Silicon Nanoparticles and Apoplastic Protein Interaction: A Hypothesized Mechanism for Modulating Plant Growth and Immunity
Abstract
:1. Introduction
2. Efficacy and Mechanisms of SiNPs in Improving Plant Growth and Stress Resistance
2.1. Promoting Plant Growth
2.2. Enhancing Plant Tolerance to Abiotic Stress
2.3. Enhancing Plant Resistance to Biotic Stress
3. The Size of SiNPs Profoundly Influences Distribution and Toxicity in Plants
4. SiNPs May Influence Apoplast Function via Protein Corona Formation
5. SiNPs May Exert Multifunctional Effects via Modulating Apoplastic ROS Homeostasis
5.1. Apoplastic H2O2 Promotes Plant Growth and Enhances Tolerance to Abiotic Stresses by Modulating Intracellular Redox Homeostasis
5.2. Apoplastic H2O2 Augments Biotic Stress Resistance
5.3. Redox Status Modulates Transporter Protein Functionality
6. Hypothesized Action Mechanisms of SiNPs
- Redox Modulation Paradox: How do SiNPs enhance cellular redox potential, and why do smaller particles with higher concentrations preferentially induce oxidative damage?
- SA Signaling Activation: Through what molecular routes do SiNPs stimulate SA biosynthesis and subsequent signaling cascades?
- Transporter Regulation: By what means do SiNPs modify heavy metal transporter activity (e.g., HMA and ABC transporter families) to restrict heavy metal uptake and translocation?
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, L.; Lu, L.; Wang, A.; Zhang, H.; Huang, M.; Wu, H.; Xing, B.; Wang, Z.; Ji, R. Nano-biotechnology in agriculture: Use of nanomaterials to promote plant growth and stress tolerance. J. Agric. Food Chem. 2020, 68, 1935–1947. [Google Scholar] [CrossRef] [PubMed]
- Mariyam, S.; Upadhyay, S.K.; Chakraborty, K.; Verma, K.K.; Duhan, J.S.; Muneer, S.; Meena, M.; Sharma, R.K.; Ghodake, G.; Seth, C.S. Nanotechnology, a frontier in agricultural science, a novel approach in abiotic stress management and convergence with new age medicine-A review. Sci. Total Environ. 2024, 912, 169097. [Google Scholar] [CrossRef]
- Yadav, N.; Garg, V.K.; Chhillar, A.K.; Rana, J.S. Recent advances in nanotechnology for the improvement of conventional agricultural systems: A review. Plant Nano Biol. 2023, 4, 100032. [Google Scholar] [CrossRef]
- Santás-Miguel, V.; Arias-Estévez, M.; Rodríguez-Seijo, A.; Arenas-Lago, D. Use of metal nanoparticles in agriculture. A review on the effects on plant germination. Environ. Pollut. 2023, 334, 122222. [Google Scholar] [CrossRef]
- Aqeel, U.; Aftab, T.; Khan, M.M.A.; Naeem, M.; Khan, M.N. A comprehensive review of impacts of diverse nanoparticles on growth, development and physiological adjustments in plants under changing environment. Chemosphere 2022, 291, 132672. [Google Scholar] [CrossRef]
- Guleria, G.; Thakur, S.; Shandilya, M.; Sharma, S.; Thakur, S.; Kalia, S. Nanotechnology for sustainable agro-food systems: The need and role of nanoparticles in protecting plants and improving crop productivity. Plant Physiol. Biochem. PPB/Soc. Fr. De Physiol. Veg. 2023, 194, 533–549. [Google Scholar] [CrossRef]
- Naidu, S.; Pandey, J.; Mishra, L.C.; Chakraborty, A.; Roy, A.; Singh, I.K.; Singh, A. Silicon nanoparticles: Synthesis, uptake and their role in mitigation of biotic stress. Ecotoxicol. Environ. Saf. 2023, 255, 114783. [Google Scholar] [CrossRef] [PubMed]
- El-Saadony, M.T.; Saad, A.M.; Soliman, S.M.; Salem, H.M.; Desoky, E.M.; Babalghith, A.O.; El-Tahan, A.M.; Ibrahim, O.M.; Ebrahim, A.A.M.; Abd El-Mageed, T.A.; et al. Role of Nanoparticles in Enhancing Crop Tolerance to Abiotic Stress: A Comprehensive Review. Front. Plant Sci. 2022, 13, 946717. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, P.; Li, M.; Shakoor, N.; Adeel, M.; Zhou, P.; Guo, M.; Jiang, Y.; Zhao, W.; Lou, B.; et al. Application and mechanisms of metal-based nanoparticles in the control of bacterial and fungal crop diseases. Pest Manag. Sci. 2023, 79, 21–36. [Google Scholar] [CrossRef]
- Rizwan, M.; Ali, S.; Rehman, M.Z.u.; Riaz, M.; Adrees, M.; Hussain, A.; Zahir, Z.A.; Rinklebe, J. Effects of nanoparticles on trace element uptake and toxicity in plants: A review. Ecotoxicol. Environ. Saf. 2021, 221, 112437. [Google Scholar] [CrossRef]
- Ahmed, R.; Uddin, M.K.; Quddus, M.A.; Samad, M.Y.A.; Hossain, M.M.; Haque, A.N.A. Impact of foliar application of zinc and zinc oxide nanoparticles on growth, yield, nutrient uptake and quality of tomato. Horticulturae 2023, 9, 162. [Google Scholar] [CrossRef]
- Anwaar, S.; Ijaz, D.-e.-S.; Anwar, T.; Qureshi, H.; Nazish, M.; Alrefaei, A.F.; Almutairi, M.H.; Alharbi, S.N. Boosting Solanum tuberosum resistance to Alternaria solani through green synthesized ferric oxide (Fe2O3) nanoparticles. Sci. Rep. 2024, 14, 2375. [Google Scholar] [CrossRef]
