Unveiling Cytotoxic Bioactive Compounds from Erica carnea L.: Extraction Optimization, Kinetic Modeling, and Biological Activity Assessment
Abstract
1. Introduction
2. Results and Discussion
2.1. Optimization of the Extraction of BCs from E. carnea L.
2.1.1. Hep2c Cell Lines
2.1.2. RD Cell Lines
2.1.3. L2OB Cell Lines
2.1.4. Fitting the Models
2.2. Kinetics of Extraction of BCs with Cytotoxic Activity
2.2.1. Cytotoxic Activity Variation with Extraction Time
2.2.2. Kinetics of Extraction
2.2.3. Comparison of the Kinetic Models
2.2.4. Thermodynamic Study
- Hep2c: ΔH* = 14.41 kJ/mol, ΔS* = −250.82 J/Kmol, ΔG* = 92.90 kJ/mol.
- RD: ΔH* = 6.77 kJ/mol, ΔS* = −273.81 J/Kmol, ΔG* = 92.77 kJ/mol.
- L2OB: ΔH* = 8.16 kJ/mol, ΔS* = −268.55 J/Kmol, ΔG* = 92.22 kJ/mol.
Ethanol % | T (°C) | Hep2c Cells a IC50(μg/mL) | RD Cells b IC50(μg/mL) | L2OB Cells c IC50(μg/mL) |
---|---|---|---|---|
30 | 30 | 16.33 ± 0.55 d | 15.70 ± 0.89 | 25.21 ± 0.69 |
40 | 15.23 ± 0.94 | 14.19 ± 0.71 | 24.26 ± 0.32 | |
50 | 14.29 ± 0.95 | 13.93 ± 0.65 | 22.23 ± 0.87 | |
50 | 30 | 24.37 ± 0.12 | 22.44 ± 0.25 | 31.91 ± 0.43 |
40 | 23.38 ± 0.49 | 21.40 ± 0.66 | 30.48 ± 0.21 | |
50 | 20.55 ± 0.23 | 17.49 ± 0.23 | 28.32 ± 0.74 | |
70 | 30 | 22.22 ± 0.49 | 18.53 ± 0.44 | 29.55 ± 0.83 |
40 | 21.36 ± 0.24 | 17.88 ± 0.87 | 28.87 ± 0.73 | |
50 | 20.24 ± 0.84 | 17.19 ± 0.92 | 27.88 ± 0.71 | |
cis-DDP e | 0.94 ± 0.55 | 1.4 ± 0.97 | 0.72 ± 0.64 |
2.3. Biological Activity of Obtained Extracts
2.3.1. Cytotoxic Activity
2.3.2. Antibacterial Activity
2.3.3. Antioxidant Activity
2.4. Mechanistic Considerations of Observed Bioactivities
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Plant Material
3.3. Preparation of the Extracts
3.4. Extraction Procedure for Optimization Process
3.5. Kinetics of BCs Extraction
3.6. Determination of Biological Activity of Extracts
3.6.1. Cytotoxic Activity
3.6.2. Antioxidant Activity
3.6.3. Antibacterial Activity
3.7. Modeling of BC Extraction Kinetics
3.7.1. Unsteady-State Diffusion Model
3.7.2. Ponomarev Model
3.8. Determination of Thermodynamic Parameters
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alkhamaisah, S.; Aljofan, M. Prevalence of use and reported side effects of herbal medicine among adults in Saudi Arabia. Complement. Ther. Med. 2020, 48, 102255. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Khan, M.; Adil, S.F.; Alkhathlan, H.Z. Screening of potential cytotoxic activities of some medicinal plants of Saudi Arabia. Saudi J. Biol. Sci. 2022, 29, 1801–1807. [Google Scholar] [CrossRef] [PubMed]
- Bućar, M. Medonosne Biljke Kontinentalne Hrvatske: Staništa, Vrijeme Cvjetanja, Medonosna Svojstva; Matica Hrvatska: Petrinja, Croatia, 2008. [Google Scholar]
- Šavikin-Fodulović, K.; Bulatović, V.; Menković, N.; Tasić, S.; Zdunić, G.; Popović, M. Osvrt na biljne vrste područija Nacionalnog parka Tara. Lek. Sirovine 2003, 13, 113–121. [Google Scholar]
