Ecology, Floristic–Vegetational Features, and Future Perspectives of Spruce Forests Affected by Ips typographus: Insight from the Southern Alps
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling Sites
2.2. Analysis of the Current and Future Distribution of Forests Affected by Bark Beetle
2.3. Vegetation Data Collection and Analysis
3. Results
3.1. Current and Future Distribution of Affected and Susceptible Spruce Forests
3.2. Vegetation Features
- A1—Plant community dominated by heliophilous shrubs such as Rubus idaeus L. (Rosaceae) (the dominant species), typical of clearings, disturbed forests, or areas affected by treefall or logging (Rubetum idaei association; Robinietea class). In this study, it occurs in areas where the density or coverage of dead spruce trees is low.
- A2—Plant community characterized by a high density and coverage of dead spruce trees, with an understory featuring limited Rubus idaeus and abundant Vaccinium myrtillus, Luzula nivea, ferns, and mosses. It also includes young broadleaf trees (Fagus sylvatica, Sorbus aucuparia, Castanea sativa) typical of mature forest communities with occasional silver fir (Abies alba Mill., Pinaceae) and spruce.
- A3—Shrubland with Rubus idaeus and a high density of exotic species such as Buddleja davidii Franch. (Scrophulariaceae), Senecio inaequidens DC. (Asteraceae) and Erigeron canadensis L. (Asteraceae). These species are associated with anthropogenic disturbance in areas near roads or settlements where spruce trees have been cut and removed.
- Cluster B can also be divided into four subclusters, although these are less dissimilar compared to those in Cluster A (Figure 6):
- B1—Dense, thermophilic spruce forest with low coverage/presence of herbaceous plants and bryophytes, and with young Castanea sativa trees;
- B2—Spruce forest with bryophytes, Vaccinium myrtillus, and young broadleaf trees (Fagus sylvatica, Betula pendula, Castanea sativa, Quercus petraea, Acer pseudoplatanus L., Sapindaceae);
- B3—Spruce forests with well-established spruce regeneration and high coverage of Oxalis acetosella and bryophytes in the understory;
4. Discussion
5. Conclusions
- Focus on measures/interventions that mitigate the spread of the bark beetle, especially in spruce forests of the submountain and mountain vegetational belts (particularly in areas with higher winter temperatures and high solar radiation), as these are the areas with the most favorable climatic conditions for the development of intense pest outbreaks;
- Promote the conversion of pure spruce forests into mixed forests, prioritizing native species and considering both their ecology and economic value;
- Avoid the spread/planting of spruce outside its natural/ecological range, where it could experience more stress and be more vulnerable to bark beetle attacks and/or other pests/diseases;
- Encourage, where possible, the spread of spruce in the subalpine belt, where it is unlikely that favorable climatic conditions for intense bark beetle attacks will occur in the coming decades;
- Promote rapid actions/interventions to facilitate tree growth in forests affected by the bark beetle on steeper slopes to prevent hydrogeological instability;
- Avoid the removal of spruce snags (in forests affected by the bark beetle) if the goal is to accelerate vegetation succession and achieve mature forest communities more quickly (which may differ significantly from pre-disturbance communities);
