K.; Tosin, M.; Dias, M.V.B. Crystal structure of dihydrofolate reductase from the emerging pathogenic fungus Candida auris. Acta Crystallogr. D Struct. Biol. 2023, 79, 735–745. [Google Scholar] [CrossRef] [PubMed]
- DeJarnette, C.; Luna-Tapia, A.; Estredge, L.R.; Palmer, G.E. Dihydrofolate reductase is a valid target for antifungal development in the human pathogen Candida albicans. mSphere 2020, 5, e00374-20. [Google Scholar] [CrossRef]
- Sarker, S.D.; Nahar, L.; Kumarasamy, Y. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 2007, 42, 321–324. [Google Scholar] [CrossRef] [PubMed]
- Lazarević, J.S.; Đorđević, A.S.; Zlatković, B.K.; Radulović, N.S.; Palić, R.M. Chemical composition and antioxidant and antimicrobial activities of essential oil of Allium sphaerocephalon L. subsp. sphaerocephalon (Liliaceae) inflorescences. J. Sci. Food Agric. 2011, 91, 322–329. [Google Scholar] [CrossRef]
- Bras, G.; Satala, D.; Juszczak, M.; Kulig, K.; Wronowska, E.; Bednarek, A.; Zawrotniak, M.; Rapala-Kozik, M.; Karkowska-Kuleta, J. Secreted aspartic proteinases: Key factors in Candida infections and host-pathogen interactions. Int. J. Mol. Sci. 2024, 25, 4775. [Google Scholar] [CrossRef] [PubMed]
- Dewangan, D.; Vaishnav, Y.; Mishra, A.; Jha, A.K.; Verma, S.; Badwaik, H. Synthesis, molecular docking, and biological evaluation of Schiff base hybrids of 1,2,4-triazole-pyridine as dihydrofolate reductase inhibitors. Curr. Res. Pharmacol. Drug Discov. 2021, 2, 100024. [Google Scholar] [CrossRef]
- Thomsen, R.; Christensen, M.H. MolDock: A new technique for high-accuracy molecular docking. J. Med. Chem. 2006, 49, 3315–3321. [Google Scholar] [CrossRef]
Tested Compound | Bacterial Strains | Fungal Strains | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
B. subtilis ssp. spizizenii | E. faecalis | A. brasiliensis | C. albicans | |||||||
MIC 1 | MIC | MIC = MFC 2 | MIC | MFC | ||||||
μg/mL | nM | μg/mL | nM | μg/mL | nM | μg/mL | nM | μg/mL | nM | |
iPA | 3.9 | 19.2 | 3.9 | 19.2 | / | / | 125 | 615 | 500 | 2460 |
iPAR | 3.9 | 11.6 | 3.9 | 11.6 | / | / | 125 | 327.7 | 500 | 1490.9 |
B | 3.9 | 17.3 | 3.9 | 17.3 | 500 | 2219.8 | 62.5 | 277.5 | 500 | 2219.8 |
BR | 3.9 | 10.9 | 3.9 | 10.9 | / | / | 125 | 349.8 | 500 | 1399.1 |
K | 3.9 | 18.1 | 3.9 | 18.1 | 250 | 1161.6 | 3.9 | 18.1 | 250 | 1161.6 |
KR | 3.9 | 11.2 | 3.9 | 11.2 | 250 | 719.8 | 7.8 | 22.5 | 500 | 1439.6 |
p-T | 3.9 | 16.2 | 3.9 | 16.2 | / | / | / | / | / | / |
p-TR | 3.9 | 10.4 | 3.9 | 10.4 | / | / | / | / | / | / |
Positive control | MIC = MBC 3 | MIC = MBC | MIC = MFC | MIC = MFC | ||||||
μg/mL | nM | μg/mL | nM | μg/mL | nM | μg/mL | nM | |||
Doxycycline 4 | 1.56 | 3.5 | 6.25 | 14.1 | NT | NT | NT | NT | ||
Nystatin 5 | NT | NT | NT | NT | 0.78 | 0.8 | 6.25 | 6.7 |
