Unmanned Aerial Vehicle (UAV) Imagery for Plant Communities: Optimizing Visible Light Vegetation Index to Extract Multi-Species Coverage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. UAV Image Data Acquisition
2.3. Methods
2.3.1. Selection of Vegetation Index
- EXG [27] enhances the contrast between green vegetation and non-vegetative backgrounds (e.g., soil and dry matter) by leveraging the strong green reflectance of live plants, which is critical for initial vegetation/non-vegetation screening;
- VDVI [27] minimizes soil brightness interference by normalizing red-green band differences, a known challenge in heterogeneous landscapes where soil variability can skew classification accuracy;
- RGRI [37] was included for its simplicity and effectiveness in distinguishing structural differences (e.g., dense crops vs. sparse shrubs) through the red-green spectral ratio, which correlates with leaf chlorophyll content;
- RGBVI [38] incorporates all three visible bands to capture subtle spectral variations between vegetation types, as demonstrated in prior studies where it outperformed single-band indices in mixed plant communities.
2.3.2. SVM
2.3.3. Method for Determination of Vegetation Index Threshold
2.3.4. Correlation Analysis of UAV Image Resolution
2.4. Accuracy Verification of Vegetation Coverage Extraction Results
3. Results
3.1. Determination of Vegetation Index Threshold
3.2. Extraction and Analysis of Vegetation Coverage
3.3. Extraction Results of Images with Different Spatial Resolutions
3.4. Method Verification
4. Discussion
4.1. Sensitivity of Classification Threshold
4.2. The Performance of Different Indices in Extracting Different Vegetation Types
4.3. The Influence of Different Spatial Resolutions of Visible Light Images for UAV
4.4. Limitations and Further Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McDonald, A.J.; Gemmell, F.M.; Lewis, P.E. Investigation of the utility of spectral vegetation indices for determining information on coniferous forests. Remote Sens. Environ. 1998, 66, 250–272. [Google Scholar] [CrossRef]
- Chen, Y.; Li, P.; Shi, X.; Zhou, H. Estimating Vegetation Coverage Change Using Remote Sensing Data in Haidian District, Beijing. Chin. J. Plant Ecol. 2001, 25, 588. [Google Scholar]
- He, B. Explore Vegetation Coverage of Shandong Province based on Remote Sensing. Sci. J. Technol. 2023, 5, 104–107. [Google Scholar] [CrossRef]
- Chen, X.; Sun, Y.; Qin, X.; Cai, J.; Cai, M.; Hou, X.; Yang, K.; Zhang, H. Assessing the Potential of UAV for Large-Scale Fractional Vegetation Cover Mapping with Satellite Data and Machine Learning. Remote Sens. 2024, 16, 3587. [Google Scholar] [CrossRef]
- Dai, S.; Zhou, J.; Ning, X.; Xu, J.; Wang, H. Estimation model of wild fractional vegetation cover based on RGB vegetation index and its application. Open Geosci. 2024, 16, 280–283. [Google Scholar] [CrossRef]
- Jia, K.; Liang, S.; Gu, X.; Baret, F.; Wei, X.; Wang, X.; Yao, Y.; Yang, L.; Li, Y. Fractional vegetation cover estimation algorithm for Chinese GF-1 wide field view data. Sens. Environ. 2016, 177, 184–191. [Google Scholar] [CrossRef]