- In cases of spruce snag removal (for protective, productive, and/or ecological–conservation purposes) or other anthropogenic interventions, ensure that measures are adopted to contain exotic species, such as cleaning tools/machinery before their transport/use in the intervention area.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thom, D.; Seidl, R. Natural Disturbance Impacts on Ecosystem Services and Biodiversity in Temperate and Boreal Forests. Biol. Rev. 2016, 91, 760–781. [Google Scholar] [CrossRef] [PubMed]
- Hlásny, T.; König, L.; Krokene, P.; Lindner, M.; Montagné-Huck, C.; Müller, J.; Qin, H.; Raffa, K.F.; Schelhaas, M.-J.; Svoboda, M.; et al. Bark Beetle Outbreaks in Europe: State of Knowledge and Ways Forward for Management. Curr. For. Rep. 2021, 7, 138–165. [Google Scholar] [CrossRef]
- de Groot, M.; Diaci, J.; Ogris, N. Forest Management History Is an Important Factor in Bark Beetle Outbreaks_ Lessons for the Future. Fot. Ecol. Mang. 2019, 433, 467–474. [Google Scholar] [CrossRef]
- Marini, L.; Økland, B.; Jönsson, A.M.; Bentz, B.; Carroll, A.; Forster, B.; Grégoire, J.; Hurling, R.; Nageleisen, L.M.; Netherer, S.; et al. Climate Drivers of Bark Beetle Outbreak Dynamics in Norway Spruce Forests. Ecography 2017, 40, 1426–1435. [Google Scholar] [CrossRef]
- Washaya, P.; Modlinger, R.; Tyšer, D.; Hlásny, T. Patterns and Impacts of an Unprecedented Outbreak of Bark Beetles in Central Europe: A Glimpse into the Future? For. Ecosyst. 2024, 11, 100243. [Google Scholar] [CrossRef]
- Arthur, G.; Jonathan, L.; Juliette, C.; Nicolas, L.; Christian, P.; Hugues, C. Spatial and Remote Sensing Monitoring Shows the End of the Bark Beetle Outbreak on Belgian and North-Eastern France Norway Spruce (Picea Abies) Stands. Environ. Monit. Assess. 2024, 196, 226. [Google Scholar] [CrossRef]
- Faccoli, M.; Bernardinelli, I. Composition and Elevation of Spruce Forests Affect Susceptibility to Bark Beetle Attacks: Implications for Forest Management. Forests 2014, 5, 88–102. [Google Scholar] [CrossRef]
- Ogris, N.; Ferlan, M.; Hauptman, T.; Pavlin, R.; Kavčič, A.; Jurc, M.; De Groot, M. RITY—A Phenology Model of Ips typographus as a Tool for Optimization of Its Monitoring. Ecol. Model. 2019, 410, 108775. [Google Scholar] [CrossRef]
- Hofmann, S.; Schebeck, M.; Kautz, M. Diurnal Temperature Fluctuations Improve Predictions of Developmental Rates in the Spruce Bark Beetle Ips typographus. J. Pest Sci. 2024, 97, 1839–1852. [Google Scholar] [CrossRef]
- Netherer, S.; Lehmanski, L.; Bachlehner, A.; Rosner, S.; Savi, T.; Schmidt, A.; Huang, J.; Paiva, M.R.; Mateus, E.; Hartmann, H.; et al. Drought Increases Norway Spruce Susceptibility to the Eurasian Spruce Bark Beetle and Its Associated Fungi. New Phytol. 2024, 242, 1000–1017. [Google Scholar] [CrossRef]
- Netherer, S.; Matthews, B.; Katzensteiner, K.; Blackwell, E.; Henschke, P.; Hietz, P.; Pennerstorfer, J.; Rosner, S.; Kikuta, S.; Schume, H.; et al. Do Water-Limiting Conditions Predispose Norway Spruce to Bark Beetle Attack? New Phytol. 2015, 205, 1128–1141. [Google Scholar] [CrossRef] [PubMed]
- Matějka, K.; Modlinger, R. Climate, Picea Abies Stand State, and Ips typographus in the Czech Republic from a Viewpoint of Long-Term Dynamics. Available online: https://infodatasys.cz/climate/CR1961-2020/CR1961-2020.htm (accessed on 27 May 2025).