- Veličković, V.; Đurović, S.; Radojković, M.; Cvetanović, A.; Švarc-Gajić, J.; Vujić, J.; Trifunović, S.; Mašković, P. Application of conventional and non-conventional extraction approaches for extraction of Erica Carnea L.: Chemical profile and biological activity of obtained extracts. J. Supercrit. Fluids 2017, 128, 331–337. [Google Scholar] [CrossRef]
- Pavlović, R.D.; Lakusić, B.; Doslov-Kokorus, Z.; Kovacević, N. Arbutin content and antioxidant activity of some Ericaceae species. Pharmazie 2009, 64, 656–659. [Google Scholar]
- Guendouze-Bouchefa, N.; Madani, K.; Chibane, M.; Boulekbache-Makhlouf, L.; Hauchard, D.; Kiendrebeogo, M.; Stévigny, C.; Okusa, P.N.; Duez, P. Phenolic compounds, antioxidant and antibacterial activities of three Ericaceae from Algeria. Ind. Crop. Prod. 2015, 70, 459–466. [Google Scholar] [CrossRef]
- Sagar, N.A.; Pareek, S.; Sharma, S.; Yahia, E.M.; Lobo, M.G. Fruit and vegetable waste: Bioactive compounds, their extraction, and possible utilization. Compr. Rev. Food Sci. Food Saf. 2018, 17, 512–531. [Google Scholar] [CrossRef]
- Peixoto, F.B.; Aranha, A.C.R.; Defendi, R.O.; Tonin, L.T.D.; Sipoli, C.C.; Fragoso, A.G.; Düsmand, E.; Suzuki, R.M. Optimization of extraction of bioactive compounds with antiproliferative activity from goji berry and assessment of kinetic models. J. Chem. Technol. Biotechnol. 2023, 98, 2888–2903. [Google Scholar] [CrossRef]
- Monteiro, M.; Santos, R.A.; Iglesias, P.; Couto, A.; Serra, C.R.; Gouvinhas, I.; Barros, A.; Oliva-Teles, A.; Enes, P.; Díaz-Rosales, P. Effect of extraction method and solvent system on the phenolic content and antioxidant activity of selected macro and microalgae extracts. J. Appl. Phycol. 2020, 32, 349–362. [Google Scholar] [CrossRef]
- Silva, L.A.; Aranha, A.C.R.; Reis, M.F.; Madrona, G.S.; Scapim, M.R.S. Optimization of the extraction of bioactive compounds from Muntingia calabura peels and cytotoxic and antiproliferative evaluation by the Allium cepa test. J. Chem. Technol. Biotechnol. 2022, 98, 188–196. [Google Scholar] [CrossRef]
- Oroian, M.; Dranca, F.; Ursachi, F. Comparative evaluation of maceration, microwave and ultrasonic-assisted extraction of phenolic compounds from propolis. J. Food Sci. Technol. 2020, 57, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Peixoto, F.B.; Aranha, A.C.R.; Nardino, D.A.; Defendi, R.O.; Suzuki, R.M. Extraction and encapsulation of bioactive compounds: A review. J. Food Process Eng. 2022, 45, e14167. [Google Scholar] [CrossRef]
- Dai, J.; Mumper, R.J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, G.; Almajano, M.P. Red fruits: Extraction of antioxidants, phenolic content, and radical scavenging determination: A review. Antioxidants 2017, 6, 7. [Google Scholar] [CrossRef]
- Koocheki, A.; Taherian, A.R.; Razavi, S.; Bostan, A. Response surface methodology for optimization of extraction yield, viscosity, and hue and emulsion stability of mucilage extracted from Lepidium perfoliatum seeds. Food Hydrocoll. 2009, 23, 2369–2379. [Google Scholar] [CrossRef]
