Identification and Analysis of Stress-Associated Protein (SAP) Transcription Factor Family Members in Pinus massoniana
Abstract
:1. Introduction
2. Results
2.1. Identification of SAP Family Proteins in P. massoniana
2.2. Phylogenetic Analysis of the SAP Proteins
2.3. Analysis of Motifs and Domains in PmSAP Family Proteins
2.4. Transcription Profile Analysis of PmSAP Genes During Drought Treatment
2.5. Subcellular Localization of PmSAP TFs
2.6. Expression Patterns of PmSAP Genes in Various Tissues
2.7. Expression Pattern of PmSAPs Under Different Treatments
2.8. Transcriptional Activity Analysis of PmSAP3, PmSAP5, PmSAP6, PmSAP8, and PmSAP12
3. Discussion
4. Materials and Methods
4.1. Identification of the SAP Genes in P. massoniana
4.2. Bioinformatics and Phylogenetic Analysis of PmSAP Proteins
4.3. RNA-Seq Data Analysis Under Drought Stress
4.4. Subcellular Localization of PmSAP Proteins
4.5. Plant Materials and Abiotic Stress Treatments
4.6. RNA Extraction and qRT-PCR Analysis
4.7. Transcriptional Activation Assay
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mukhopadhyay, A.; Vij, S.; Tyagi, A.K. Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc. Natl. Acad. Sci. USA 2004, 101, 6309–6314. [Google Scholar] [CrossRef]
- Riaño-Pachón, D.M.; Ruzicic, S.; Dreyer, I.; Mueller-Roeber, B. PlnTFDB: An integrative plant transcription factor database. BMC Bioinform. 2007, 8, 42. [Google Scholar] [CrossRef]
- Lim, C.J.; Hwang, J.E.; Chen, H.; Hong, J.K.; Yang, K.A.; Choi, M.S.; Lee, K.O.; Chung, W.S.; Lee, S.Y.; Lim, C.O. Over-expression of the Arabidopsis DRE/CRT-binding transcription factor DREB2C enhances thermotolerance. Biochem. Biophys. Res. Commun. 2007, 362, 431–436. [Google Scholar] [CrossRef]
- Ben Saad, R.; Ben Romdhane, W.; Cmikova, N.; Baazaoui, N.; Bouteraa, M.T.; Ben Akacha, B.; Chouaibi, Y.; Maisto, M.; Ben Hsouna, A.; Garzoli, S.; et al. Research progress on plant stress-associated protein (SAP) family: Master regulators to deal with environmental stresses. Bioessays 2024, 46, e2400097. [Google Scholar] [CrossRef]
- Ritonga, F.N.; Ngatia, J.N.; Wang, Y.; Khoso, M.A.; Farooq, U.; Chen, S. AP2/ERF, an important cold stress-related transcription factor family in plants: A review. Physiol. Mol. Biol. Plants 2021, 27, 1953–1968. [Google Scholar] [CrossRef]
- Xiong, H.; He, H.; Chang, Y.; Miao, B.; Liu, Z.; Wang, Q.; Dong, F.; Xiong, L. Multiple roles of NAC transcription factors in plant development and stress responses. J. Integr. Plant Biol. 2025, 67, 510–538. [Google Scholar] [CrossRef]
- Jiang, D.; Xia, M.; Xing, H.; Gong, M.; Jiang, Y.; Liu, H.; Li, H.L. Exploring the heat shock transcription factor (HSF) gene family in ginger: A genome-wide investigation on evolution, expression profiling, and response to developmental and abiotic stresses. Plants 2023, 12, 2999. [Google Scholar] [CrossRef]
- Jia, H.X.; Li, J.B.; Zhang, J.; Ren, Y.Q.; Hu, J.J.; Lu, M.Z. Genome-wide survey and expression analysis of the stress-associated protein gene family in desert poplar, Populus euphratica. Tree Genet. Genomes 2016, 12, 78. [Google Scholar] [CrossRef]