- Chirici, G.; Giannetti, F.; Travaglini, D.; Nocentini, S.; Francini, S.; D’Amico, G.; Calvo, E.; Fasolini, D.; Broll, M.; Maistrelli, F.; et al. Forest damage inventory after the “Vaia” storm in Italy. For.—Riv. Selvic. Ed Ecol. For. 2019, 16, 3–9. [Google Scholar] [CrossRef]
- Giupponi, L.; Leoni, V.; Pedrali, D.; Giorgi, A. Restoration of Vegetation Greenness and Possible Changes in Mature Forest Communities in Two Forests Damaged by the Vaia Storm in Northern Italy. Plants 2023, 12, 1369. [Google Scholar] [CrossRef]
- Ravazzi, C. Late Quaternary History of Spruce in Southern Europe. Rev. Palaeobot. Palynol. 2002, 120, 131–177. [Google Scholar] [CrossRef]
- Mucina, L.; Bueltmann, H.; Dierßen, K.; Theurillat, J.-P.; Raus, T.; Čarni, A.; Šumberová, K.; Willner, W.; Dengler, J.; Gavilán, R.; et al. Vegetation of Europe: Hierarchical Floristic Classification System of Vascular Plant, Bryophyte, Lichen, and Algal Communities. Appl. Veg. Sci. 2016, 19, 3–264. [Google Scholar] [CrossRef]
- Del Favero, R. I Boschi Delle Regioni Alpine Italiane—Tipologia, Funzionamento, Selvicoltura; Libraria editrice: Padova, Italy, 2004. [Google Scholar]
- Pignatti, S. Flora d’Italia; Edagricole: Bologna, Italy, 2017–2019. [Google Scholar]
- Kozhoridze, G.; Korolyova, N.; Komarek, J.; Kloucek, T.; Moravec, D.; Simova, P.; Jakuš, R. Direct and Mediated Impacts of Mixed Forests on Norway Spruce Infestation by European Bark Beetle Ips typographus. For. Ecol. Manag. 2024, 569, 122184. [Google Scholar] [CrossRef]
- Pirtskhalava-Karpova, N.; Trubin, A.; Karpov, A.; Jakuš, R. Drought Initialised Bark Beetle Outbreak in Central Europe: Meteorological Factors and Infestation Dynamic. For. Ecol. Manag. 2024, 554, 121666. [Google Scholar] [CrossRef]
- Huo, L.; Persson, H.J.; Lindberg, E. Analyzing the Environmental Risk Factors of European Spruce Bark Beetle Damage at the Local Scale. Eur. J. For. Res. 2024, 143, 985–1000. [Google Scholar] [CrossRef]
- Sommerfeld, A.; Rammer, W.; Heurich, M.; Hilmers, T.; Müller, J.; Seidl, R. Do Bark Beetle Outbreaks Amplify or Dampen Future Bark Beetle Disturbances in Central Europe? J. Ecol. 2021, 109, 737–749. [Google Scholar] [CrossRef]
- Svoboda, M.; Fraver, S.; Janda, P.; Bače, R.; Zenáhlíková, J. Natural Development and Regeneration of a Central European Montane Spruce Forest. For. Ecol. Manag. 2010, 260, 707–714. [Google Scholar] [CrossRef]
- Kupferschmid, A.D.; Brang, P.; Schönenberger, W.; Bugmann, H. Predicting Tree Regeneration in Picea abies snag stands. Eur. J. For. Res. 2006, 125, 163–179. [Google Scholar] [CrossRef]
- Matuszkiewicz, J.M.; Affek, A.N.; Zaniewski, P.; Kołaczkowska, E. Early Response of Understory Vegetation to the Mass Dieback of Norway Spruce in the European Lowland Temperate Forest. For. Ecosyst. 2024, 11, 100177. [Google Scholar] [CrossRef]
- Marazzi, S. Atlante Orografico Delle Alpi SOIUSA; Priuli & Verlucca: Pavone Canavese, Italy, 2005. [Google Scholar]
- Bona, E. Secondo Contributo per Un Atlante Della Biodiversità Del Bacino Superiore Del Fiume Oglio. Flora Vascolare; Bonazzi grafica S.r.l.: Sondrio, Italy, 2019. [Google Scholar]
- Previtali, F.; D’Alessio, D.; Galli, A.; Tosi, L. I Suoli, i Paesaggi Fisici, Il Dissesto Idrogeologico in Val Camonica e in Val Di Scalve (Alpi Meridionali). Monografie Di “Natura Bresciana” 17; Museo Civico di Scienze Naturali: Brescia, Italy; Volume 17.
- Cerabolini, B.; Armiraglio, S.; Caccianiga, M.; Verginella, A. Aspetti Bioclimatici. In Flora Vascolare della Lombardia Centro-Orientale; Lint: Trieste, Italy; pp. 33–40.