- Song, W.; Mu, X.; Ruan, G.; Gao, Z.; Li, L.; Yan, G. Estimating fractional vegetation cover and the vegetation index of bare soil and highly dense vegetation with a physically based method. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 168–176. [Google Scholar] [CrossRef]
- Chen, J.; Yi, S.; Qin, Y.; Wang, X. Improving estimates of fractional vegetation cover based on UAV in alpine grassland on the Qinghai–Tibetan Plateau. Int. J. Remote Sens. 2016, 37, 1922–1936. [Google Scholar] [CrossRef]
- Ahmed, M.; Nasir, A.A.; Masood, M.; Memon, K.A.; Qureshi, K.K.; Khan, F.; Khan, W.U.; Xu, F.; Han, Z. Advancements in UAV-based Integrated Sensing and Communication: A Comprehensive Survey. arXiv 2025, arXiv:2501.06526. [Google Scholar]
- Dainelli, R.; Toscano, P.; Gennaro, S.F.D.; Matese, A. Recent Advances in Unmanned Aerial Vehicle Forest Remote Sensing—A Systematic Review. Part I: A General Framework. Forests 2021, 12, 327. [Google Scholar] [CrossRef]
- Huang, Y.; Thomson, S.J.; Hoffmann, W.C.; Lan, Y.; Fritz, B.K. Development and prospect of unmanned aerial vehicle technologies for agricultural production management. Int. J. Agric. Biol. Eng. 2013, 6, 1–10. [Google Scholar]
- Wang, Y.; Zhu, X.; Sensing, W. Automatic detection of individual oil palm trees from UAV images using HOG features and an SVM classifier. Int. J. Remote Sens. 2019, 40, 7356–7370. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, L. A Review on Unmanned Aerial Vehicle Remote Sensing: Platforms, Sensors, Data Processing Methods, and Applications. Drones 2023, 7, 398. [Google Scholar] [CrossRef]
- Choi, S.K.; Lee, S.K.; Jung, S.H.; Choi, J.W.; Chun, S.J. Estimation of Fractional Vegetation Cover in Sand Dunes Using Multi-spectral Images from Fixed-wing UAV. J. Korean Soc. Surv. Geod. Photogramm. Cartogr. 2016, 34, 431–441. [Google Scholar] [CrossRef]
- Li, B.; Liu, R.; Liu, S.; Liu, Q.; Liu, F.; Zhou, G. Monitoring vegetation coverage variation of winter wheat by low-altitude UAV remote sensing system. Trans. Chin. Soc. Agric. Eng. 2012, 28, 160–165. [Google Scholar]
- Yan, G.; Li, L.; Coy, A.; Mu, X.; Zhou, H. Improving the estimation of fractional vegetation cover from UAV RGB imagery by colour unmixing. ISPRS J. Photogramm. Remote Sens. 2019, 158, 23–34. [Google Scholar] [CrossRef]
- Wang, W.; Wei, J.; Shao, Q.; Xing, W.; Yong, B.; Yu, Z.; Jiao, X. Spatial and temporal variations in hydro-climatic variables and runoff in response to climate change in the Luanhe River basin, China. Stoch. Environ. Res. Risk Assess. 2015, 29, 1117–1133. [Google Scholar] [CrossRef]
- Yu, Y.; Shen, Y.; Wang, J.; Wei, Y.; Deng, H. Assessing the response of vegetation change to drought during 2009–2018 in Yunnan Province, China. Environ. Sci. Pollut. Res. 2021, 28, 47066–47082. [Google Scholar] [CrossRef]
- Gu, Z.; Ju, W.; Li, L.; Li, D.; Liu, Y.; Fan, W. Using vegetation indices and texture measures to estimate vegetation fractional coverage (VFC) of planted and natural forests in Nanjing city, China. Adv. Space Res. 2013, 51, 1186–1194. [Google Scholar] [CrossRef]
- Xu, A.; Wang, F.; Li, L. Vegetation information extraction in karst area based on UAV remote sensing in visible light band. Optik 2023, 272, 170355. [Google Scholar] [CrossRef]