- Amarante, R.C.A.; Oliveira, P.M.; Schwantes, F.K.; Moron-Villarreyes, J.A. Oil extraction from castor cake using ethanol: Kinetics and thermodynamics. Ind. Eng. Chem. Res. 2014, 53, 6824–6829. [Google Scholar] [CrossRef]
- Agu, C.M.; Kadurumba, C.H.; Agulanna, A.C.; Aneke, O.O.; Agu, I.J.; Eneh, J.N. Nonlinear kinetics, thermodynamics, and parametric studies of Colocynthis vugaris Shrad seeds oil extraction. Ind. Crop. Prod. 2018, 123, 386–400. [Google Scholar] [CrossRef]
- Menkiti, M.C.; Agu, C.M.; Udeigwe, T.K. Kinetic and parametric studies for the extractive synthesis of oil from Terminalia catappa L. kernel. React. Kinet. Mech. Catal. 2017, 120, 129–147. [Google Scholar] [CrossRef]
- Baidoo, E.B.; Tulashie, S.K.; Miyittah, M.; Alale, E.M.; Adukpoh, K.E.; Agyekwaga, G.W.; Asante, P.A. Kinetics and thermodynamic studies on oil extraction from Ghanaian cashew kernel using hexane. Heliyon 2024, 10, 32421. [Google Scholar] [CrossRef]
- Psarrou, I.; Oreopoulou, A.; Tsimogiannis, D.; Oreopoulou, V. Extraction Kinetics of Phenolic Antioxidants from the Hydro Distillation Residues of Rosemary and Effect of Pretreatment and Extraction Parameters. Molecules 2020, 25, 4520. [Google Scholar] [CrossRef]
- Paunović, D.Đ.; Mitić, S.S.; Stojanović, G.S.; Mitić, M.N.; Stojanović, B.T.; Stojković, M.B. Kinetics of the Solid-Liquid Extraction Process of Phenolic Antioxidants and Antioxidant Capacity from Hop (Humulus lupulus L.). Sep. Sci. Technol. 2015, 50, 1658–1664. [Google Scholar] [CrossRef]
- Borsato, D.; Galvan, D.; Pereira, J.L.; Orives, J.R.; Angilelli, K.G.; Coppo, R.L. Kinetic and thermodynamic parameters of biodiesel oxidation with synthetic antioxidants: Simplex centroid mixture design. J. Braz. Chem. Soc. 2014, 25, 1984–1992. [Google Scholar] [CrossRef]
- Vlase, L.; Benedec, D.; Hanganu, D.; Damian, G.; Csillag, I.; Sevastre, B.; Mot, A.; Silaghi Dumitrescu, R.; Tilea, I. Evaluation of antioxidant and antimicrobial activities and phenolic profile for Hyssopus officinalis, Ocimum basilicum and Teucrium chamaedrys. Molecules 2014, 19, 5490–5507. [Google Scholar] [CrossRef]
- Vujanović, M.; Zengin, G.; Đurović, S.; Mašković, P.; Cvetanović, A.; Radojković, M. Biological activity of extracts of traditional wild medicinal plants from the Balkan Peninsula. S. Afr. J. Bot. 2019, 120, 213–218. [Google Scholar] [CrossRef]
- Itharat, A.; Houghton, P.J.; Eno-Amooquaye, E.; Burke, P.J.; Sampson, J.H.; Raman, A. In vitro cytotoxic activity of Thai medicinal plants used traditionally to treat cancer. J. Ethnopharmacol. 2004, 90, 33–38. [Google Scholar] [CrossRef]
- Mašković, P.Z.; Diamanto, L.D.; Vujic, J.M.; Cvetanović, A.D.; Radojković, M.M.; Gadžurić, S.B.; Zengin, G. Onosma aucheriana: A source of biologically active molecules for novel food ingredients and pharmaceuticals. J. Funct. Foods 2015, 19, 479–486. [Google Scholar] [CrossRef]
- Roleira, F.M.F.; Tavares-da-Silva, E.J.; Varela, C.L.; Costa, S.C.; Silva, T.; Garrido, J.; Borges, F. Plant derived and dietary phenolic antioxidants: Anticancer properties. Food Chem. 2015, 183, 235–258. [Google Scholar] [CrossRef]
