Effect of the Absence of α Carbonic Anhydrase 2 on the PSII Light-Harvesting Complex Size in Arabidopsis thaliana
Abstract
:1. Introduction
2. Results
2.1. Determination of Chlorophyll a and b Content
2.2. Assessment of the Parameters of OJIP Kinetics
2.3. Estimation of the Amount of Lhcb1, Lhcb2, and D1 Proteins, and Evaluation of the Expression Level of Genes Encoding PSII Antenna Proteins
2.4. Measurement of Hydrogen Peroxide Production
2.5. Evaluation of the Expression Level of Genes Encoding Proteins Included in Retrograde Signaling
3. Discussion
4. Materials and Methods
4.1. Plant Material and Growth Conditions
4.2. Measurement of Chlorophyll a Fluorescence
4.3. Determination of Chlorophyll and Carotenoid Content
4.4. Western Blot Analysis
4.5. Quantitative Reverse Transcription PCR
4.6. Measurement of Hydrogen Peroxide Content in Leaves
4.7. Measurement of the Light-Induced Changes of Oxygen Concentration in a Suspension of Isolated Thylakoids
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
α-CA2-KO | α-CA2 knockout |
WT | wild type |
CA | carbonic anhydrase |
LHCII | light-harvesting complex of photosystem II |
PETC | photosynthetic electron transport chain |
TF | transcription factor |
PQ | plastoquinone |
PQH2 | plastohydroquinone |
PSII | photosystem II |
PSI | photosystem I |
Rubisco | ribulose bisphosphate carboxylase/oxygenase |
ABI4 | absciscic acid insensitive 4 |
GrD | gramicidin D |
References
- DiMario, R.J.; Machingura, M.C.; Waldrop, G.L.; Moroney, J.V. The Many Types of Carbonic Anhydrases in Photosynthetic Organisms. Plant Sci. 2018, 268, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Moroney, J.V.; Ma, Y.; Frey, W.D.; Fusilier, K.A.; Pham, T.T.; Simms, T.A.; DiMario, R.J.; Yang, J.; Mukherjee, B. The Carbonic Anhydrase Isoforms of Chlamydomonas Reinhardtii: Intracellular Location, Expression, and Physiological Roles. Photosynth. Res. 2011, 109, 133–149. [Google Scholar] [CrossRef]
- Rowlett, R.S. Structure and Catalytic Mechanism of the β-Carbonic Anhydrases. Biochim. Biophys. Acta (BBA) Proteins Proteom. 2010, 1804, 362–373. [Google Scholar] [CrossRef]
- Jensen, E.L.; Clement, R.; Kosta, A.; Maberly, S.C.; Gontero, B. A New Widespread Subclass of Carbonic Anhydrase in Marine Phytoplankton. ISME J. 2019, 13, 2094–2106. [Google Scholar] [CrossRef] [PubMed]
- Roberts, S.B.; Lane, T.W.; Morel, F.M.M. Carbonic anhydrase in the marine diatom Thalassiosira weissflogii (bacillariophyceae)1. J. Phycol. 1997, 33, 845–850. [Google Scholar] [CrossRef]
- Xu, Y.; Feng, L.; Jeffrey, P.D.; Shi, Y.; Morel, F.M.M. Structure and Metal Exchange in the Cadmium Carbonic Anhydrase of Marine Diatoms. Nature 2008, 452, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Villarejo, A.; Burén, S.; Larsson, S.; Déjardin, A.; Monné, M.; Rudhe, C.; Karlsson, J.; Jansson, S.; Lerouge, P.; Rolland, N.; et al. Evidence for a Protein Transported through the Secretory Pathway En Route to the Higher Plant Chloroplast. Nat. Cell Biol. 2005, 7, 1224–1231. [Google Scholar] [CrossRef]