- Zepner, L.; Karrasch, P.; Wiemann, F.; Bernard, L. ClimateCharts.Net—An Interactive Climate Analysis Web Platform. Int. J. Digit. Earth 2021, 14, 338–356. [Google Scholar] [CrossRef]
- Martini, F.; Bona, E.; Federici, G.; Fenaroli, F.; Perico, G. Flora Vascolare Della Lombardia Centro-Orientale; Lint: Trieste, Italy, 2012. [Google Scholar]
- Verde, S.; Assini, S.; Andreis, C. Le Serie Di Vegetazione Della Regione Lombardia. In La vegetazione d’Italia; Blasi, C., Ed.; Palombi and Partner S.r.l.: Roma, Italy, 2010; pp. 181–203. [Google Scholar]
- Andreis, C.; Armiraglio, S.; Caccianiga, M.; Cerabolini, B. Forest Vegetation of the Order Piceetalia Excelsae Pawl. Pawl Al 1928 Lomb. Alps Fitosociol. 2009, 46, 49–74. [Google Scholar]
- Andreis, C.; Armiraglio, S.; Caccianiga, M.; Bortolas, D.; Broglia, A. Pinus cembra L. Nel Settore Sud-Alpino Lombardo (Italia Settentrionale). Ann Mus Civ Sc Nat Brescia 2005, 34, 19–39. [Google Scholar]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- Voldoire, A.; Saint-Martin, D.; Sénési, S.; Decharme, B.; Alias, A.; Chevallier, M.; Colin, J.; Guérémy, J.-F.; Michou, M.; Moine, M.-P.; et al. Evaluation of CMIP6 DECK Experiments With CNRM-CM6-1. J. Adv. Model. Earth Syst. 2019, 11, 2177–2213. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum Entropy Modeling of Species Geographic Distributions. Ecol. Modell. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Hijmans, R.; Phillips, S.; Leathwick, J.; Elith, J. Dismo: Species Distribution Modeling. R Package Version 1.3-15, 2024. Available online: https://github.com/rspatial/dismo (accessed on 1 April 2025).
- Braun-Blanquet, J. Pflanzensoziologie, 3rd ed.; Springer: Wien, Australia, 1964. [Google Scholar]
- Canullo, R.; Allegrini, M.-C.; Campetella, G. Reference Field Manual for Vegetation Surveys on the Conecofor Lii Network, Italy (National Programme Of Forest Ecosystems Control—Unece, Icp Forests). Braun-Blanquetia 2012, 48, 5–65. [Google Scholar]
- Tichý, L.; Hennekens, S.M.; Novák, P.; Rodwell, J.S.; Schaminée, J.H.J.; Chytrý, M. Optimal transformation of species cover for vegetation classification. Appl. Veg. Sci. 2020, 23, 710–717. [Google Scholar] [CrossRef]
- Dixon, P. VEGAN, a Package of R Functions for Community Ecology. J. Veg. Sci. 2003, 14, 927–930. [Google Scholar] [CrossRef]
- Legendre, P.; Gallagher, E.D. Ecologically Meaningful Transformations for Ordination of Species Data. Oecologia 2001, 129, 271–280. [Google Scholar] [CrossRef]
- Chytrý, M.; Tichý, L.; Holt, J.; Botta-Dukát, Z. Determination of Diagnostic Species with Statistical Fidelity Measures. J. Veg. Sci. 2002, 13, 79–90. [Google Scholar] [CrossRef]
- Tichy, L.; Chytry, M. Statistical Determination of Diagnostic Species for Site Groups of Unequal Size. J. Veg. Sci. 2006, 17, 809–818. [Google Scholar] [CrossRef]
- De Càceres, M. Indicator Species Analysis. Available online: https://cran.r-project.org/web/packages/indicspecies/vignettes/IndicatorSpeciesAnalysis.html (accessed on 28 May 2025).
- Biondi, E.; Blasi, C. Prodromo Della Vegetazione d’Italia. Available Online, 2015. Available online: https://www.prodromo-vegetazione-italia.org (accessed on 5 October 2024).
- Landolt, E.; Bäumler, B.; Erhardt, A.; Hegg, O.; Klötzli, F.; Lämmler, W.; Wohlgemuth, T. Flora Indicativa. In Ecological Indicator Values and Biological Attributes of the Flora of Switzerland and the Alps; Haupt-Verlag: Bern, Switzerland, 2010; p. 376. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 28 May 2025).