- Mori, A.; Nishino, C.; Enoki, N.; Tawata, S. Antibacterial activity and mode of action of plant flavonoids against Proteus vulgaris and Staphylococcus aureus. Phytochemistry 1987, 26, 2231–2234. [Google Scholar] [CrossRef]
- Cowan, M. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 1999, 12, 564–582. [Google Scholar] [CrossRef]
- Ćetković, G.S.; Čanadanović-Brunet, J.M.; Djilas, S.M.; Tumbas, V.T.; Markov, S.L.; Cvetković, D.D. Antioxidant potential, lipid peroxidation Inhibition and antimicrobial activities of Satureja montana L. subsp. kitaibelii extracts. Int. J. Mol. Sci. 2007, 8, 1013–1027. [Google Scholar] [CrossRef]
- Calderon, P.B.; Robertfroid, M. Free radicals and free radical-mediated toxicity. J. Phar. Bel. 1988, 43, 390–400. [Google Scholar]
- Radojković, M.; Zeković, Z.; Mašković, P.; Vidović, S.; Mandić, A.; Mišan, A.; Đurović, S. Biological activities and chemical composition of Morus leaves extracts obtained by maceration and supercritical fluid extraction. J. Supercrit. Fluids 2016, 117, 50–58. [Google Scholar] [CrossRef]
- Baviskar, B.A.; Khadabadia, S.S.; Deore, S.L.; Shiradkar, M.R. Synthesis of clubbed Triazolyl Indeno [1,2-C] Isoquinolines as a novel anticancer agent. Der Pharm. Sin. 2012, 3, 24–30. [Google Scholar]
- Maškovića, P.; Veličković, V.; Đurović, S.; Zeković, Z.; Radojković, M.; Cvetanović, A.; Švarc-Gajić, J.; Mitić, M.; Vujić, J. Biological activity and chemical profile of Lavatera thuringiaca L. extracts obtained by different extraction approaches. Phytomedicine 2018, 38, 118–124. [Google Scholar] [CrossRef]
- Hsu, C.-K.; Chiang, B.-H.; Chen, Y.-S.; Yang, J.-H.; Liu, C.-L. Improving the antioxidant activity of buckwheat (Fagopyrum tataricm Gaertn) sprout with trace elementwater. Food Chem. 2008, 108, 633–641. [Google Scholar] [CrossRef]
- Hinneburg, I.; Damien Dorman, H.J.; Hiltunen, R. Antioxidant activities of extracts from selected culinary herbs and spices. Food Chem. 2006, 97, 122–129. [Google Scholar] [CrossRef]
- Espín, J.C.; Soler-Rivas, C.; Wichers, H.J. Characterization of the total free radicalscavenger capacity of vegetable oils and oil fractions using 2, 2-diphenyl-1-picrylhydrazyl radical. J. Agric. Food Chem. 2000, 48, 648–656. [Google Scholar] [CrossRef]
- Delgado-Andrade, C.; Rufián-Henares, J.A.; Morales, F.J. Assessing the antioxidant activity of melanoidins from coffee brews by different antioxidant methods. J. Agric. Food Chem. 2005, 53, 7832–7836. [Google Scholar] [CrossRef]
- Dinis, T.C.P.; Madeira, V.M.C.; Almeida, L.M. Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch. Biochem. Biophys. 1994, 315, 161–169. [Google Scholar] [CrossRef]
- Cvetanović, A.; Zengin, G.; Zekovića, Z.; Švarc-Gajić, J.; Ražić, S.; Damjanović, A.; Mašković, P.; Mitić, M. Comparative in vitro studies of the biological potential and chemical composition of stems, leaves and berries Aronia melanocarpa’s extracts obtained by subcritical water extraction. Food Chem. Toxicol. 2018, 121, 458–466. [Google Scholar] [CrossRef]