- Cruz-Luna, A.R.; Cruz-Martínez, H.; Vásquez-López, A.; Medina, D.I. Metal Nanoparticles as Novel Antifungal Agents for Sustainable Agriculture: Current Advances and Future Directions. J. Fungi 2021, 7, 1033. [Google Scholar] [CrossRef]
- Yin, J.; Su, X.; Yan, S.; Shen, J. Multifunctional Nanoparticles and Nanopesticides in Agricultural Application. Nanomaterials 2023, 13, 1255. [Google Scholar] [CrossRef]
- Jiang, M.; Song, Y.; Kanwar, M.K.; Ahammed, G.J.; Shao, S.; Zhou, J. Phytonanotechnology applications in modern agriculture. J. Nanobiotechnol. 2021, 19, 430. [Google Scholar] [CrossRef]
- Asadishad, B.; Chahal, S.; Akbari, A.; Cianciarelli, V.; Azodi, M.; Ghoshal, S.; Tufenkji, N. Amendment of Agricultural Soil with Metal Nanoparticles: Effects on Soil Enzyme Activity and Microbial Community Composition. Environ. Sci. Technol. 2018, 52, 1908–1918. [Google Scholar] [CrossRef]
- Rahmati, M.; Kousehlou, M. Chapter 5 Nanoparticles as soil amendments. In Engineered Nanoparticles in Agriculture; Vasileios, F., Gholamreza, G., Eds.; De Gruyter: Berlin, Germany; Boston, MA, USA, 2023; pp. 163–180. [Google Scholar]
- Wang, P.; Das, P.; Wang, L.; Zhou, J.; Deng, C.; Vera-Reyes, I.; Dimkpa, C.O.; White, J.C.; Wang, Y. Prospects of nano phosphorus fertilizers (NPFs) in plant-based agriculture: Effects and mechanisms. J. Nanopart. Res. 2025, 27, 60. [Google Scholar] [CrossRef]
- Wang, Y.; Deng, C.; Zhao, L.; Dimkpa, C.O.; Elmer, W.H.; Wang, B.; Sharma, S.; Wang, Z.; Dhankher, O.P.; Xing, B.; et al. Time-Dependent and Coating Modulation of Tomato Response upon Sulfur Nanoparticle Internalization and Assimilation: An Orthogonal Mechanistic Investigation. ACS Nano 2024, 18, 11813–11827. [Google Scholar] [CrossRef]
- Sharma, S.; Singh, G.; Wang, Y.; White, J.C.; Xing, B.; Dhankher, O.P. Nanoscale sulfur alleviates silver nanoparticle toxicity and improves seed and oil yield in Soybean (Glycine max). Environ. Pollut. 2023, 336, 122423. [Google Scholar] [CrossRef]
- Upadhyay, S.K.; Kumar, S.; Rout, C.; Vashistha, G.; Aggarwal, D. Risks and Concerns of Use of Nanoparticles in Agriculture. In The Role of Nanoparticles in Plant Nutrition Under Soil Pollution: Nanoscience in Nutrient Use Efficiency; Rajput, V.D., Verma, K.K., Sharma, N., Minkina, T., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 371–394. [Google Scholar]
- Naaz, H.; Rawat, K.; Saffeullah, P.; Umar, S. Silica nanoparticles synthesis and applications in agriculture for plant fertilization and protection: A review. Environ. Chem. Lett. 2023, 21, 539–559. [Google Scholar] [CrossRef]
- Siddiqui, H.; Ahmed, K.B.M.; Sami, F.; Hayat, S. Silicon nanoparticles and plants: Current knowledge and future perspectives. In Sustainable Agriculture Reviews 41: Nanotechnology for Plant Growth and Development; Springer: Berlin/Heidelberg, Germany, 2020; pp. 129–142. [Google Scholar]
- Cao, X.; Wang, Z. Application of nano-agricultural technology for biotic stress management: Mechanisms, optimization, and future perspectives. Environ. Sci. Nano 2022, 9, 4336–4353. [Google Scholar] [CrossRef]
- de Moraes, A.C.P.; Lacava, P.T. Chapter 5—Use of silicon and nano-silicon in agro-biotechnologies. In Silicon and Nano-Silicon in Environmental Stress Management and Crop Quality Improvement; Etesami, H., Al Saeedi, A.H., El-Ramady, H., Fujita, M., Pessarakli, M., Anwar Hossain, M., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 55–65. [Google Scholar]
- Sarkar, M.M.; Mathur, P.; Roy, S. Chapter 2—Silicon and nano-silicon: New frontiers of biostimulants for plant growth and stress amelioration. In Silicon and Nano-Silicon in Environmental Stress Management and Crop Quality Improvement; Etesami, H., Al Saeedi, A.H., El-Ramady, H., Fujita, M., Pessarakli, M., Anwar Hossain, M., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 17–36. [Google Scholar]
- Francis, D.V.; Abdalla, A.K.; Mahakham, W.; Sarmah, A.K.; Ahmed, Z.F.R. Interaction of plants and metal nanoparticles: Exploring its molecular mechanisms for sustainable agriculture and crop improvement. Environ. Int. 2024, 190, 108859. [Google Scholar] [CrossRef]
- Yuvaraj, M.; Sathya Priya, R.; Jagathjothi, N.; Saranya, M.; Suganthi, N.; Sharmila, R.; Cyriac, J.; Anitha, R.; Subramanian, K.S. Silicon nanoparticles (SiNPs): Challenges and perspectives for sustainable agriculture. Physiol. Mol. Plant Pathol. 2023, 128, 102161. [Google Scholar] [CrossRef]
- Siddiqui, M.H.; Al-Whaibi, M.H. Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudi J. Biol. Sci. 2014, 21, 13–17. [Google Scholar] [CrossRef]