- Panda, S.S.; Ames, D.P.; Suranjan, P. Application of Vegetation Indices for Agricultural Crop Yield Prediction Using Neural Network Techniques. Remote Sens. 2010, 2, 673–696. [Google Scholar] [CrossRef]
- Purevdorj, T.; Tateishi, R.; Ishiyama, T.; Honda, Y. Relationships between percent vegetation cover and vegetation indices. Int. J. Remote Sens. 1998, 19, 3519–3535. [Google Scholar] [CrossRef]
- Fan, Q.; Shi, Y.; Song, X.; Cong, N. Study on Factors Affecting Remote Sensing Ecological Quality Combined with Sentinel-2. Remote Sens. 2023, 15, 2156. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, H.B.; Lan, Y.; Lu, L.Q.; Jia, P. Extraction method of summer maize vegetation coverage based on visible light images of unmanned aerial vehicles. Trans. Chin. Soc. Agric. Mach. 2019, 50, 9. [Google Scholar]
- Niu, Y.X.; Zhang, W.Y.; Han, W.T.; Shao, G.M. Extraction method of winter wheat coverage based on unmanned aerial vehicle remote sensing and vegetation index. Trans. Chin. Soc. Agric. Mach. 2018, 49, 10. [Google Scholar]
- Jay, S.; Baret, F.; Dutartre, D.; Malatesta, G.; Héno, S.; Comar, A.; Weiss, M.; Maupas, F.J.E. Exploiting the centimeter resolution of UAV multispectral imagery to improve remote-sensing estimates of canopy structure and biochemistry in sugar beet crops. Remote Sens. Environ. 2019, 231, 110898. [Google Scholar] [CrossRef]
- Wang, X.Q.; Wang, M.M.; Wang, S.Q.; Wu, Y.D. Vegetation Information Extraction Based on Visible-light Unmanned Aerial Vehicle Remote Sensing. J. Agric. Eng. 2015, 31, 8. [Google Scholar]
- Bendig, J.; Yu, K.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.L.; Bareth, G. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 79–87. [Google Scholar] [CrossRef]
- Kyratzis, A.C.; Skarlatos, D.P.; Menexes, G.C.; Vamvakousis, V.F.; Katsiotis, A. Assessment of Vegetation Indices Derived by UAV Imagery for Durum Wheat Phenotyping under a Water Limited and Heat Stressed Mediterranean Environment. Front. Plant Sci. 2017, 8, 1114. [Google Scholar] [CrossRef]
- Wei, L.; Yang, B.; Jiang, J.; Cao, G.; Wu, M. Vegetation filtering algorithm for UAV-borne lidar point clouds: A case study in the middle-lower Yangtze River riparian zone. Int. J. Remote Sens. 2016, 38, 2991–3002. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. NTRS-NASA Tech. Rep. Serv. 1974, 351. [Google Scholar]
- Tucker, C.J. Environment. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef]
- Claverie, M.; Demarez, V.; Duchemin, B.; Hagolle, O.; Ducrot, D.; Marais-Sicre, C.; Dejoux, J.-F.; Huc, M.; Keravec, P.; Béziat, P.; et al. Maize and sunflower biomass estimation in southwest France using high spatial and temporal resolution remote sensing data. Remote Sens. Environ. 2012, 124, 844–857. [Google Scholar] [CrossRef]
- Peng, D.; Huete, A.R.; Huang, J.; Wang, F.; Sun, H. Detection and estimation of mixed paddy rice cropping patterns with MODIS data. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 13–23. [Google Scholar] [CrossRef]
- Bekker, M.F.; Taylor, A.H. Gradient Analysis of Fire Regimes in Montane Forests of the Southern Cascade Range, Thousand Lakes Wilderness, California, USA. Plant Ecol. 2001, 155, 15–28. [Google Scholar] [CrossRef]