- Supuran, C.T.; Capasso, C. The η-Class Carbonic Anhydrases as Drug Targets for Antimalarial Agents. Expert Opin. Ther. Targets 2015, 19, 551–563. [Google Scholar] [CrossRef]
- Kikutani, S.; Nakajima, K.; Nagasato, C.; Tsuji, Y.; Miyatake, A.; Matsuda, Y. Thylakoid Luminal θ-Carbonic Anhydrase Critical for Growth and Photosynthesis in the Marine Diatom Phaeodactylum tricornutum. Proc. Natl. Acad. Sci. USA 2016, 113, 9828–9833. [Google Scholar] [CrossRef]
- Hewett-Emmett, D.; Tashian, R.E. Functional Diversity, Conservation, and Convergence in the Evolution of the α-, β-, and γ-Carbonic Anhydrase Gene Families. Mol. Phylogenet. Evol. 1996, 5, 50–77. [Google Scholar] [CrossRef]
- Liljas, A.; Laurberg, M. A Wheel Invented Three Times: The Molecular Structures of the Three Carbonic Anhydrases. EMBO Rep. 2000, 1, 16–17. [Google Scholar] [CrossRef] [PubMed]
- Fabre, N.; Reiter, I.M.; Becuwe-Linka, N.; Genty, B.; Rumeau, D. Characterization and Expression Analysis of Genes Encoding and Carbonic Anhydrases in Arabidopsis. Plant Cell Environ. 2007, 30, 617–629. [Google Scholar] [CrossRef]
- DiMario, R.J.; Quebedeaux, J.C.; Longstreth, D.J.; Dassanayake, M.; Hartman, M.M.; Moroney, J.V. The Cytoplasmic Carbonic Anhydrases β CA2 and β CA4 Are Required for Optimal Plant Growth at Low CO2. Plant Physiol. 2016, 171, 280–293. [Google Scholar] [CrossRef]
- Fawcett, T.W.; Browse, J.A.; Volokita, M.; Bartlett, S.G. Spinach Carbonic Anhydrase Primary Structure Deduced from the Sequence of a cDNA Clone. J. Biol. Chem. 1990, 265, 5414–5417. [Google Scholar] [CrossRef]
- Shen, J.; Li, Z.; Fu, Y.; Liang, J. Identification and Molecular Characterization of the Alternative Spliced Variants of Beta Carbonic Anhydrase 1 (βCA1) from Arabidopsis thaliana. PeerJ 2021, 9, e12673. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Wu, H.; Wu, J.; Fan, X.; Li, X.; Lin, Y. Absence of OsβCA1 Causes a CO2 Deficit and Affects Leaf Photosynthesis and the Stomatal Response to CO2 in Rice. Plant J. 2017, 90, 344–357. [Google Scholar] [CrossRef]
- Sharma, N.; Froehlich, J.E.; Rillema, R.; Raba, D.A.; Chambers, T.; Kerfeld, C.A.; Kramer, D.M.; Walker, B.; Brandizzi, F. Arabidopsis Stromal Carbonic Anhydrases Exhibit Non-overlapping Roles in Photosynthetic Efficiency and Development. Plant J. 2023, 115, 386–397. [Google Scholar] [CrossRef] [PubMed]
- Weerasooriya, H.N.; DiMario, R.J.; Rosati, V.C.; Rai, A.K.; LaPlace, L.M.; Filloon, V.D.; Longstreth, D.J.; Moroney, J.V. Arabidopsis Plastid Carbonic Anhydrase βCA5 Is Important for Normal Plant Growth. Plant Physiol. 2022, 190, 2173–2186. [Google Scholar] [CrossRef]
- He, Y.; Duan, W.; Xue, B.; Cong, X.; Sun, P.; Hou, X.; Liang, Y.-K. OsαCA1 Affects Photosynthesis, Yield Potential, and Water Use Efficiency in Rice. Int. J. Mol. Sci. 2023, 24, 5560. [Google Scholar] [CrossRef]