- Li, Y.; Xi, K.; Liu, X.; Han, S.; Han, X.; Li, G.; Yang, L.; Ma, D.; Fang, Z.; Gong, S. Silica nanoparticles promote wheat growth by mediating hormones and sugar metabolism. J. Nanobiotechnol. 2023, 21, 2. [Google Scholar] [CrossRef]
- Mushinskiy, A.A.; Aminova, E.V.; Korotkova, A.M. Evaluation of tolerance of tubers Solanum tuberosum to silica nanoparticles. Environ. Sci. Pollut. Res. 2018, 25, 34559–34569. [Google Scholar] [CrossRef]
- Elshayb, O.M.; Nada, A.M.; Ibrahim, H.M.; Amin, H.E.; Atta, A.M. Application of Silica Nanoparticles for Improving Growth, Yield, and Enzymatic Antioxidant for the Hybrid Rice EHR1 Growing under Water Regime Conditions. Materials 2021, 14, 1150. [Google Scholar] [CrossRef]
- Alsaeedi, A.; El-Ramady, H.; Alshaal, T.; El-Garawany, M.; Elhawat, N.; Al-Otaibi, A. Silica nanoparticles boost growth and productivity of cucumber under water deficit and salinity stresses by balancing nutrients uptake. Plant Physiol. Biochem. 2019, 139, 1–10. [Google Scholar] [CrossRef]
- Teixeira, G.C.M.; de Mello Prado, R.; Rocha, A.M.S.; de Cássia Piccolo, M. Silicon as a Sustainable Option to Increase Biomass With Less Water by Inducing Carbon:Nitrogen:Phosphorus Stoichiometric Homeostasis in Sugarcane and Energy Cane. Front. Plant Sci. 2022, 13, 826512. [Google Scholar] [CrossRef]
- Alharbi, K.; Alnusairi, G.S.H.; Alnusaire, T.S.; Alghanem, S.M.S.; Alsudays, I.M.; Alaklabi, A.; Soliman, M.H. Potassium silica nanostructure improved growth and nutrient uptake of sorghum plants subjected to drought stress. Front. Plant Sci. 2024, 15, 1425834. [Google Scholar] [CrossRef]
- Mukarram, M.; Petrik, P.; Mushtaq, Z.; Khan, M.M.A.; Gulfishan, M.; Lux, A. Silicon nanoparticles in higher plants: Uptake, action, stress tolerance, and crosstalk with phytohormones, antioxidants, and other signalling molecules. Environ. Pollut. 2022, 310, 119855. [Google Scholar] [CrossRef]
- Ashfaq, W.; Kaleem, M.; Brodie, G.; Fuentes, S.; Pang, A.; Gupta, D. Silicon alleviates drought stress by up-regulating physiological and biochemical responses in two contrasting bread wheat cultivars. Cereal Res. Commun. 2025. [Google Scholar] [CrossRef]
- Ebrahimi, H.; Soltani Mohammadi, A.; Boroomand Nasab, S.; Alamzadeh Ansari, N.; Juárez-Maldonado, A. Evaluation the impact of silicon nanoparticle on growth and water use efficiency of greenhouse tomato in drought stress condition. Appl. Water Sci. 2024, 14, 196. [Google Scholar] [CrossRef]
- Khalid, F.; Rasheed, Y.; Ashraf, H.; Asif, K.; Maqsood, M.F.; Shahbaz, M.; Zulfiqar, U.; Farhat, F.; Nawaz, S.; Ahmad, M. Nanoparticle-Mediated Phytohormone Interplay: Advancing Plant Resilience to Abiotic Stresses. J. Crop Health 2025, 77, 56. [Google Scholar] [CrossRef]
- Tripathi, D.; Singh, M.; Pandey-Rai, S. Crosstalk of nanoparticles and phytohormones regulate plant growth and metabolism under abiotic and biotic stress. Plant Stress 2022, 6, 100107. [Google Scholar] [CrossRef]
- Zexer, N.; Kumar, S.; Elbaum, R. Silica deposition in plants: Scaffolding the mineralization. Ann. Bot. 2023, 131, 897–908. [Google Scholar] [CrossRef]
- Ali, S. Exploring Silicon Nanoparticle Uptake, Transport, and Biological Functions in Plants. In Silicon Advances for Sustainable Agriculture and Human Health: Increased Nutrition and Disease Prevention; de Mello Prado, R., Etesami, H., Srivastava, A.K., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 237–263. [Google Scholar]
- Qureshi, M.K.; Gawroński, P.; Munir, S.; Jindal, S.; Kerchev, P. Hydrogen peroxide-induced stress acclimation in plants. Cell. Mol. Life Sci. 2022, 79, 129. [Google Scholar] [CrossRef]
- Singh, A.; Tiwari, S.; Pandey, J.; Lata, C.; Singh, I.K. Role of nanoparticles in crop improvement and abiotic stress management. J. Biotechnol. 2021, 337, 57–70. [Google Scholar] [CrossRef]
- Eltahawy, A.M.; Awad, E.-S.A.; Ibrahim, A.H.; Merwad, A.-R.M.; Desoky, E.-S.M. Integrative application of heavy metal–resistant bacteria, moringa extracts, and nano-silicon improves spinach yield and declines its contaminant contents on a heavy metal–contaminated soil. Front. Plant Sci. 2022, 13, 1019014. [Google Scholar] [CrossRef]
- Ali, S.; Rizwan, M.; Hussain, A.; ur Rehman, M.Z.; Ali, B.; Yousaf, B.; Wijaya, L.; Alyemeni, M.N.; Ahmad, P. Silicon nanoparticles enhanced the growth and reduced the cadmium accumulation in grains of wheat (Triticum aestivum L.). Plant Physiol. Biochem. 2019, 140, 1–8. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, J.; Dou, F.; Sun, W.; Ma, X. Simultaneous mitigation of arsenic and cadmium accumulation in rice (Oryza sativa L.) seedlings by silicon oxide nanoparticles under different water management schemes. Paddy Water Environ. 2021, 19, 569–584. [Google Scholar] [CrossRef]