- Jakoby, O.; Lischke, H.; Wermelinger, B. Climate Change Alters Elevational Phenology Patterns of the European Spruce Bark Beetle (Ips typographus). Glob. Change Biol. 2019, 25, 4048–4063. [Google Scholar] [CrossRef]
- Kotlarski, S.; Gobiet, A.; Morin, S.; Olefs, M.; Rajczak, J.; Samacoïts, R. 21st Century Alpine Climate Change. Clim. Dyn. 2023, 60, 65–86. [Google Scholar] [CrossRef]
- Singh, V.V.; Naseer, A.; Mogilicherla, K.; Trubin, A.; Zabihi, K.; Roy, A.; Jakuš, R.; Erbilgin, N. Understanding Bark Beetle Outbreaks: Exploring the Impact of Changing Temperature Regimes, Droughts, Forest Structure, and Prospects for Future Forest Pest Management. Rev. Environ. Sci. Biotechnol. 2024, 23, 257–290. [Google Scholar] [CrossRef]
- Baier, P.; Pennerstorfer, J.; Schopf, A. PHENIPS—A Comprehensive Phenology Model of Ips typographus (L.) (Col., Scolytinae) as a Tool for Hazard Rating of Bark Beetle Infestation. For. Ecol. Manag. 2007, 249, 171–186. [Google Scholar] [CrossRef]
- Kozhoridze, G.; Korolyova, N.; Jakuš, R. Norway Spruce Susceptibility to Bark Beetles Is Associated with Increased Canopy Surface Temperature in a Year Prior Disturbance. For. Ecol. Manag. 2023, 547, 121400. [Google Scholar] [CrossRef]
- Fischer, A.; Marshall, P.; Camp, A. Disturbances in Deciduous Temperate Forest Ecosystems of the Northern Hemisphere: Their Effects on Both Recent and Future Forest Development. Biodivers. Conserv. 2013, 22, 1863–1893. [Google Scholar] [CrossRef]
- Jönsson, A.M.; Harding, S.; Krokene, P.; Lange, H.; Lindelöw, Å.; Økland, B.; Ravn, H.P.; Schroeder, L.M. Modelling the Potential Impact of Global Warming on Ips typographus Voltinism and Reproductive Diapause. Clim. Change 2011, 109, 695–718. [Google Scholar] [CrossRef]
- Lindelöw, Å.; Risberg, B.; Sjödin, K. Attraction during Flight of Scolytids and Other Bark- and Wood-Dwelling Beetles to Volatiles from Fresh and Stored Spruce Wood. Can. J. For. Res. 1992, 22, 224–228. [Google Scholar] [CrossRef]
- Byers, J.A.; Zhang, Q.-H.; Schlyter, F.; Birgersson, G. Volatiles from Nonhost Birch Trees Inhibit Pheromone Response in Spruce Bark Beetles. Sci. Nat. 1998, 85, 557–561. [Google Scholar] [CrossRef]
- Seidl, R.; Rammer, W.; Jäger, D.; Lexer, M.J. Impact of Bark Beetle (Ips typographus L.) Disturbance on Timber Production and Carbon Sequestration in Different Management Strategies under Climate Change. For. Ecol. Manag. 2008, 256, 209–220. [Google Scholar] [CrossRef]
- Cislaghi, A.; Giupponi, L.; Tamburini, A.; Giorgi, A.; Bischetti, G.B. The Effects of Mountain Grazing Abandonment on Plant Community, Forage Value and Soil Properties: Observations and Field Measurements in an Alpine Area. Catena 2019, 181, 104086. [Google Scholar] [CrossRef]
- Loidi, J. Dynamism in Vegetation. Vegetation Changes on a Short Time Scale. In The Vegetation of the Iberian Peninsula: Volume 1; Loidi, J., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 81–99. [Google Scholar] [CrossRef]
- Bauduceau, N.; Berry, P.; Cecchi, C.; Elmqvist, T.; Fernandez, M.; Hartig, T.; Krull, W.; Mayerhofer, E.; Noring, L. Towards an EU Research and Innovation Policy Agenda for Nature-Based Solutions & Re-Naturing Cities: Final Report of the Horizon 2020 Expert Group on “Nature-Based Solutions and Re-Naturing Cities”; Publications Office of the European Union: Luxembourg, 2015; Available online: https://data.europa.eu/doi/10.2777/479582 (accessed on 28 May 2025).