- Giri, J.; Dansana, P.K.; Kothari, K.S.; Sharma, G.; Vij, S.; Tyagi, A.K. SAPs as novel regulators of abiotic stress response in plants. Bioessays 2013, 35, 639–648. [Google Scholar] [CrossRef]
- Giri, J.; Vij, S.; Dansana, P.K.; Tyagi, A.K. Rice A20/AN1 zinc-finger containing stress-associated proteins (SAP1/11) and a receptor-like cytoplasmic kinase (OsRLCK253) interact via A20 zinc-finger and confer abiotic stress tolerance in transgenic Arabidopsis plants. New Phytol. 2011, 191, 721–732. [Google Scholar] [CrossRef]
- Opipari, A.W., Jr.; Boguski, M.S.; Dixit, V.M. The A20 cDNA induced by tumor necrosis factor alpha encodes a novel type of zinc finger protein. J. Biol. Chem. 1990, 265, 14705–14708. [Google Scholar] [CrossRef] [PubMed]
- Linnen, J.M.; Bailey, C.P.; Weeks, D.L. Two related localized mRNAs from Xenopus laevis encode ubiquitin-like fusion proteins. Gene 1993, 128, 181–188. [Google Scholar] [CrossRef]
- Evans, P.C.; Ovaa, H.; Hamon, M.; Kilshaw, P.J.; Hamm, S.; Bauer, S.; Ploegh, H.L.; Smith, T.S. Zinc-finger protein A20, a regulator of inflammation and cell survival, has de-ubiquitinating activity. Biochem. J. 2004, 378, 727–734. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.Y.; Fokar, M.; Abdelmageed, H.; Allen, R.D. Arabidopsis SAP5 functions as a positive regulator of stress responses and exhibits E3 ubiquitin ligase activity. Plant Mol. Biol. 2011, 75, 451–466. [Google Scholar] [CrossRef]
- Kim, G.D.; Cho, Y.H.; Yoo, S.D. Regulatory functions of evolutionarily conserved AN1/A20-like Zinc finger family proteins in Arabidopsis stress responses under high temperature. Biochem. Biophys. Res. Commun. 2015, 457, 213–220. [Google Scholar] [CrossRef]
- Dixit, A.; Tomar, P.; Vaine, E.; Abdullah, H.; Hazen, S.; Dhankher, O.P. A stress-associated protein, AtSAP13, from Arabidopsis thaliana provides tolerance to multiple abiotic stresses. Plant Cell Environ. 2018, 41, 1171–1185. [Google Scholar] [CrossRef]
- Sharma, G.; Giri, J.; Tyagi, A.K. Rice OsiSAP7 negatively regulates ABA stress signaling and imparts sensitivity to water-deficit stress in Arabidopsis. Plant Sci. 2015, 237, 80–92. [Google Scholar] [CrossRef] [PubMed]
- Dong, Q.L.; Duan, D.Y.; Zhao, S.; Xu, B.Y.; Luo, J.W.; Wang, Q.; Huang, D.; Liu, C.H.; Li, C.; Gong, X.Q.; et al. Genome-wide analysis and cloning of the apple stress-associated protein gene family reveals MdSAP15, which confers tolerance to drought and osmotic stresses in transgenic Arabidopsis. Int. J. Mol. Sci. 2018, 19, 2478. [Google Scholar] [CrossRef]
- Kang, M.; Lee, S.; Abdelmageed, H.; Reichert, A.; Lee, H.K.; Fokar, M.; Mysore, K.S.; Allen, R.D. Arabidopsis stress associated protein 9 mediates biotic and abiotic stress responsive ABA signaling via the proteasome pathway. Plant Cell Environ. 2017, 40, 702–716. [Google Scholar] [CrossRef]
- Tyagi, H.; Jha, S.; Sharma, M.; Giri, P.; Tyagi, A.K. Rice SAPs are responsive to multiple biotic stresses and overexpression of OsSAP1, an A20/AN1 zinc-finger protein, enhances the basal resistance against pathogen infection in tobacco. Plant Sci. 2014, 225, 68–76. [Google Scholar] [CrossRef]