- De Sousa, A.; Saleh, A.M.; Habeeb, T.H.; Hassan, Y.M.; Zrieq, R.; Wadaan, M.A.; Hozzein, W.N.; Selim, S.; Matos, M.; AbdElgawad, H. Silicon dioxide nanoparticles ameliorate the phytotoxic hazards of aluminum in maize grown on acidic soil. Sci. Total Environ. 2019, 693, 133636. [Google Scholar] [CrossRef] [PubMed]
- Nazim, M.; Li, X.; Anjum, S.; Ahmad, F.; Ali, M.; Muhammad, M.; Shahzad, K.; Lin, L.; Zulfiqar, U. Silicon nanoparticles: A novel approach in plant physiology to combat drought stress in arid environment. Biocatal. Agric. Biotechnol. 2024, 58, 103190. [Google Scholar] [CrossRef]
- Parveen, A.; Mumtaz, S.; Saleem, M.H.; Hussain, I.; Perveen, S.; Thind, S. Silicon and nanosilicon mediated heat stress tolerance in plants. In Silicon and Nano-Silicon in Environmental Stress Management and Crop Quality Improvement; Elsevier: Amsterdam, The Netherlands, 2022; pp. 153–159. [Google Scholar]
- Zhang, F.; Zhao, Y.; Zhang, Y.; Shi, Y.; Hou, L.; Khan, A.; Zhang, R.; Zhang, Y. Mechanism of Exogenous Silicon in Enhancing Cold Stress Tolerance in Solanum lycopersicum L. Seedlings: Insights from Resistance and Quality Indicators. Horticulturae 2024, 11, 4. [Google Scholar] [CrossRef]
- Mousavi, S.M. Silicon and nano-silicon mediated heavy metal stress tolerance in plants. In Silicon and Nano-Silicon in Environmental Stress Management and Crop Quality Improvement; Elsevier: Amsterdam, The Netherlands, 2022; pp. 181–191. [Google Scholar]
- Yan, G.; Huang, Q.; Zhao, S.; Xu, Y.; He, Y.; Nikolic, M.; Nikolic, N.; Liang, Y.; Zhu, Z. Silicon nanoparticles in sustainable agriculture: Synthesis, absorption, and plant stress alleviation. Front. Plant Sci. 2024, 15, 1393458. [Google Scholar] [CrossRef]
- Emamverdian, A.; Ding, Y.; Mokhberdoran, F.; Xie, Y.; Zheng, X.; Wang, Y. Silicon dioxide nanoparticles improve plant growth by enhancing antioxidant enzyme capacity in bamboo (Pleioblastus pygmaeus) under lead toxicity. Trees 2020, 34, 469–481. [Google Scholar] [CrossRef]
- Chandra, J.; Chauhan, R.; Korram, J.; Satnami, M.L.; Keshavkant, S. Silica nanoparticle minimizes aluminium imposed injuries by impeding cytotoxic agents and over expressing protective genes in Cicer arietinum. Sci. Hortic. 2020, 260, 108885. [Google Scholar] [CrossRef]
- Jalil, S.; Zulfiqar, F.; Moosa, A.; Chen, J.; Jabeen, R.; Ali, H.M.; Alsakkaf, W.A.A.; Masood, H.A.; Mirmazloum, I.; Makhzoum, A.; et al. Amelioration of chromium toxicity in wheat plants through exogenous application of nano silicon. Plant Physiol. Biochem. 2024, 211, 108659. [Google Scholar] [CrossRef]
- Mukarram, M.; Ahmad, B.; Choudhary, S.; Konôpková, A.S.; Kurjak, D.; Khan, M.M.A.; Lux, A. Silicon nanoparticles vs trace elements toxicity: Modus operandi and its omics bases. Front. Plant Sci. 2024, 15, 1377964. [Google Scholar] [CrossRef]
- Huang, S.; Yamaji, N.; Ma, J.F. Metal Transport Systems in Plants. Annu. Rev. Plant Biol. 2024, 75, 1–25. [Google Scholar] [CrossRef]
- Cui, J.; Liu, T.; Li, F.; Yi, J.; Liu, C.; Yu, H. Silica nanoparticles alleviate cadmium toxicity in rice cells: Mechanisms and size effects. Environ. Pollut. 2017, 228, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.G.; Kim, K.W.; Park, E.W.; Choi, D. Silicon-induced cell wall fortification of rice leaves: A possible cellular mechanism of enhanced host resistance to blast. Phytopathology 2002, 92, 1095–1103. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, T.; Nakamura, A.; Iwai, H.; Ishii, T.; Ma, J.F.; Yokoyama, R.; Nishitani, K.; Satoh, S.; Furukawa, J. Effect of silicon deficiency on secondary cell wall synthesis in rice leaf. J. Plant Res. 2012, 125, 771–779. [Google Scholar] [CrossRef]
- Nisaq, G.; Sudarsono, S.; Sukma, D. Nano silica spray increase Phalaenopsis pulcherrima growth and resistance against Dickeya dadantii infection. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Bogor, Indonesia, 24–25 September 2021; p. 012040. [Google Scholar]
- El-Shetehy, M.; Moradi, A.; Maceroni, M.; Reinhardt, D.; Petri-Fink, A.; Rothen-Rutishauser, B.; Mauch, F.; Schwab, F. Silica nanoparticles enhance disease resistance in Arabidopsis plants. Nat. Nanotechnol. 2021, 16, 344–353. [Google Scholar] [CrossRef]
- Du, J.; Liu, B.; Zhao, T.; Xu, X.; Lin, H.; Ji, Y.; Li, Y.; Li, Z.; Lu, C.; Li, P.; et al. Silica nanoparticles protect rice against biotic and abiotic stresses. J. Nanobiotechnol. 2022, 20, 197. [Google Scholar] [CrossRef]
- Yin, J.; Li, K.; Liu, X.; Han, S.; Han, X.; Liu, W.; Li, Y.; Chen, Y.; Zhu, Y. Silica nanoparticles enhance wheat resistance to fusarium head blight through modulating antioxidant enzyme activities and salicylic acid accumulation. Environ. Sci. Nano 2024, 11, 4765–4778. [Google Scholar] [CrossRef]
