Genetic Dissection of Sorghum Dwarfism Through Systematic Screening of Dw1–Dw3 Alleles in Chinese Germplasm
Abstract
:1. Introduction
2. Results
2.1. Dwarfing Gene Detection in 241 Chinese Sorghum Landraces
2.2. Dw3 Plays a Key Role in Sorghum Dwarfing Revealed by 8R252 × 8R387 F2 Population Genotyping
3. Discussion
4. Materials and Methods
4.1. The Cultivation of Plant Materials
4.2. Detection and Genotyping Methods for dw1–dw3 Genes
4.2.1. Detection of dw1
4.2.2. Detection of dw2
4.2.3. Detection of dw3
4.3. Methods for Generating the 8R252 × 8R387 F2 Population and Genotyping
4.3.1. Hybridization Method for Parental Lines
4.3.2. Phenotyping and Genotyping of F2 Plants
4.4. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Demirbas, A. Biofuels sources, biofuel policy, biofuel economy and global biofuel Projections. Energy. Convers. Manag. 2008, 49, 2106–2116. [Google Scholar] [CrossRef]
- Stamenković, O.S.; Siliveru, K.; Veljković, V.B.; Banković-Ilić, I.B.; Tasić, M.B.; Ciampitti, I.A.; Đalović, I.G.; Mitrović, P.M.; Sikora, V.Š.; Vara, P.V. Prasad Production of biofuels from sorghum. Renew. Sust. Energ. Rev. 2020, 124, 109769. [Google Scholar] [CrossRef]
- Mundia, C.W.; Secchi, S.; Akamani, K.; Wang, G. A regional comparison of factors affecting global Sorghum production: The case of north America, Asia and Africa’s sahel. Sustainability 2019, 11, 2135. [Google Scholar] [CrossRef]
- Lobell, D.B.; Burke, M.B.; Tebaldi, C.; Mastrandrea, M.D.; Falcon, W.P.; Naylor, R.L. Prioritizing climate change adaptation needs for food security in 2030. Science 2008, 319, 607–610. [Google Scholar] [CrossRef] [PubMed]
- Karper, E.R.; Quinby, R.J. Sorghum-Its production, utilization and breeding. Econ. Bot. 1947, 1, 355–371. [Google Scholar] [CrossRef]
- Hilley, J.; Truong, S.; Olson, S.; Morishige, D.; Mullet, J. Identification of Dw1, a regulator of sorghum stem internode length. PLoS ONE 2016, 11, e0151271. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, M.; Fujimoto, H.; Hirano, K.; Araki-Nakamura, S.; Ohmae-Shinohara, K.; Fujii, A.; Tsunashima, M.; Song, X.J.; Ito, Y.; Nagae, R.; et al. Sorghum Dw1, an agronomically important gene for lodging resistance, encodes a novel protein involved in cell proliferation. Sci. Rep. 2016, 6, 28366. [Google Scholar] [CrossRef] [PubMed]
- Klein, R.R.; Mullet, J.E.; Jordan, D.R.; Miller, F.R.; Rooney, W.L.; Menz, M.A.; Franks, C.D.; Klein, P.E. The effect of tropical sorghum conversion and inbred development on genome diversity as revealed by high-resolution genotyping. Crop. Sci. 2008, 48, S12. [Google Scholar] [CrossRef]
- Multani, D.S.; Briggs, S.P.; Chamberlin, M.A.; Blakeslee, J.J.; Murphy, A.S.; Johal, G.S. Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science 2003, 302, 81–84. [Google Scholar] [CrossRef] [PubMed]
- Diatta-Holgate, E.; Bergsma, B.; Tuinstra, M.R. Mutations in the dwarf3 gene confer height stability in sorghum. Plant. Genome 2024, 17, e20466. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Liang, B.; Li, Z.; Wang, C.; Zhang, L.; Lu, X. Novel Allelic Mutations in Dw3 Gene That Affect the Height of Sorghum Plants. Int. J. Mol. Sci. 2024, 25, 12000. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.P.; Ramu, P.; Deshpande, S.P.; Hash, C.T.; Shah, T.; Upadhyaya, H.D.; Riera-Lizarazu, O.; Brown, P.J.; Acharya, C.B.; Mitchell, S.E.; et al. Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc. Nat. Acad. Sci. USA 2013, 110, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Liang, T.; Bi, N. Scientific research road in the sorghum field-Chinese famous sorghum breeder cattle paradise. Seed. Technol. 2014, 15, 1–5. [Google Scholar]
- USDA. World Agricultural Production; Circular Series WAP 3–19; USDA: Washington, DC, USA, 2019.