- Chang, L.; Chang, H.H.; Chang, J.C.; Lu, H.C.; Wang, T.T.; Hsu, D.W.; Tzean, Y.; Cheng, A.P.; Chu, Y.S.; Yeh, H.H. Plant A20/AN1 protein serves as the important hub to mediate antiviral immunity. PLoS Pathog. 2018, 14, e1007288. [Google Scholar] [CrossRef]
- Liu, S.; Wang, J.; Jiang, S.; Wang, H.; Gao, Y.; Zhang, H.; Li, D.; Song, F. Tomato SlSAP3, a member of the stress-associated protein family, is a positive regulator of immunity against Pseudomonas syringae pv. tomato DC3000. Mol. Plant Pathol. 2019, 20, 815–830. [Google Scholar] [CrossRef]
- Vij, S.; Tyagi, A.K. Genome-wide analysis of the stress associated protein (SAP) gene family containing A20/AN1 zinc-finger(s) in rice and their phylogenetic relationship with Arabidopsis. Mol. Genet. Genom. 2006, 276, 565–575. [Google Scholar] [CrossRef]
- Solanke, A.U.; Sharma, M.K.; Tyagi, A.K.; Sharma, A.K. Characterization and phylogenetic analysis of environmental stress-responsive SAP gene family encoding A20/AN1 zinc finger proteins in tomato. Mol. Genet. Genom. 2009, 282, 153–164. [Google Scholar] [CrossRef]
- Gao, W.; Long, L.; Tian, X.Q.; Jin, J.J.; Liu, H.L.; Zhang, H.; Xu, F.C.; Song, C.P. Genome-wide identification and expression analysis of stress-associated proteins (SAPs) containing A20/AN1 zinc finger in cotton. Mol. Genet. Genom. 2016, 291, 2199–2213. [Google Scholar] [CrossRef]
- Zhou, Y.; Zeng, L.M.; Chen, R.R.; Wang, Y.H.; Song, J.B. Genome-wide identification and characterization of stress-associated protein (SAP) gene family encoding A20/AN1 zinc-finger proteins in Medicago truncatula. Arch. Biol. Sci. 2018, 70, 87–98. [Google Scholar] [CrossRef]
- He, X.; Xie, S.; Xie, P.; Yao, M.; Liu, W.; Qin, L.W.; Liu, Z.S.; Zheng, M.; Liu, H.F.; Guan, M.; et al. Genome-wide identification of stress-associated proteins (SAP) with A20/AN1 zinc finger domains associated with abiotic stresses responses in Brassica napus. Environ. Exp. Bot. 2019, 165, 108–119. [Google Scholar] [CrossRef]
- Zhang, X.Z.; Zheng, W.J.; Cao, X.Y.; Cui, X.Y.; Zhao, S.P.; Yu, T.F.; Chen, J.; Zhou, Y.B.; Chen, M.; Chai, S.C.; et al. Genomic analysis of stress associated proteins in Soybean and the role of GmSAP16 in abiotic stress responses in Arabidopsis and soybean. Front. Plant Sci. 2019, 10, 1453. [Google Scholar] [CrossRef] [PubMed]
- Lai, W.; Zhou, Y.; Pan, R.; Liao, L.T.; He, J.C.; Liu, H.J.; Yang, Y.G.; Liu, S.Q. Identification and expression analysis of stress-associated proteins (SAPs) containing A20/AN1 zinc finger in cucumber. Plants 2020, 9, 400. [Google Scholar] [CrossRef]
- Xie, H.; Yang, Q.Q.; Wang, X.X.; Schläppi, M.R.; Yan, H.; Kou, M.; Tang, W.; Wang, X.; Zhang, Y.G.; Li, Q.; et al. Genome-wide identification of the A20/AN1 zinc finger protein family genes in Ipomoea batatas and its two relatives and function analysis of IbSAP16 in salinity tolerance. Int. J. Mol. Sci. 2022, 23, 11551. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, X.; Wu, Y.; Li, X.; Du, C.; Di, N.; Chen, Y. Genome-wide identification and evolution of the SAP gene family in sunflower (Helianthus annuus L.) and expression analysis under salt and drought stress. PeerJ 2024, 12, e17808. [Google Scholar] [CrossRef] [PubMed]