- Deng, Q.; Huang, S.; Liu, H.; Lu, Q.; Du, P.; Li, H.; Li, S.; Liu, H.; Wang, R.; Huang, L.; et al. Silica nanoparticles conferring resistance to bacterial wilt in peanut (Arachis hypogaea L.). Sci. Total Environ. 2024, 915, 170112. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Pan, T.; Li, S.; Wang, Y.; White, J.C.; Xing, B.; Cai, K. Silica nanoparticles enhance plant disease resistance by modulating the endophyte community structure in tomato (Solanum lycopersicum L.) roots. Environ. Sci. Nano 2025, 12, 1401–1413. [Google Scholar] [CrossRef]
- Rodrigues, F.Á.; McNally, D.J.; Datnoff, L.E.; Jones, J.B.; Labbé, C.; Benhamou, N.; Menzies, J.G.; Bélanger, R.R. Silicon enhances the accumulation of diterpenoid phytoalexins in rice: A potential mechanism for blast resistance. Phytopathology 2004, 94, 177–183. [Google Scholar] [CrossRef]
- Fawe, A.; Abou-Zaid, M.; Menzies, J.; Bélanger, R. Silicon-mediated accumulation of flavonoid phytoalexins in cucumber. Phytopathology 1998, 88, 396–401. [Google Scholar] [CrossRef]
- Rémus-Borel, W.; Menzies, J.G.; Bélanger, R.R. Silicon induces antifungal compounds in powdery mildew-infected wheat. Physiol. Mol. Plant Pathol. 2005, 66, 108–115. [Google Scholar] [CrossRef]
- Ahanger, M.A.; Bhat, J.A.; Siddiqui, M.H.; Rinklebe, J.; Ahmad, P. Integration of silicon and secondary metabolites in plants: A significant association in stress tolerance. J. Exp. Bot. 2020, 71, 6758–6774. [Google Scholar] [CrossRef] [PubMed]
- Saw, G.; Nagdev, P.; Jeer, M.; Murali-Baskaran, R.K. Silica nanoparticles mediated insect pest management. Pestic. Biochem. Physiol. 2023, 194, 105524. [Google Scholar] [CrossRef]
- Jin, W.; Li, L.; He, W.; Wei, Z. Application of Silica Nanoparticles Improved the Growth, Yield, and Grain Quality of Two Salt-Tolerant Rice Varieties under Saline Irrigation. Plants 2024, 13, 2452. [Google Scholar] [CrossRef]
- Hajihashemi, S.; Kazemi, S. The potential of foliar application of nano-chitosan-encapsulated nano-silicon donor in amelioration the adverse effect of salinity in the wheat plant. BMC Plant Biol. 2022, 22, 148. [Google Scholar] [CrossRef]
- Sembada, A.A.; Maki, S.; Faizal, A.; Fukuhara, T.; Suzuki, T.; Lenggoro, I.W. The Role of Silica Nanoparticles in Promoting the Germination of Tomato (Solanum lycopersicum) Seeds. Nanomaterials 2023, 13, 2110. [Google Scholar] [CrossRef] [PubMed]
- Jalil, S.; Nazir, M.M.; Al-Huqail, A.A.; Ali, B.; Al-Qthanin, R.N.; Asad, M.A.U.; Eweda, M.A.; Zulfiqar, F.; Onursal, N.; Masood, H.A.; et al. Silicon nanoparticles alleviate cadmium toxicity in rice (Oryza sativa L.) by modulating the nutritional profile and triggering stress-responsive genetic mechanisms. Ecotoxicol. Environ. Saf. 2023, 268, 115699. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Mehmood, A.; Khan, N. Uptake, translocation, and consequences of nanomaterials on plant growth and stress adaptation. J. Nanomater. 2021, 2021, 6677616. [Google Scholar] [CrossRef]
- Pan, W.; Zhang, H.-J.; Zhang, Y.-F.; Wang, M.; Tsui, M.T.-K.; Yang, L.; Miao, A.-J. Silica nanoparticle accumulation in plants: Current state and future perspectives. Nanoscale 2023, 15, 15079–15091. [Google Scholar] [CrossRef]
- Shi, X.; Zhang, C.; Wang, H.; Zhang, F. Effect of Si on the distribution of Cd in rice seedlings. Plant Soil 2005, 272, 53–60. [Google Scholar] [CrossRef]
- Wang, L.; Ning, C.; Pan, T.; Cai, K. Role of silica nanoparticles in abiotic and biotic stress tolerance in plants: A review. Int. J. Mol. Sci. 2022, 23, 1947. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Cao, W.; Rui, Y. Interactions between nanoparticles and plants: Phytotoxicity and defense mechanisms. J. Plant Interact. 2017, 12, 158–169. [Google Scholar] [CrossRef]
- Wei, C.; Zhang, Y.; Guo, J.; Han, B.; Yang, X.; Yuan, J. Effects of silica nanoparticles on growth and photosynthetic pigment contents of Scenedesmus obliquus. J. Environ. Sci. 2010, 22, 155–160. [Google Scholar] [CrossRef]
- Haghighi, M.; Pessarakli, M. Influence of silicon and nano-silicon on salinity tolerance of cherry tomatoes (Solanum lycopersicum L.) at early growth stage. Sci. Hortic. 2013, 161, 111–117. [Google Scholar] [CrossRef]
- Capek, J.; Rousar, T. Detection of Oxidative Stress Induced by Nanomaterials in Cells-The Roles of Reactive Oxygen Species and Glutathione. Molecules 2021, 26, 4710. [Google Scholar] [CrossRef]
- Gu, Y.; Rasmussen, C.G. Cell biology of primary cell wall synthesis in plants. Plant Cell 2022, 34, 103–128. [Google Scholar] [CrossRef] [PubMed]
- Podgórska, A.; Burian, M.; Szal, B. Extra-cellular but extra-ordinarily important for cells: Apoplastic reactive oxygen species metabolism. Front. Plant Sci. 2017, 8, 1353. [Google Scholar] [CrossRef]