- Cvetanović, A.; Švarc-Gajić, J.; Mašković, P.; Savić, S.; Nikolić, L.J. Antioxidant and biological activity of chamomile extracts obtained by different techniques: Perspective of using superheated water for isolation of biologically active compounds. Ind. Crop. Prod. 2015, 65, 582–591. [Google Scholar] [CrossRef]
- Kitanovic, S.; Milenovic, D.; Veljkovic, V.B. Empirical kinetic models for the resinoid extraction from aerial parts of St John’s Wort (Hypericum perforatum L.). J. Biochem. Eng. 2008, 41, 1–11. [Google Scholar] [CrossRef]
- Stanisavljević, I.T.; Lazić, M.L.; Veljković, V.B. Ultrasonic extraction of oil from tobacco (Nicotiana tabacum L.) seeds. Ultrason. Sonochem. 2007, 14, 646–652. [Google Scholar] [CrossRef] [PubMed]
- Mitić, M.; Janković, S.; Mašković, P.; Arsić, B.; Mitić, J.; Ickovski, J. Kinetic models of the extraction of vanillic acid from pumpkin seeds. Open Chem. 2020, 18, 22–30. [Google Scholar] [CrossRef]
- Lee, C.-G.; Kim, J.-H. A kinetic and thermodynamic study of fractional precipitation of Paclitaxel from Taxus chinensis. Process Biochem. 2017, 59, 216–222. [Google Scholar] [CrossRef]
No | Independent Variables | Measured Responses | |||||||
---|---|---|---|---|---|---|---|---|---|
x1 (%) | x2 (°C) | x3 (min) | Hep2c-Yex a | Hep2c-Ypred | RD-Yex | RD-Ypred | L2OB-Yex | L2OB-Ypred | |
1 | 30 (−1) | 30 (−1) | 20 (−1) | 0.454 | 0.452 | 0.558 | 0.552 | 0.328 | 0.318 |
2 | 70 (+1) | 30 (−1) | 20 (−1) | 0.442 | 0.438 | 0.421 | 0.418 | 0.181 | 0.167 |
3 | 30 (−1) | 50 (+1) | 20 (−1) | 0.465 | 0.467 | 0.57 | 0.576 | 0.328 | 0.348 |
4 | 70 (+1) | 50 (+1) | 20 (−1) | 0.450 | 0.439 | 0.439 | 0.442 | 0.192 | 0.181 |
5 | 30 (−1) | 30 (−1) | 80 (+1) | 0.669 | 0.666 | 0.692 | 0.692 | 0.586 | 0.575 |
6 | 70 (+1) | 30 (−1) | 80 (+1) | 0.606 | 0.609 | 0.602 | 0.612 | 0.391 | 0.411 |
7 | 30 (−1) | 50 (+1) | 80 (+1) | 0.683 | 0.685 | 0.716 | 0.716 | 0.603 | 0.589 |
8 | 70 (+1) | 50 (+1) | 80 (+1) | 0.659 | 0.656 | 0.647 | 0.637 | 0.448 | 0.452 |
Response | ||||||
---|---|---|---|---|---|---|
Coefficient | Hep2c | PC (%) a | RD | PC (%) | L2OB | PC (%) |
b0 | 0.5535 | - | 0.5806 | 0.3792 | ||
b1 | −0.0142 | 9.54 | −0.0534 | 30.83 | −0.0762 | 31.28 |
b2 | 0.0087 | 5.85 | 0.0124 | 7.16 | 0.0135 | 5.54 |
b3 | 0.1007 | 67.67 | 0.0836 | 48.27 | 0.1277 | 52.42 |
b12 | 0.0025 | 1.68 | 0.0034 | 1.96 | 0.0035 | 1.44 |
b13 | −0.0075 | 5.04 | 0.0136 | 7.85 | 0.0112 | 4.60 |
b23 | 0.0080 | 5.37 | 0.0049 | 2.83 | 0.0050 | 2.05 |
b123 | 0.0072 | 4.85 | 0.0019 | 1.10 | 0.0065 | 2.67 |
Cell Lines | SOV | x1 | x2 | x3 | x1x2 | x1x3 | x2x3 | x1x2x3 | Error | Total |
---|---|---|---|---|---|---|---|---|---|---|
Hep2c | SS 1 | 0.00162 | 0.00061 | 0.08120 | 0.00005 | 0.00045 | 0.00051 | 0.00042 | 0.00016 | 0.08502 |
Df 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 8 | 15 | |
MS 3 | 0.00162 | 0.00061 | 0.08120 | 0.00005 | 0.00045 | 0.00051 | 0.00042 | 0.00002 | 0.00567 | |
F-Value | 81.00 | 30.50 | 4060.0 | 2.50 | 22.50 | 25.50 | 21.00 | |||
p-Value | 0.000190 | 0.000559 | <0.00001 | 0.152502 | 0.001458 | 0.000990 | 0.001796 | |||