- Biondi, E. Phytosociology Today: Methodological and Conceptual Evolution. Plant Biosyst.—Int. J. Deal. Asp. Plant Biol. 2011, 145 (Suppl. S1), 19–29. [Google Scholar] [CrossRef]
- Lenoir, J.; Gégout, J.C.; Marquet, P.A.; de Ruffray, P.; Brisse, H. A Significant Upward Shift in Plant Species Optimum Elevation During the 20th Century. Science 2008, 320, 1768–1771. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Lin, H.; Long, X.; Cai, Y. Analyzing the Spatiotemporal Pattern and Driving Factors of Wetland Vegetation Changes Using 2000–2019 Time-Series Landsat Data. Sci. Total Environ. 2021, 780, 146615. [Google Scholar] [CrossRef]
- Zischg, A.P.; Frehner, M.; Gubelmann, P.; Augustin, S.; Brang, P.; Huber, B. Participatory Modelling of Upward Shifts of Altitudinal Vegetation Belts for Assessing Site Type Transformation in Swiss Forests Due to Climate Change. Appl. Veg. Sci. 2021, 24, e12621. [Google Scholar] [CrossRef]
- Del Favero, R. I Tipi Forestali Della Lombardia—Inquadramento Ecologico per La Gestione Dei Boschi Lombardi; CIERRE edizioni: Verona, Italy, 2002. [Google Scholar]
- Bischetti, G.B.; Chiaradia, E.A.; Epis, T.; Morlotti, E. Root Cohesion of Forest Species in the Italian Alps. Plant Soil 2009, 324, 71–89. [Google Scholar] [CrossRef]
- Vergani, C.; Chiaradia, E.A.; Bischetti, G.B. Variability in the Tensile Resistance of Roots in Alpine Forest Tree Species. Ecol. Eng. 2012, 46, 43–56. [Google Scholar] [CrossRef]
- Chiaradia, E.A.; Vergani, C.; Bischetti, G.B. Evaluation of the Effects of Three European Forest Types on Slope Stability by Field and Probabilistic Analyses and Their Implications for Forest Management. For. Ecol. Manag. 2016, 370, 114–129. [Google Scholar] [CrossRef]
- Giupponi, L.; Borgonovo, G.; Giorgi, A.; Bischetti, G.B. How to Renew Soil Bioengineering for Slope Stabilization: Some Proposals. Landsc. Ecol. Eng. 2019, 15, 37–50. [Google Scholar] [CrossRef]
- Aeschimann, D.; Lauber, K.; Moser, D.; Theurillat, J. Flora Alpina; Haupt-Verlag: Bern-Stuttgart-Wien, Australia, 2004. [Google Scholar]
- Tichý, L.; Axmanová, I.; Dengler, J.; Guarino, R.; Jansen, F.; Midolo, G.; Nobis, M.P.; Van Meerbeek, K.; Aćić, S.; Attorre, F.; et al. Ellenberg-Type Indicator Values for European Vascular Plant Species. J. Veg. Sci. 2023, 34, e13168. [Google Scholar] [CrossRef]
- Dengler, J.; Jansen, F.; Chusova, O.; Hüllbusch, E.; Nobis, M.P.; van Meerbeek, K.; Axmanová, I.; Bruun, H.H.; Chytrý, M.; Guarino, R.; et al. Ecological Indicator Values for Europe (EIVE) 1.0. Veg. Classif. Surv. 2023, 4, 7–29. [Google Scholar] [CrossRef]
- Giupponi, L.; Bischetti, G.B.; Giorgi, A. Ecological Index of Maturity to Evaluate the Vegetation Disturbance of Areas Affected by Restoration Work: A Practical Example of Its Application in an Area of the Southern Alps. Restor. Ecol. 2015, 23, 635–644. [Google Scholar] [CrossRef]
- Dainese, M.; Kühn, I.; Bragazza, L. Alien Plant Species Distribution in the European Alps: Influence of Species’ Climatic Requirements. Biol. Invasions 2014, 16, 815–831. [Google Scholar] [CrossRef]
- Hristov, P.; Shumkova, R.; Palova, N.; Neov, B. Factors Associated with Honey Bee Colony Losses: A Mini-Review. Vet. Sci. 2020, 7, 166. [Google Scholar] [CrossRef]
- Rahimi, E.; Jung, C. Global Trends in Climate Suitability of Bees: Ups and Downs in a Warming World. Insects 2024, 15, 127. [Google Scholar] [CrossRef]
- Leoni, V.; Panseri, S.; Giupponi, L.; Pavlovic, R.; Gianoncelli, C.; Coatti, G.; Beretta, G.; Giorgi, A. Phytochemical Profiling of Red raspberry (L.) Honey and Investigation of Compounds Related to Its Pollen Occurrence. J. Sci. Food Agric. 2024, 104, 5391–5406. [Google Scholar] [CrossRef]