- Du, Y.; Stegmann, M.; Villamil, J.C.M. The apoplast as battleground for plant–microbe interactions. New Phytol. 2016, 209, 34–38. [Google Scholar] [CrossRef]
- Butassi, E.; Novello, M.A.; Lara, M.V. Prunus persica apoplastic proteome analysis reveals candidate proteins involved in the resistance and defense against Taphrina deformans. J. Plant Physiol. 2022, 276, 153780. [Google Scholar] [CrossRef]
- Patykowski, J.; Urbanek, H. Activity of enzymes related to H2O2 generation and metabolism in leaf apoplastic fraction of tomato leaves infected with Botrytis cinerea. J. Phytopathol. 2003, 151, 153–161. [Google Scholar] [CrossRef]
- Farvardin, A.; González-Hernández, A.I.; Llorens, E.; García-Agustín, P.; Scalschi, L.; Vicedo, B. The apoplast: A key player in plant survival. Antioxidants 2020, 9, 604. [Google Scholar] [CrossRef]
- Dos Santos, C.; Franco, O.L. Pathogenesis-related proteins (PRs) with enzyme activity activating plant defense responses. Plants 2023, 12, 2226. [Google Scholar] [CrossRef] [PubMed]
- Ziemann, S.; van der Linde, K.; Lahrmann, U.; Acar, B.; Kaschani, F.; Colby, T.; Kaiser, M.; Ding, Y.; Schmelz, E.; Huffaker, A. An apoplastic peptide activates salicylic acid signalling in maize. Nat. Plants 2018, 4, 172–180. [Google Scholar] [CrossRef]
- Lee, K.P.; Liu, K.; Kim, E.Y.; Medina-Puche, L.; Dong, H.; Duan, J.; Li, M.; Dogra, V.; Li, Y.; Lv, R.; et al. PLANT NATRIURETIC PEPTIDE A and Its Putative Receptor PNP-R2 Antagonize Salicylic Acid-Mediated Signaling and Cell Death. Plant Cell 2020, 32, 2237–2250. [Google Scholar] [CrossRef]
- Hajipour, M.J.; Safavi-Sohi, R.; Sharifi, S.; Mahmoud, N.; Ashkarran, A.A.; Voke, E.; Serpooshan, V.; Ramezankhani, M.; Milani, A.S.; Landry, M.P.; et al. An Overview of Nanoparticle Protein Corona Literature. Small 2023, 19, 2301838. [Google Scholar] [CrossRef]
- Mahmoudi, M.; Landry, M.P.; Moore, A.; Coreas, R. The protein corona from nanomedicine to environmental science. Nat. Rev. Mater. 2023, 8, 422–438. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, J.; Chaumont, F. CHAPTER Ten—Plant aquaporins: Crossroads of hydrogen peroxide signaling. In Advances in Botanical Research; Mittler, R.O.N., Breusegem, F.V., Eds.; Academic Press: Cambridge, MA, USA, 2023; Volume 105, pp. 311–342. [Google Scholar]
- Alam Khan, M.T.; Saeed, T.; Ahmad, A.; Fariduddin, Q.; Yusuf, M. Hydrogen Peroxide: Signaling Mechanisms and Crosstalk in Plant Development and Stress Responses. In Hydrogen Peroxide, 1st ed.; CRC Press: Boca Raton, FL, USA, 2025; p. 298. [Google Scholar]
- Sharma, P.; Jha, A.B.; Dubey, R.S.; Pessarakli, M. Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. J. Bot. 2012, 2012, 217037. [Google Scholar] [CrossRef]
- Karimi-Baram, A.; Amooaghaie, R.; Ghorbanpour, M.; Ahadi, A. RBOH-dependent H2O2 burst induced by silicon dioxide nanoparticles establishes systemic acquired acclimation in quinoa under lead toxicity. Sci. Hortic. 2024, 335, 113366. [Google Scholar] [CrossRef]
- Smirnoff, N.; Arnaud, D. Hydrogen peroxide metabolism and functions in plants. New Phytol. 2019, 221, 1197–1214. [Google Scholar] [CrossRef]
- Li, Z.-G.; Gong, M.; Liu, P. Hydrogen sulfide is a mediator in H2O2-induced seed germination in Jatropha Curcas. Acta Physiol. Plant 2012, 34, 2207–2213. [Google Scholar] [CrossRef]
- Ogawa, K.i.; Iwabuchi, M. A Mechanism for Promoting the Germination of Zinnia elegans Seeds by Hydrogen Peroxide. Plant Cell Physiol. 2001, 42, 286–291. [Google Scholar] [CrossRef] [PubMed]
- Kranner, I.; Roach, T.; Beckett, R.P.; Whitaker, C.; Minibayeva, F.V. Extracellular production of reactive oxygen species during seed germination and early seedling growth in Pisum sativum. J. Plant Physiol. 2010, 167, 805–811. [Google Scholar] [CrossRef] [PubMed]
- Guzel, S.; Terzi, R. Exogenous hydrogen peroxide increases dry matter production, mineral content and level of osmotic solutes in young maize leaves and alleviates deleterious effects of copper stress. Bot. Stud. 2013, 54, 26. [Google Scholar] [CrossRef]
- Yang, X.; Yu, T.; Zhang, W.; Qin, J.; Li, H. Effect of rainwater-borne hydrogen peroxide on manure-derived Cu and Zn speciation distribution and bioavailability in rice-soil system. Ecotoxicol. Environ. Saf. 2019, 177, 1–6. [Google Scholar] [CrossRef]
- Zhang, Q.; Dai, X.; Wang, H.; Wang, F.; Tang, D.; Jiang, C.; Zhang, X.; Guo, W.; Lei, Y.; Ma, C.; et al. Transcriptomic Profiling Provides Molecular Insights Into Hydrogen Peroxide-Enhanced Arabidopsis Growth and Its Salt Tolerance. Front. Plant Sci. 2022, 13, 866063. [Google Scholar] [CrossRef] [PubMed]