- Iqbal, M.A.; Iqbal, A. Overview on Sorghum for food, feed, forage and fodder: Opportunities and problems in Pakistan’s perspectives. Am. Eurasian. J. Agric. Environ. Sci. 2015, 15, 1818–1826. [Google Scholar]
- Chen, B.R.; Wang, C.Y.; Wang, G.P.; Zhu, Z.X.; Xu, N.; Shi, G.S.; Yu, M.; Wang, N.; Li, J.H.; Hou, J.M. Genome-wide association study for starch content and constitution in sorghum (Sorghum bicolor (L.) Moench). J. Integr. Agric. 2019, 18, 2446–2456. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Xu, X.J.; Ding, Y.Q.; Cao, N.; Gao, X.; Feng, Z.; Li, K.Y.; Cheng, B.; Zhou, L.B.; Ren, M.J.; et al. GWAS of grain color and tannin content in Chinese sorghum based on whole-genome sequencing. Theor. Appl. Genet. 2023, 136, 77. [Google Scholar] [CrossRef] [PubMed]
- Shinoda. Baijiu—The Introduction of Sorghum; Taiwan Elite Publishing Co., Ltd.: Taipei, Taiwan, 1958. [Google Scholar]
- Yang, L.; Wang, Q.; Guo, X.K.; Guo, R.; Shao, Q.; Liu, Q.S. Effect of tannin content of sorghum on bacterial community in fermented grains of Fen-flavor Daqu Baijiu. China Brew. 2020, 39, 6. [Google Scholar]
- Cui, Z.H.; Luo, J.H.; Qi, C.H.Y.; Ruan, Y.Y.; Li, J.; Zhang, A.; Yang, X.H.; He, Y. Genome-wide association study (GWAS) reveals the genetic architecture of four husk traits in maize. BMC Genom. 2016, 17, 946–960. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lv, N.; Yin, F.; Duan, G.; Niu, H.; Chu, J.; Yan, H.; Ju, L.; Fan, F.; Lv, X.; et al. Research on genotype markers for plant height and assisted breeding of key sorghum resources in China. Genes 2024, 15, 83. [Google Scholar] [CrossRef] [PubMed]
- Zou, G.H.; Yan, S.; Zhai, G.W.; Zhang, Z.P.; Zou, J.Q.; Tao, Y.Z. Genetic variability and correlation of stalk yield related traits and sugar concentration of stalk juice in a sweet sorghum (Sorghum bicolor L. Moench) population. Aust. J. Crop Sci. 2011, 5, 1232–1238. [Google Scholar]
Accession Number | Genotype | Plant Height (cm) | Accession Number | Genotype | Plant Height (cm) |
---|---|---|---|---|---|
8R241 | Dw1Dw2dw3-c | 46.0 ± 3.5 | 8R360 | dw1Dw2dw3-ref | 79.7 ± 4.9 |
8R257 | Dw1Dw2Dw3 | 141.0 ± 14.7 | 8R361 | dw1Dw2dw3-ref | 98.0 ± 10.6 |
8R258 | Dw1Dw2dw3-c | 129.3 ± 6.0 | 8R366 | Dw1Dw2Dw3 | 121.0 ± 24.1 |
8R270 | Dw1Dw2dw3-ref | 154.3 ± 17.9 | 8R396 | Dw1Dw2Dw3 | 183.7 ± 9.3 |
8R272 | Dw1Dw2dw3-ref | 150.3 ± 6.0 | 8R402 | Dw1Dw2dw3-b | 124.7 ± 5.5 |
8R274 | Dw1Dw2Dw3 | 195.3 ± 15.5 | 8R414 | Dw1Dw2Dw3 | 176.0 ± 12.8 |
8R275 | Dw1Dw2dw3-ref | 132.3 ± 2.5 | 8R415 | Dw1Dw2Dw3 | 150.7 ± 16.3 |