R2 = 0.9981; Radj2 = 0.9964; CV (%) = 0.81 | ||||||||||
RD | SS | 0.02279 | 0.00122 | 0.00559 | 0.00009 | 0.00148 | 0.00019 | 0.00003 | 0.00032 | 0.03171 |
Df | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 8 | 15 | |
MS | 0.02279 | 0.00122 | 0.00559 | 0.00009 | 0.00148 | 0.00019 | 0.00003 | 0.00004 | 0.00211 | |
F-Value | 569.75 | 30.50 | 1398.6 | 2.25 | 37.00 | 4.75 | 0.75 | |||
p-Value | <0.00001 | 0.000559 | <0.00001 | 0.172003 | 0.000295 | 0.060915 | 0.411694 | |||
R2 = 0.9899; Radj2 = 0.9810; CV (%) = 1.09 | ||||||||||
L2OB | SS | 0.04651 | 0.00146 | 0.13056 | 0.00010 | 0.00101 | 0.00020 | 0.00034 | 0.00048 | 0.18066 |
Df | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 8 | 15 | |
MS | 0.04651 | 0.00146 | 0.13056 | 0.00010 | 0.00101 | 0.00020 | 0.00034 | 0.00006 | 0.01204 | |
F-Value | 775.16 | 24.33 | 2176.0 | 1.6666 | 16.833 | 3.333 | 5.666 | |||
p-Value | <0.00001 | 0.001146 | <0.00001 | 0.232845 | 0.003424 | 0.105337 | 0.044522 | |||
R2 = 0.9973; Radj2 = 0.9950; CV (%) = 1.98 |
C. Lines/ Ethanol (%) | T (°C) | Unsteady b | -Stare k | Diffusion RMS | Model R2 | Ponomarev bʹ | Model kʹ | RMS | R2 |
---|---|---|---|---|---|---|---|---|---|
Hep2c | 30 °C | 0.441 | 2.46 × 10−3 | 5.52 | 0.9465 | 0.450 | 2.35 × 10−3 | 7.38 | 0.9048 |
30 | 40 °C | 0.439 | 2.64 × 10−3 | 4.66 | 0.9569 | 0.457 | 2.45 × 10−3 | 6.62 | 0.9189 |
50 °C | 0.425 | 2.87 × 10−3 | 4.38 | 0.9661 | 0.442 | 2.61 × 10−3 | 6.84 | 0.9278 | |
50 | 30 °C | 0.352 | 1.33 × 10−3 | 1.27 | 0.8598 | 0.358 | 1.66 × 10−3 | 4.98 | 0.826 |
40 °C | 0.345 | 1.60 × 10−3 | 1.12 | 0.8987 | 0.353 | 1.94 × 10−3 | 4.97 | 0.866 | |
50 °C | 0.345 | 1.87 × 10−3 | 1.01 | 0.915 | 0.359 | 2.15 × 10−3 | 4.94 | 0.883 | |
70 | 30 °C | 0.414 | 1.76 × 10−3 | 5.14 | 0.9019 | 0.436 | 1.78 × 10−3 | 5.46 | 0.8645 |
40 °C | 0.417 | 1.90 × 10−3 | 3.48 | 0.9508 | 0.438 | 1.87 × 10−3 | 4.61 | 0.9222 | |
50 °C | 0.405 | 2.28 × 10−3 | 6.8 | 0.8972 | 0.433 | 2.20 × 10−3 | 8.31 | 0.8363 | |
RD 30 | 30 °C | 0.613 | 2.08 × 10−3 | 5.75 | 0.8606 | 0.621 | 1.69 × 10−3 | 7.48 | 0.8219 |
40 °C | 0.613 | 2.24 × 10−3 | 6.78 | 0.849 | 0.62 | 1.74 × 10−3 | 8.32 | 0.8014 | |
50 °C | 0.542 | 2.79 × 10−3 | 6.65 | 0.8949 | 0.561 | 1.88 × 10−3 | 7.71 | 0.8793 | |
50 | 30 °C | 0.374 | 1.42 × 10−3 | 3.34 | 0.9489 | 0.378 | 1.40 × 10−3 | 3.53 | 0.9322 |
40 °C | 0.391 | 1.58 × 10−3 | 0.99 | 0.8887 | 0.402 | 1.53 × 10−3 | 4.45 | 0.8753 | |
50 °C | 0.415 | 1.78 × 10−3 | 1.15 | 0.8769 | 0.424 | 1.68 × 10−3 | 5.79 | 0.84 | |
70 | 30 °C | 0.386 | 1.91 × 10−3 | 3.76 | 0.9536 | 0.406 | 1.62 × 10−3 | 5.32 | 0.9193 |
40 °C | 0.389 | 2.08 × 10−3 | 5.63 | 0.9212 | 0.409 | 1.71 × 10−3 | 7.35 | 0.8772 | |
50 °C | 0.401 | 2.18 × 10−3 | 4.95 | 0.9442 | 0.424 | 1.78 × 10−3 | 7.09 | 0.8979 | |
L2OB 30 | 30 °C | 0.255 | 3.27 × 10−3 | 2.91 | 0.9781 | 0.306 | 3.41 × 10−3 | 4.89 | 0.9543 |
40 °C | 0.229 | 3.48 × 10−3 | 2.68 | 0.9888 | 0.287 | 3.65 × 10−3 | 5.01 | 0.9635 | |
50 °C | 0.202 | 3.69 × 10−3 | 3.09 | 0.9942 | 0.267 | 3.89 × 10−3 | 5.6 | 0.9826 | |