- Considine, M.J.; Foyer, C.H. Oxygen and reactive oxygen species-dependent regulation of plant growth and development. Plant Physiol. 2021, 186, 79–92. [Google Scholar] [CrossRef]
- Li, J.-T.; Qiu, Z.-B.; Zhang, X.-W.; Wang, L.-S. Exogenous hydrogen peroxide can enhance tolerance of wheat seedlings to salt stress. Acta Physiol. Plant 2011, 33, 835–842. [Google Scholar] [CrossRef]
- Han, Y.; Luo, F.; Liang, A.; Xu, D.; Zhang, H.; Liu, T.; Qi, H. Aquaporin CmPIP2;3 links H2O2 signal and antioxidation to modulate trehalose-induced cold tolerance in melon seedlings. Plant Physiol. 2024, 197, kiae477. [Google Scholar] [CrossRef]
- Herrera-Vásquez, A.; Salinas, P.; Holuigue, L. Salicylic acid and reactive oxygen species interplay in the transcriptional control of defense genes expression. Front. Plant Sci. 2015, 6, 171. [Google Scholar] [CrossRef]
- Saleem, M.; Fariduddin, Q.; Castroverde, C.D.M. Salicylic acid: A key regulator of redox signalling and plant immunity. Plant Physiol. Biochem. 2021, 168, 381–397. [Google Scholar] [CrossRef]
- Castro, B.; Citterico, M.; Kimura, S.; Stevens, D.M.; Wrzaczek, M.; Coaker, G. Stress-induced reactive oxygen species compartmentalization, perception and signalling. Nat. Plants 2021, 7, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Xie, Y.; He, P.; Shan, L. Unlocking Nature’s Defense: Plant Pattern Recognition Receptors as Guardians Against Pathogenic Threats. Mol. Plant-Microbe Interact.® 2024, 37, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Qin, G.; Liu, J.; Cao, B.; Li, B.; Tian, S. Hydrogen Peroxide Acts on Sensitive Mitochondrial Proteins to Induce Death of a Fungal Pathogen Revealed by Proteomic Analysis. PLoS ONE 2011, 6, e21945. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.; Pereira, C.; Bessa, C.; Araujo, R.; Saraiva, L. Hydrogen peroxide-induced secondary necrosis in conidia of Aspergillus fumigatus. Can. J. Microbiol. 2016, 62, 95–101. [Google Scholar] [CrossRef]
- Cao, L.; Karapetyan, S.; Yoo, H.; Chen, T.; Mwimba, M.; Zhang, X.; Dong, X. H2O2 sulfenylates CHE, linking local infection to the establishment of systemic acquired resistance. Science 2024, 385, 1211–1217. [Google Scholar] [CrossRef]
- Saxena, I.; Srikanth, S.; Chen, Z. Cross talk between H2O2 and interacting signal molecules under plant stress response. Front. Plant Sci. 2016, 7, 570. [Google Scholar] [CrossRef]
- Wu, F.; Chi, Y.; Jiang, Z.; Xu, Y.; Xie, L.; Huang, F.; Wan, D.; Ni, J.; Yuan, F.; Wu, X. Hydrogen peroxide sensor HPCA1 is an LRR receptor kinase in Arabidopsis. Nature 2020, 578, 577–581. [Google Scholar] [CrossRef]
- Ulhassan, Z.; Ali, S.; Kaleem, Z.; Shahbaz, H.; He, D.; Khan, A.R.; Salam, A.; Hamid, Y.; Sheteiwy, M.S.; Zhou, W. Effects of Nanosilica Priming on Rapeseed (Brassica napus) Tolerance to Cadmium and Arsenic Stress by Regulating Cellular Metabolism and Antioxidant Defense. J. Agric. Food Chem. 2024, 73, 4518–4533. [Google Scholar] [CrossRef]
- Yadav, N.; Bora, S.; Devi, B.; Upadhyay, C.; Singh, P. Nanoparticle-mediated defense priming: A review of strategies for enhancing plant resilience against biotic and abiotic stresses. Plant Physiol. Biochem. 2024, 213, 108796. [Google Scholar] [CrossRef]
- Gupta, D.K.; Pena, L.B.; Romero-Puertas, M.C.; Hernández, A.; Inouhe, M.; Sandalio, L.M. NADPH oxidases differentially regulate ROS metabolism and nutrient uptake under cadmium toxicity. Plant Cell Environ. 2017, 40, 509–526. [Google Scholar] [CrossRef]
- Hafsi, C.; Collado-Arenal, A.M.; Wang, H.; Sanz-Fernández, M.; Sahrawy, M.; Shabala, S.; Romero-Puertas, M.C.; Sandalio, L.M. The role of NADPH oxidases in regulating leaf gas exchange and ion homeostasis in Arabidopsis plants under cadmium stress. J. Hazard. Mater. 2022, 429, 128217. [Google Scholar] [CrossRef] [PubMed]
- Sandalio, L.M.; Espinosa, J.; Shabala, S.; León, J.; Romero-Puertas, M.C. Reactive oxygen species- and nitric oxide-dependent regulation of ion and metal homeostasis in plants. J. Exp. Bot. 2023, 74, 5970–5988. [Google Scholar] [CrossRef] [PubMed]
- Liedschulte, V.; Laparra, H.; Battey, J.N.D.; Schwaar, J.D.; Broye, H.; Mark, R.; Klein, M.; Goepfert, S.; Bovet, L. Impairing both HMA4 homeologs is required for cadmium reduction in tobacco. Plant Cell Environ. 2017, 40, 364–377. [Google Scholar] [CrossRef]
- Cai, H.; Xie, P.; Zeng, W.; Zhai, Z.; Zhou, W.; Tang, Z. Root-specific expression of rice OsHMA3 reduces shoot cadmium accumulation in transgenic tobacco. Mol. Breed. 2019, 39, 49. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, H.; Wang, H.; Xia, Y. Identification of redox-sensitive cysteines in the Arabidopsis proteome using OxiTRAQ, a quantitative redox proteomics method. Proteomics 2014, 14, 750–762. [Google Scholar] [CrossRef]