- Sellaro, R.; Crepy, M.; Trupkin, S.; Karayekov, E.; Buchovsky, A.; Rossi, C.; Casal, J.J. Cryptochrome as a Sensor of the Blue/Green Ratio of Natural Radiation in Arabidopsis. Plant Physiol. 2010, 154, 401–409. [Google Scholar] [CrossRef]
- Wei, T.J. Research on Supervised Classification Method of Remote Sensing Images Based on ENVI. Remote Sens. 2019, 5, 112–120. [Google Scholar]
- Wu, J.; Peng, D.L. A Research on Extracting Information of the Arid Regions’ Vegetation Coverage Using Improved Model of Spectral Mixture Analysis. In Proceedings of the 2010 International Conference on Multimedia Technology, Ningbo, China, 29–31 October 2010. [Google Scholar]
- Han, D.; Cai, H.; Yang, X.; Xu, X. Multi-Source Data Modeling of the Spatial Distribution of Winter Wheat Yield in China from 2000 to 2015. Sustainability 2020, 12, 5436. [Google Scholar] [CrossRef]
- Elbaz, S.; Sheffer, E.; Lensky, I.; Levin, N. The Impacts of Spatial Resolution, Viewing Angle, and Spectral Vegetation Indices on the Quantification of Woody Mediterranean Species Seasonality Using Remote Sensing. Remote Sens. 2021, 13, 1958. [Google Scholar] [CrossRef]
- Verger, A.; Vigneau, N.; Chéron, C.; Gilliot, J.M.; Comar, A.; Baret, F. Green area index from an unmanned aerial system over wheat and rapeseed crops. Remote Sens. Environ. 2014, 152, 654–664. [Google Scholar] [CrossRef]
- Wang, X.; Wang, M.; Wang, S.; Wu, Y. Extraction of vegetation information from visible unmanned aerial vehicle images. Trans. Chin. Soc. Agric. Eng. 2015, 31, 152–159. [Google Scholar]
- Torres-Sánchez, J.; López-Granados, F.; Pena, J.M. An automatic object-based method for optimal thresholding in UAV images: Application for vegetation detection in herbaceous crops. Comput. Electron. Agric. 2015, 114, 43–52. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, X.; Fu, B.; Chen, Y.; Wang, X. Satellite-Observed Global Terrestrial Vegetation Production in Response to Water Availability. Remote Sens. 2021, 13, 1289. [Google Scholar] [CrossRef]
- Augustine, D.J.; Derner, J.D.; Fernández-Giménez, M.E.; Porensky, L.M.; Wilmer, H.; Briske, D.D. Adaptive, Multipaddock Rotational Grazing Management: A Ranch-Scale Assessment of Effects on Vegetation and Livestock Performance in Semiarid Rangeland. Rangel. Ecol. Manag. 2020, 73, 796–810. [Google Scholar] [CrossRef]
- Bendig, J.; Bolten, A.; Bareth, G.J.P.-F.-G. UAV-based Imaging for Multi-Temporal, very high Resolution Crop Surface Models to monitor Crop Growth VariabilityMonitoring des Pflanzenwachstums mit Hilfe multitemporaler und hoch auflsender Oberflchenmodelle von Getreidebestnden auf Basis von Bildern aus. Photogramm. Fernerkund. Geoinf. 2013, 6, 551–562. [Google Scholar] [CrossRef]
UAV Model | Red Band (nm) | Green Band (nm) | Blue Band (nm) | Source |
---|---|---|---|---|
DJI Mavic 2 | 620–670 | 520–600 | 450–520 | Manufacturer Specs |
Land Cover | Wheat (Pixel) | Soil (Pixel) | Total Number of Samples | User Accuracy |
---|---|---|---|---|
Wheat (pixel) | 29,611 | 140 | 29,751 | 0.9953 |
Soil (pixel) | 157 | 22,405 | 22,562 | 0.9930 |
Total number of samples | 29,768 | 22,545 | 52,313 | |
Producer’s accuracy | 0.9947 | 0.9938 |