8R277 | Dw1Dw2Dw3 | 156.7 ± 9.8 | 8R417 | Dw1Dw2dw3-c | 131.0 ± 5.3 |
8R281 | Dw1Dw2Dw3 | 135.0 ± 5.0 | 8R428 | Dw1Dw2dw3-c | 169.7 ± 13.1 |
8R288 | Dw1Dw2Dw3 | 174.7 ± 12.7 | 8R431 | Dw1Dw2Dw3 | 100.3 ± 10.3 |
8R299 | dw1Dw2Dw3 | 133.7 ± 8.1 | 8R462 | Dw1Dw2Dw3 | 170.0 ± 21.4 |
8R315 | Dw1dw2Dw3 | 160.3 ± 8.4 | 8R463 | Dw1Dw2Dw3 | 170.0 ± 17.4 |
8R336 | Dw1Dw2dw3-ref | 134.0 ± 7.2 | 8R617 | Dw1Dw2dw3-ref | 188.7 ± 8.1 |
8R337 | dw1Dw2dw3-ref | 71.7 ± 4.7 | 8R633 | Dw1Dw2dw3-ref | 101.0 ± 11.5 |
8R351 | Dw1dw2dw3-ref | 128.3 ± 2.3 | 8R634 | Dw1Dw2dw3-ref | 93.7 ± 5.7 |
Cultivar Number | Origin | Genotype | Plant Height (cm) |
---|---|---|---|
8R252 | China | Dw1Dw2Dw3 | 265.0 ± 11.8 |
8R387 | Mexico | dw1dw2dw3-ref | 66.3 ± 4.2 |
Gene ID in the Database | Allelic Mutation Number | Primers Used for Identification (5′–3′) | Location and Pattern of Allelic Mutations | References |
---|---|---|---|---|
Sobic.009G229800 | dw1 | F:TGGCGGTCCAACGTCTAAT R:CCTGAAGTATGGCGTGTCG | T at position 1350 | [6,7] |
Sobic.006G067700 | dw2 | F:CAGTTCAAATCAACGAGGAG R:TCCGTCGTGAAATGAGAATA | GA deletion at 549–550 | [8] |
Sobic.007G163800 | dw3–ref | F:CCGTCATCGTCCAGAACTCG R:CTTGAGCAGGTGCGAGTGCGA | 882 bp insertion (6204–7085) | [9] |
dw3–a | A to C substitution at 5406 | [10] | ||
dw3–b | A to G substitution at 5668 | |||
dw3–c | 2-bp deletion at 5967–5968 | |||
dw3–sd3 | 82-bp deletion at 5485–5566 | [11] | ||
dw3–sd4 | 6-bp repeat at 5820–5825 | |||
dw3–sd5 | 15-bp deletion at 5997–6011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Liang, B.; Li, Z.; Chen, L.; Liu, K.; Wang, L.; Zhang, L.; Lu, X. Genetic Dissection of Sorghum Dwarfism Through Systematic Screening of Dw1–Dw3 Alleles in Chinese Germplasm. Plants 2025, 14, 1703. https://doi.org/10.3390/plants14111703
Wang P, Liang B, Li Z, Chen L, Liu K, Wang L, Zhang L, Lu X. Genetic Dissection of Sorghum Dwarfism Through Systematic Screening of Dw1–Dw3 Alleles in Chinese Germplasm. Plants. 2025; 14(11):1703. https://doi.org/10.3390/plants14111703
Chicago/Turabian StyleWang, Ping, Bingbing Liang, Zhengjun Li, Le Chen, Kejie Liu, Lijuan Wang, Lixia Zhang, and Xiaochun Lu. 2025. "Genetic Dissection of Sorghum Dwarfism Through Systematic Screening of Dw1–Dw3 Alleles in Chinese Germplasm" Plants 14, no. 11: 1703. https://doi.org/10.3390/plants14111703
APA StyleWang, P., Liang, B., Li, Z., Chen, L., Liu, K., Wang, L., Zhang, L., & Lu, X. (2025). Genetic Dissection of Sorghum Dwarfism Through Systematic Screening of Dw1–Dw3 Alleles in Chinese Germplasm. Plants, 14(11), 1703. https://doi.org/10.3390/plants14111703