50 | 30 °C | 0.089 | 2.11 × 10−3 | 2.28 | 0.9803 | 0.12 | 2.75 × 10−3 | 2.09 | 0.9803 |
40 °C | 0.08 | 2.45 × 10−3 | 3.17 | 0.9847 | 0.121 | 3.21 × 10−3 | 1.98 | 0.9866 | |
50 °C | 0.092 | 2.69 × 10−3 | 3.79 | 0.9769 | 0.143 | 3.61 × 10−3 | 3.69 | 0.9882 | |
70 | 30 °C | 0.154 | 1.74 × 10−3 | 1.92 | 0.9742 | 0.172 | 2.62 × 10−3 | 2.79 | 0.9551 |
40 °C | 0.139 | 2.17 × 10−3 | 2.24 | 0.9799 | 0.166 | 3.11 × 10−3 | 3.48 | 0.9571 | |
50 °C | 0.156 | 2.67 × 10−3 | 3.34 | 0.9669 | 0.156 | 3.64 × 10−3 | 4.64 | 0.9421 |
Cell Lines | Ethanol % | T °C | Ea kJmol−1 | ΔH* kJmol−1 | ΔS* JK−1mol−1 | ΔG* kJmol−1 |
---|---|---|---|---|---|---|
Hep2c | 30 | 30 | 8.01 | −271.28 | 90.20 | |
40 | 10.52 | 7.92 | −272.02 | 93.07 | ||
50 | 7.84 | −271.81 | 95.63 | |||
50 | 30 | 11.37 | −262.50 | 90.91 | ||
40 | 13.89 | 11.29 | −262.70 | 93.51 | ||
50 | 11.20 | −263.04 | 96.17 | |||
70 | 30 | 24.25 | −215.54 | 89.36 | ||
40 | 26.57 | 23.97 | −218.29 | 92.21 | ||
50 | 23.88 | −220.22 | 95.02 | |||
RD | 30 | 30 | 9.41 | −256.24 | 89.78 | |
40 | 11.93 | 9.33 | −266.15 | 92.63 | ||
50 | 9.25 | −265.77 | 95.09 | |||
50 | 30 | 6.69 | −277.41 | 90.74 | ||
40 | 9.21 | 6.60 | −277.76 | 93.54 | ||
50 | 6.52 | −277.95 | 96.30 | |||
70 | 30 | 4.45 | −280.26 | 89.26 | ||
40 | 6.97 | 4.37 | −281.25 | 92.40 | ||
50 | 4.29 | −281.49 | 95.21 | |||
L2OB | 30 | 30 | 2.40 | −284.50 | 88.61 | |
40 | 4.92 | 2.32 | −284.88 | 91.49 | ||
50 | 2.24 | −285.15 | 94.34 | |||
50 | 30 | 7.39 | −271.90 | 89.77 | ||
40 | 9.91 | 7.31 | −271.87 | 92.40 | ||
50 | 7.22 | −272.30 | 95.18 | |||
70 | 30 | 14.93 | −248.50 | 90.23 | ||
40 | 17.45 | 14.85 | −248.78 | 92.72 | ||
50 | 14.77 | −249.05 | 95.21 |
Stain | MIC | μg/mL | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
30% Ethanol | 50% Ethanol | 70% Ethanol | A a | N b | |||||||
30 °C | 40 °C | 50 °C | 30 °C | 40 °C | 50 °C | 30 °C | 40 °C | 50 °C | |||
Staphylococcus aureus ATCC 25923 | 19.53 | 19.53 | 19.53 | 156.25 | 156.125 | 78.125 | 39.1 | 39.1 | 39.1 | 39.1 | |
Klebsiella pneumoniae ATCC 13883 | 19.53 | 19.53 | 19.53 | 156.25 | 156.25 | 78.125 | 78.125 | 39.1 | 39.1 | 19.53 | |
Escherichia coli ATCC 25922 | 19.53 | 19.53 | 19.53 | 39.1 | 39.1 | 19.53 | 19.53 | 19.53 | 19.53 | 39.1 | |
Proteus vulgaris ATCC 13315 | 19.53 | 19.53 | 19.53 | 78.125 | 78.125 | 78.125 | 39.1 | 39.1 | 39.1 | 19.53 | |
Proteus mirabilis ATCC 14153 | 19.53 | 19.53 | 19.53 | 39.1 | 19.53 | 19.53 | 19.53 | 19.53 | 19.53 | 39.1 | |
Bacillus subtilis ATCC 6633 | 19.53 | 19.53 | 19.53 | 312.5 | 312.5 | 78.125 | 39.1 | 19.53 | 19.53 | 39.1 | |
Candida albicans ATCC 10231 | 19.53 | 19.53 | 19.53 | 156.25 | 156.25 | 78.125 | 78.125 | 78.125 | 78.125 | 19.53 | |
Aspergillus niger ATCC 16404 | 19.53 | 19.53 | 19.53 | 39.1 | 19.53 | 19.53 | 19.53 | 19.53 | 19.53 | 39.1 |
Ethanol % | T °C | LP 1 IC50 (μg/mL) | DPPH 2 IC50 (μg/mL) | MC 3 IC50 (μg/mL) | OH 4 IC50 (μg/mL) | ABTS 5 IC50 (μg/mL) |
---|---|---|---|---|---|---|
30 | 21.44 ± 0.55 | 19.35 ± 0.45 | 8.76 ± 0.84 | 13.54 ± 0.63 | 13.08 ± 0.13 | |