Molecule | Steric Energy 1 | VdW 2 | H-Bond 3 | No H-Bond 90 4 | Energy 5 | MolDock Score 6 | Reranked Score 7 | |
---|---|---|---|---|---|---|---|---|
Aspartic proteinase | iPA | −93.9147 | −29.1649 | −14.5711 | −19.9204 | −100.884 | −102.944 | −80.9744 |
iPAR | −99.1543 | −33.5975 | −7.0872 | −9.10958 | −102.893 | −103.004 | −86.5915 | |
B | −127.038 | −42.2686 | −10.2201 | −13.5644 | −134.303 | −149.403 | −111.304 | |
BR | −129.563 | −37.6263 | −10.4694 | −16.405 | −132.741 | −147.791 | −106.981 | |
K | −133.762 | −44.2689 | −12.0332 | −13.9491 | −144.948 | −158.188 | −119.256 | |
KR | −134.535 | −43.4062 | −12.4022 | −18.9622 | −142.191 | −155.787 | −115.098 | |
p-T | −90.7434 | −25.0538 | −3.23618 | −5 | −88.5194 | −91.6294 | −75.39 | |
p-TR | −98.7731 | −32.0643 | −6.8347 | −7.97501 | −94.1577 | −96.2947 | −81.197 | |
Dihydrofolate reductase | iPA | −107.774 | −31.1458 | −7.14074 | −9.47577 | −105.264 | −108.278 | −87.6308 |
iPAR | −99.8345 | −30.0122 | −6.7828 | −8.91991 | −106.092 | −113.099 | −86.9306 | |
B | −145.136 | −43.0046 | −18.3581 | −19.7344 | −154.594 | −169.705 | −127.109 | |
BR | −130.624 | −41.7649 | −17.9418 | −19.9993 | −148.073 | −162.683 | −121.438 | |
K | −141.037 | −48.9838 | −20.7666 | −23.7065 | −161.709 | −182.815 | −132.52 | |
KR | −150.046 | −44.5959 | −17.849 | −19.8237 | −159.49 | −174.555 | −132.708 | |
p-T | −93.0454 | −22.4494 | −11.211 | −11.8636 | −100.551 | −102.045 | −80.1823 | |
p-TR | −101.685 | −30.1665 | −9.19931 | −15.0432 | −105.502 | −111.859 | −85.6092 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazarević, J.; Veselinović, A.; Stojiljković, M.; Petrović, M.; Ciuffreda, P.; Santaniello, E. Exploring the Potential of Plant Cytokinins Against Common Human Pathogens: In Vitro Assessment and In Silico Insights. Plants 2025, 14, 1749. https://doi.org/10.3390/plants14121749
Lazarević J, Veselinović A, Stojiljković M, Petrović M, Ciuffreda P, Santaniello E. Exploring the Potential of Plant Cytokinins Against Common Human Pathogens: In Vitro Assessment and In Silico Insights. Plants. 2025; 14(12):1749. https://doi.org/10.3390/plants14121749
Chicago/Turabian StyleLazarević, Jelena, Aleksandar Veselinović, Marija Stojiljković, Miloš Petrović, Pierangela Ciuffreda, and Enzo Santaniello. 2025. "Exploring the Potential of Plant Cytokinins Against Common Human Pathogens: In Vitro Assessment and In Silico Insights" Plants 14, no. 12: 1749. https://doi.org/10.3390/plants14121749
APA StyleLazarević, J., Veselinović, A., Stojiljković, M., Petrović, M., Ciuffreda, P., & Santaniello, E. (2025). Exploring the Potential of Plant Cytokinins Against Common Human Pathogens: In Vitro Assessment and In Silico Insights. Plants, 14(12), 1749. https://doi.org/10.3390/plants14121749