Vegetation Indices | Vegetation Types | Overall Accuracy | Kappa Coefficient |
---|---|---|---|
EXG | Crop | 99.65% | 0.99 |
Soil | |||
Tree | 93.49% | 0.85 | |
Soil | |||
Shrub | 99.83% | 0.99 | |
Soil | |||
VDVI | Crop | 99.78% | 0.99 |
Soil | |||
Tree | 94.22% | 0.87 | |
Soil | |||
Shrub | 99.92% | 0.99 | |
Soil | |||
RGRI | Crop | 99.78% | 0.99 |
Soil | |||
Tree | 92.68% | 0.84 | |
Soil | |||
Shrub | 98.71% | 0.97 | |
Soil | |||
RGBVI | Crop | 99.78% | 0.99 |
Soil | |||
Tree | 94.13% | 0.87 | |
Soil | |||
Shrub | 99.93% | 0.99 | |
Soil |
Image Resolution (cm) | Vegetation Type | Threshold Extraction Result (%) | SVM (%) | Extraction Error (%) | Absolute Error | Standard Deviation |
---|---|---|---|---|---|---|
0.83 | Crop | 85.78 | 85.63 | 0.17 | 0.14 | 0.77 |
Tree | 74.90 | 76.57 | −2.18 | 1.67 | ||
Shrub | 62.18 | 62.94 | −1.21 | 0.76 | ||
1.25 | Crop | 85.66 | 85.63 | 0.03 | 0.02 | 1.20 |
Tree | 74.18 | 76.57 | −3.13 | 2.40 | ||
Shrub | 64.41 | 62.94 | 2.33 | 1.47 | ||
1.67 | Crop | 84.57 | 85.63 | −1.24 | 1.06 | 0.64 |
Tree | 75.97 | 76.57 | −0.78 | 0.60 | ||
Shrub | 64.81 | 62.94 | 2.96 | 1.87 | ||
2.08 | Crop | 86.37 | 85.63 | 0.86 | 0.74 | 0.50 |
Tree | 75.34 | 76.57 | −1.61 | 1.23 | ||
Shrub | 64.67 | 62.94 | 2.75 | 1.73 |
Vegetation Index | Vegetation Type | Threshold Extraction Result (%) | SVM (%) | Extraction Error (%) | Absolute Error | Standard Deviation |
---|---|---|---|---|---|---|
EXG | Crop | 85.14 | 85.78 | −0.74 | 0.63 | 0.60 |
Tree | 73.96 | 73.77 | 0.26 | 0.19 | ||
Shrub | 61.28 | 60.02 | 2.10 | 1.26 | ||
Mixed | 73.62 | 75.13 | −2.01 | 1.51 | ||
VDVI | Crop | 84.91 | 85.78 | −1.01 | 0.86 | 0.78 |
Tree | 73.85 | 73.77 | 0.12 | 0.08 | ||
Shrub | 60.97 | 60.02 | 1.58 | 0.95 | ||
Mixed | 77.11 | 75.13 | 2.64 | 1.98 | ||
RGRI | Crop | 86.92 | 85.78 | 1.34 | 1.15 | 1.48 |
Tree | 74.55 | 73.77 | 1.06 | 0.78 | ||
Shrub | 57.52 | 60.02 | −4.17 | 2.50 | ||
Mixed | 71.08 | 75.13 | −5.38 | 4.04 | ||
RGBVI | Crop | 87.46 | 85.78 | 1.96 | 1.68 | 1.10 |
Tree | 75.90 | 73.77 | 2.90 | 2.14 | ||
Shrub | 59.11 | 60.02 | −1.53 | 0.92 | ||
Mixed | 71.58 | 75.13 | −4.72 | 3.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Zhang, Z.; Gao, R.; Zhang, J.; Feng, W. Unmanned Aerial Vehicle (UAV) Imagery for Plant Communities: Optimizing Visible Light Vegetation Index to Extract Multi-Species Coverage. Plants 2025, 14, 1677. https://doi.org/10.3390/plants14111677
Wang M, Zhang Z, Gao R, Zhang J, Feng W. Unmanned Aerial Vehicle (UAV) Imagery for Plant Communities: Optimizing Visible Light Vegetation Index to Extract Multi-Species Coverage. Plants. 2025; 14(11):1677. https://doi.org/10.3390/plants14111677
Chicago/Turabian StyleWang, Meng, Zhuoran Zhang, Rui Gao, Junyong Zhang, and Wenjie Feng. 2025. "Unmanned Aerial Vehicle (UAV) Imagery for Plant Communities: Optimizing Visible Light Vegetation Index to Extract Multi-Species Coverage" Plants 14, no. 11: 1677. https://doi.org/10.3390/plants14111677
APA StyleWang, M., Zhang, Z., Gao, R., Zhang, J., & Feng, W. (2025). Unmanned Aerial Vehicle (UAV) Imagery for Plant Communities: Optimizing Visible Light Vegetation Index to Extract Multi-Species Coverage. Plants, 14(11), 1677. https://doi.org/10.3390/plants14111677