- Billah, S.A.; Khan, N.Z.; Ali, W.; Aasim, M.; Usman, M.; Alezzawi, M.A.; Ullah, H. Genome-wide in silico identification and characterization of the stress associated protein (SAP) gene family encoding A20/AN1 zinc-finger proteins in potato (Solanum tuberosum L.). PLoS ONE 2022, 17, e0273416. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Wang, R.; Zhang, Y.; Li, Y.; Yue, Y.; Zhou, T.; Wang, C. Comprehensive analysis of the stress associated protein (SAP) gene family in Tamarix hispida and the function of ThSAP6 in salt tolerance. Plant Physiol. Biochem. 2021, 165, 1–9. [Google Scholar] [CrossRef]
- Sun, X.; Xia, X.; Guan, X. Genome-wide identification and characterisation of stress-associated protein gene family to biotic and abiotic stresses of Grapevine. Pathogens 2022, 11, 1426. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Kuang, J.; Han, B.; Chen, S.; Liu, A. Genomic characterization and expression profiles of stress-associated proteins (SAPs) in castor bean (Ricinus communis). Plant Divers. 2021, 43, 152–162. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, L.; Wu, Y.; Hu, H.; Jia, J.; Wu, J.; Li, C. Genome-wide identification of SAP family genes and characterization of TaSAP6-A1 to improve Cd tolerance in Triticum aestivum L. Int. J. Biol. Macromol. 2025, 284, 137415. [Google Scholar] [CrossRef]
- Fan, G.; Yu, Y.; Zhang, X.; Jiang, J.; Wang, S.; Zhou, B.; Jiang, T. Comprehensive analysis of the stress associated protein (SAP) family and the function of PagSAP9 from Populus alba × P. glandulosa in salt stress. Phytochemistry 2025, 232, 114367. [Google Scholar] [CrossRef]
- Ji, K.S.; Xu, L.A.; Wang, D.B.; Ni, Z.X.; Wang, Z.R. Progresses and achievements of genetic improvement on Masson pine (Pinus massoniana) in China. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2022, 46, 10–22. [Google Scholar] [CrossRef]
- Wang, Y.T.; Fu, X.Q.; Xie, L.H.; Qin, W.; Li, L.; Sun, X.F.; Xing, S.H.; Tang, K.X. Stress associated protein 1 regulates the development of glandular trichomes in Artemisia annua. Plant Cell Tiss. Org. 2019, 139, 249–259. [Google Scholar] [CrossRef]
- Grimplet, J.; Agudelo-Romero, P.; Teixeira, R.T.; Martinez-Zapater, J.M.; Fortes, A.M. Structural and functional analysis of the GRAS gene family in grapevine indicates a role of GRAS proteins in the control of development and stress responses. Front. Plant Sci. 2016, 7, 353. [Google Scholar] [CrossRef]
- Su, A.Q.; Qin, Q.Q.; Liu, C.; Zhang, J.J.; Yu, B.X.; Cheng, Y.F.; Wang, S.J.; Tang, J.W.; Si, W.N. Identification and analysis of stress-associated proteins (SAPs) protein family and drought tolerance of ZmSAP8 in transgenic Arabidopsis. Int. J. Mol. Sci. 2022, 23, 14109. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Sun, X.; Zou, B.; Zhu, P.; Lin, N.; Lin, J.; Ji, K. Transcriptional analysis of Masson pine (Pinus massoniana) under high CO2 stress. Genes 2019, 10, 804. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.F.; Wang, D.B.; Chen, P.Z.; Zhang, C.; Yao, S.; Hao, Q.Q.; Agassin, R.H.; Ji, K.S. The transcriptomic analysis of the response of Pinus massoniana to drought stress and a functional study on the ERF1 transcription factor. Int. J. Mol. Sci. 2023, 24, 11103. [Google Scholar] [CrossRef] [PubMed]