30 | 40 | 20.01 ± 0.96 | 18.45 ± 0.23 | 7.66 ± 0.39 | 13.21 ± 0.61 | 12.61 ± 0.07 |
50 | 19.44 ± 0.27 | 16.55 ± 0.50 | 6.98 ± 0.89 | 13.09 ± 0.55 | 12.17 ± 0.67 | |
30 | 27.60 ± 0.12 | 25.03 ± 0.10 | 16.01 ± 0.16 | 19.42 ± 0.11 | 17.41 ± 0.12 | |
50 | 40 | 26.42 ± 0.60 | 24.43 ± 0.52 | 13.48 ± 0.14 | 17.19 ± 0.72 | 17.13 ± 0.92 |
50 | 25.25 ± 0.62 | 23.98 ± 0.17 | 12.45 ± 0.15 | 16.92 ± 0.10 | 16.83 ± 0.34 | |
30 | 24.77 ± 0.21 | 22.14 ± 0.33 | 11.45 ± 0.13 | 14.22 ± 0.80 | 16.06 ± 0.21 | |
70 | 40 | 24.23 ± 0.66 | 21.09 ± 0.98 | 10.98 ± 0.38 | 14.02 ± 0.81 | 15.51 ± 0.87 |
50 | 22.54 ± 0.99 | 20.94 ± 0.99 | 10.52 ± 0.08 | 13.97 ± 0.20 | 14.21 ± 0.82 | |
Gallic acid | 255.43 ± 11.68 | 36.34 ± 0.20 | 59.14 ± 1.10 | 7.34 ± 0.21 | ||
Ascorbic acid | >1000 | 160.55 ± 2.31 | 2.39 ± 0.93 | |||
BHT | 1.00 ± 0.23 | 33.92 ± 0.79 | 19.32 ± 0.72 | |||
α-tocopherol | 0.48 ± 0.05 |
Test | LP. | DPPH | MC | OH | ABTS | Hep2c | RD | L2OB |
---|---|---|---|---|---|---|---|---|
LP | 1 | |||||||
DPPH | 0.9793 | 1 | ||||||
MC | 0.9808 | 0.9658 | 1 | |||||
OH | 0.9425 | 0.8867 | 0.9286 | 1 | ||||
ABTS | 0.9393 | 0.9716 | 0.9518 | 0.8508 | 1 | |||
Hep2c | 0.9579 | 0.9670 | 0.9587 | 0.8713 | 0.9930 | 1 | ||
RD | 0.9832 | 0.9491 | 0.9802 | 0.9325 | 0.9337 | 0.9506 | 1 | |
L2OB | 0.9774 | 0.9849 | 0.9868 | 0.8871 | 0.9857 | 0.9867 | 0.9662 | 1 |
Parameters | Level (−) | Level (+) |
---|---|---|
Solvent concentration, % (x1) | 30 | 70 |
Extraction temperature, °C (x2) | 30 | 50 |
Extraction time, min (x3) | 20 | 80 |
Extraction method | Maceration |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jevtovic, V.; Alabbosh, K.F.S.; Alyami, R.A.; Alshammari, M.R.; Alshammari, B.; Mašković, P.; Mašković, J.; Nikolić, J.; Mitić, M. Unveiling Cytotoxic Bioactive Compounds from Erica carnea L.: Extraction Optimization, Kinetic Modeling, and Biological Activity Assessment. Plants 2025, 14, 1679. https://doi.org/10.3390/plants14111679
Jevtovic V, Alabbosh KFS, Alyami RA, Alshammari MR, Alshammari B, Mašković P, Mašković J, Nikolić J, Mitić M. Unveiling Cytotoxic Bioactive Compounds from Erica carnea L.: Extraction Optimization, Kinetic Modeling, and Biological Activity Assessment. Plants. 2025; 14(11):1679. https://doi.org/10.3390/plants14111679
Chicago/Turabian StyleJevtovic, Violeta, Khulood Fahad Saud Alabbosh, Reem Ali Alyami, Maha Raghyan Alshammari, Badriah Alshammari, Pavle Mašković, Jelena Mašković, Jelena Nikolić, and Milan Mitić. 2025. "Unveiling Cytotoxic Bioactive Compounds from Erica carnea L.: Extraction Optimization, Kinetic Modeling, and Biological Activity Assessment" Plants 14, no. 11: 1679. https://doi.org/10.3390/plants14111679
APA StyleJevtovic, V., Alabbosh, K. F. S., Alyami, R. A., Alshammari, M. R., Alshammari, B., Mašković, P., Mašković, J., Nikolić, J., & Mitić, M. (2025). Unveiling Cytotoxic Bioactive Compounds from Erica carnea L.: Extraction Optimization, Kinetic Modeling, and Biological Activity Assessment. Plants, 14(11), 1679. https://doi.org/10.3390/plants14111679