- Sinha, D.; Tandon, P.K.; Srivastava, G.P.; Srivastava, S.K.; Mukherjee, S. Role of Heavy Metal ATPases in Transport of Cadmium and Zinc in Plants. In Plant Metal and Metalloid Transporters; Kumar, K., Srivastava, S., Eds.; Springer Nature: Singapore, 2022; pp. 109–131. [Google Scholar]
- Jalmi, S.K. The Role of ABC Transporters in Metal Transport in Plants. In Plant Metal and Metalloid Transporters; Kumar, K., Srivastava, S., Eds.; Springer Nature: Singapore, 2022; pp. 55–71. [Google Scholar]
- Han, J.; Liu, C.-X.; Liu, J.; Wang, C.-R.; Wang, S.-C.; Miao, G. AGC kinases OXI1 and AGC2-2 regulate camalexin secretion and disease resistance by phosphorylating transporter PDR6. Plant Physiol. 2024, 195, 1835–1850. [Google Scholar] [CrossRef]
- Cao, Y.; Turk, K.; Bibi, N.; Ghafoor, A.; Ahmed, N.; Azmat, M.; Ahmed, R.; Ghani, M.I.; Ahanger, M.A. Nanoparticles as catalysts of agricultural revolution: Enhancing crop tolerance to abiotic stress: A review. Front. Plant Sci. 2025, 15, 1510482. [Google Scholar] [CrossRef]
SiNP Size | Application Method | Biological Effect | Proposed Mechanism | Ref. |
---|---|---|---|---|
~50 nm | Foliar spray | Enhanced systemic acquired resistance in A. thaliana | Nanoparticles enter through stomata into the apoplast and activate SA signaling, upregulating PR-1 and PR-5 expression. | [63] |
~200 nm | Foliar spray | ~27.7% reduction in lesion size of Fusarium head blight on wheat ears | Formation of a physical barrier on the leaf surface; increased POD and SOD activities, reduced CAT and DHAR, lower ROS accumulation, and upregulation of PR genes and SA levels. | [65] |
~30 nm | Root drench | 33.3% yield increase in rice under salt stress; higher chlorophyll and root growth | Improved water and nutrient uptake by roots; upregulation of SOD, POD, and CAT activities and lowered MDA content to alleviate oxidative damage under salinity. | [73] |
~20 nm | Soil drench | Improved growth and biomass of bamboo under lead stress | SiNPs enhance capacity of SOD, POD, CAT, and glutathione reductase and reduce heavy metal accumulation. | [54] |
~10–50 nm | Foliar spray | Increased fresh and dry weight and chlorophyll levels in wheat under salt stress | Promotion of proline and free amino acid synthesis; enhanced nutrient accumulation; upregulation of SOD, CAT, and POD activities, leading to reduced oxidative damage. | [74] |
10–20 nm | Root drench | Recovery of growth, photosynthetic efficiency, and biomass in maize under aluminum toxicity | Reduced activities of photorespiratory enzymes and NADPH oxidase, maintenance of redox balance; promotion of aluminum chelation and detoxification. | [48] |
~10–17 nm and 110–120 nm | Seed soaking | Mean germination time reduced from 5.24 ± 0.29 d to 4.64 ± 0.29 d; seedling vigor (length and weight) improved | SiNPs enhance water imbibition by seeds and alter the external microenvironment. | [75] |
~20–30 nm | Root drench | Increased biomass of spinach under lead pollution | Synergistic action with lead-tolerant bacteria; enhanced SOD, POD, and CAT activities; reduced MDA; decreased lead uptake and translocation from root to shoot. | [45] |
40–60 nm | Foliar spray | ~70% reduction in rice blast severity (M. oryzae) in rice | Elevated apoplastic SA levels; strong upregulation of PR genes; formation of a nanoparticle barrier around stomata that impedes pathogen entry. | [64] |
~10–25 nm | Root drench | Increased biomass and reduced Cd content in wheat | Enhanced antioxidant defenses and induction of transporter gene expression to inhibit Cd translocation. | [76] |
~20 nm | Foliar spray | Improved cold tolerance in tomato under chilling stress | SiNPs ameliorated the osmotic adjustment and antioxidant capacity of the plants. | [51] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miao, G.; Han, J.; Han, T. Silicon Nanoparticles and Apoplastic Protein Interaction: A Hypothesized Mechanism for Modulating Plant Growth and Immunity. Plants 2025, 14, 1630. https://doi.org/10.3390/plants14111630
Miao G, Han J, Han T. Silicon Nanoparticles and Apoplastic Protein Interaction: A Hypothesized Mechanism for Modulating Plant Growth and Immunity. Plants. 2025; 14(11):1630. https://doi.org/10.3390/plants14111630
Chicago/Turabian StyleMiao, Guopeng, Juan Han, and Taotao Han. 2025. "Silicon Nanoparticles and Apoplastic Protein Interaction: A Hypothesized Mechanism for Modulating Plant Growth and Immunity" Plants 14, no. 11: 1630. https://doi.org/10.3390/plants14111630
APA StyleMiao, G., Han, J., & Han, T. (2025). Silicon Nanoparticles and Apoplastic Protein Interaction: A Hypothesized Mechanism for Modulating Plant Growth and Immunity. Plants, 14(11), 1630. https://doi.org/10.3390/plants14111630