- Zhu, P.H.; Chen, Y.; Zhang, J.F.; Wu, F.; Wang, X.F.; Pan, T.; Wei, Q.; Hao, Y.P.; Chen, X.L.; Jiang, C.W.; et al. Identification, classification, and characterization of AP2/ERF superfamily genes in Masson pine (Pinus massoniana Lamb.). Sci. Rep. 2021, 11, 5441. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.H. PAML 4: Phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 2007, 24, 1586–1591. [Google Scholar] [CrossRef]
- Chen, C.J.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.H.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Sparkes, I.A.; Runions, J.; Kearns, A.; Hawes, C. Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat. Protoc. 2006, 1, 2019–2025. [Google Scholar] [CrossRef]
- Jin, J.; Duan, J.L.; Shan, C.; Mei, Z.L.; Chen, H.Y.; Feng, H.F.; Zhu, J.; Cai, W.M. Ethylene insensitive3-like2 (OsEIL2) confers stress sensitivity by regulating OsBURP16, the β subunit of polygalacturonase (PG1β-like) subfamily gene in rice. Plant Sci. 2020, 292, 110353. [Google Scholar] [CrossRef]
- Zhang, C.; Zhu, P.H.; Zhang, M.Y.; Huang, Z.C.; Hippolyte, A.R.; Hou, Y.Q.; Lou, X.; Ji, K.S. Identification, classification and characterization of LBD transcription factor family genes in Pinus massoniana. Int. J. Mol. Sci. 2022, 23, 13215. [Google Scholar] [CrossRef]
- Hou, Y.Q.; Wang, D.B.; Agassin, R.H.; Zhang, C.; Lou, X.; Zhu, P.H.; Zhang, M.Y.; Huang, Z.C.; Ji, K.S. Identification, classification and expression analysis of the CesA gene family from Pinus massoniana. Forests 2023, 14, 1035. [Google Scholar] [CrossRef]
- Zhu, P.H.; Ma, Y.Y.; Zhu, L.Z.; Chen, Y.; Li, R.; Ji, K.S. Selection of suitable reference genes in Pinus massoniana Lamb. under different abiotic stresses for qPCR normalization. Forests 2019, 10, 632. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Ren, X.; Zhang, J.; Yu, W.; Yu, Q.; Ji, K. Identification and Analysis of Stress-Associated Protein (SAP) Transcription Factor Family Members in Pinus massoniana. Plants 2025, 14, 1592. https://doi.org/10.3390/plants14111592
Zhao Y, Ren X, Zhang J, Yu W, Yu Q, Ji K. Identification and Analysis of Stress-Associated Protein (SAP) Transcription Factor Family Members in Pinus massoniana. Plants. 2025; 14(11):1592. https://doi.org/10.3390/plants14111592
Chicago/Turabian StyleZhao, Yulu, Xingyue Ren, Jingjing Zhang, Wenya Yu, Qiong Yu, and Kongshu Ji. 2025. "Identification and Analysis of Stress-Associated Protein (SAP) Transcription Factor Family Members in Pinus massoniana" Plants 14, no. 11: 1592. https://doi.org/10.3390/plants14111592
APA StyleZhao, Y., Ren, X., Zhang, J., Yu, W., Yu, Q., & Ji, K. (2025). Identification and Analysis of Stress-Associated Protein (SAP) Transcription Factor Family Members in Pinus massoniana. Plants, 14(11), 1592. https://doi.org/10.3390/plants14111592