- Sadgrove, N.J. Comment on Pyrrolizidine Alkaloids and Terpenes from Senecio (Asteraceae): Chemistry and Research Gaps in Africa. Molecules 2022, 27, 8868. [Google Scholar] [CrossRef]
Code/Unit | Bioclimatic Variable |
---|---|
BIO1 (°C) | Annual Mean Temperature |
BIO2 (°C) | Mean Diurnal Range (Mean of monthly, max-min T) |
BIO3 (-) | Isothermality (BIO2/BIO7 × 100) |
BIO4 (°C) | Temperature Seasonality (standard deviation × 100) |
BIO5 (°C) | Max Temperature of Warmest Month |
BIO6 (°C) | Min Temperature of Coldest Month |
BIO7 (°C) | Temperature Annual Range (BIO5-BIO6) |
BIO8 (°C) | Mean Temperature of Wettest Quarter |
BIO9 (°C) | Mean Temperature of Driest Quarter |
BIO10 (°C) | Mean Temperature of Warmest Quarter |
BIO11 (°C) | Mean Temperature of Coldest Quarter |
BIO12 (mm) | Annual Precipitation |
BIO13 (mm) | Precipitation of Wettest Month |
BIO14 (mm) | Precipitation of Driest Month |
BIO15 (-) | Precipitation Seasonality (Coefficient of Variation) |
BIO16 (mm) | Precipitation of Wettest Quarter |
BIO17 (mm) | Precipitation of Driest Quarter |
BIO18 (mm) | Precipitation of Warmest Quarter |
BIO19 (mm) | Precipitation of Coldest Quarter |
Cluster | Diagnostic Species | Phytosociological Class Code | Φ | p-Value | |
---|---|---|---|---|---|
A | Picea abies (dead) | PIC | 0.951 | 0.005 | ** |
Rubus idaeus | ROB | 0.470 | 0.005 | ** | |
Mycelis muralis | FAG, EPI | 0.406 | 0.005 | ** | |
Fragaria vesca | EPI | 0.295 | 0.005 | ** | |
Solanum dulcamara | POP | 0.286 | 0.040 | * | |
Sambucus racemosa | ROB | 0.285 | 0.015 | * | |
Rubus ulmifolius | RHA | 0.270 | 0.005 | ** | |
Betula pendula | ROB | 0.266 | 0.005 | ** | |
Geranium robertianum | FAG, EPI | 0.260 | 0.015 | * | |
Galium aparine | POP, EPI | 0.234 | 0.015 | * | |
Taraxacum officinale (group) | - | 0.226 | 0.010 | ** | |
Sambucus nigra | ROB, POP | 0.205 | 0.005 | ** | |
Galeopsis tetrahit | PAR, EPI | 0.186 | 0.005 | ** | |
Buddleja davidii | ROB | 0.167 | 0.005 | ** | |
Salix caprea | ROB | 0.144 | 0.005 | ** | |
Urtica dioica | ROB, POP, EPI | 0.142 | 0.005 | ** | |
B | Picea abies (alive) | PIC | 0.990 | 0.005 | ** |
Mosses | - | 0.309 | 0.030 | * | |
Vaccinium myrtillus | PIC, QUE, ULI, NAR | 0.280 | 0.030 | * | |
Saxifraga cuneifolia | PIC | 0.228 | 0.040 | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giupponi, L.; Panza, R.; Pedrali, D.; Sala, S.; Giorgi, A. Ecology, Floristic–Vegetational Features, and Future Perspectives of Spruce Forests Affected by Ips typographus: Insight from the Southern Alps. Plants 2025, 14, 1681. https://doi.org/10.3390/plants14111681
Giupponi L, Panza R, Pedrali D, Sala S, Giorgi A. Ecology, Floristic–Vegetational Features, and Future Perspectives of Spruce Forests Affected by Ips typographus: Insight from the Southern Alps. Plants. 2025; 14(11):1681. https://doi.org/10.3390/plants14111681
Chicago/Turabian StyleGiupponi, Luca, Riccardo Panza, Davide Pedrali, Stefano Sala, and Annamaria Giorgi. 2025. "Ecology, Floristic–Vegetational Features, and Future Perspectives of Spruce Forests Affected by Ips typographus: Insight from the Southern Alps" Plants 14, no. 11: 1681. https://doi.org/10.3390/plants14111681
APA StyleGiupponi, L., Panza, R., Pedrali, D., Sala, S., & Giorgi, A. (2025). Ecology, Floristic–Vegetational Features, and Future Perspectives of Spruce Forests Affected by Ips typographus: Insight from the Southern Alps. Plants, 14(11), 1681. https://doi.org/10.3390/plants14111681