- Friso, G.; Giacomelli, L.; Ytterberg, A.J.; Peltier, J.-B.; Rudella, A.; Sun, Q.; Wijk, K.J. van In-Depth Analysis of the Thylakoid Membrane Proteome of Arabidopsis thaliana Chloroplasts: New Proteins, New Functions, and a Plastid Proteome Database. Plant Cell 2004, 16, 478–499. [Google Scholar] [CrossRef]
- Fedorchuk, T.P.; Kireeva, I.A.; Opanasenko, V.K.; Terentyev, V.V.; Rudenko, N.N.; Borisova-Mubarakshina, M.M.; Ivanov, B.N. Alpha Carbonic Anhydrase 5 Mediates Stimulation of ATP Synthesis by Bicarbonate in Isolated Arabidopsis Thylakoids. Front. Plant Sci. 2021, 12, 662082. [Google Scholar] [CrossRef]
- Rudenko, N.N.; Ignatova, L.K.; Ivanov, B.N. Multiple Sources of Carbonic Anhydrase Activity in Pea Thylakoids: Soluble and Membrane-Bound Forms. Photosynth. Res. 2007, 91, 81–89. [Google Scholar] [CrossRef]
- Rudenko, N.N.; Ivanov, B.N. Unsolved Problems of Carbonic Anhydrases Functioning in Photosynthetic Cells of Higher C3 Plants. Biochemistry 2021, 86, 1243–1255. [Google Scholar] [CrossRef]
- Rudenko, N.N.; Vetoshkina, D.V.; Fedorchuk, T.P.; Ivanov, B.N. Effect of Light Intensity under Different Photoperiods on Expression Level of Carbonic Anhydrase Genes of the α- and β-Families in Arabidopsis thaliana Leaves. Biochemistry 2017, 82, 1025–1035. [Google Scholar] [CrossRef]
- Wang, L.; Liang, J.; Zhou, Y.; Tian, T.; Zhang, B.; Duanmu, D. Molecular Characterization of Carbonic Anhydrase Genes in Lotus Japonicus and Their Potential Roles in Symbiotic Nitrogen Fixation. Int. J. Mol. Sci. 2021, 22, 7766. [Google Scholar] [CrossRef]
- Weerasooriya, H.N.; Longstreth, D.J.; DiMario, R.J.; Rosati, V.C.; Cassel, B.A.; Moroney, J.V. Carbonic Anhydrases in the Cell Wall and Plasma Membrane of Arabidopsis thaliana Are Required for Optimal Plant Growth on Low CO2. Front. Mol. Biosci. 2024, 11, 1267046. [Google Scholar] [CrossRef]
- Zhurikova, E.M.; Ignatova, L.K.; Rudenko, N.N.; Mudrik, V.A.; Vetoshkina, D.V.; Ivanov, B.N. Participation of Two Carbonic Anhydrases of the Alpha Family in Photosynthetic Reactions in Arabidopsis thaliana. Biochemistry 2016, 81, 1182–1187. [Google Scholar] [CrossRef]
- Nadeeva, E.M.; Ignatova, L.K.; Rudenko, N.N.; Vetoshkina, D.V.; Naydov, I.A.; Kozuleva, M.A.; Ivanov, B.N. Features of Photosynthesis in Arabidopsis thaliana Plants with Knocked Out Gene of Alpha Carbonic Anhydrase 2. Plants 2023, 12, 1763. [Google Scholar] [CrossRef]
- Allen, J.F. Plastoquinone redox control of chloroplast thylakoid protein phosphorylation and distribution of excitation energy between photosystems: Discovery, background, implications. Photosynth. Res. 2002, 73, 139–148. [Google Scholar] [CrossRef]
- Escoubas, J.M.; Lomas, M.; LaRoche, J.; Falkowski, P.G. Light Intensity Regulation of Cab Gene Transcription Is Signaled by the Redox State of the Plastoquinone Pool. Proc. Natl. Acad. Sci. USA 1995, 92, 10237–10241. [Google Scholar] [CrossRef]
- Borisova-Mubarakshina, M.M.; Vetoshkina, D.V.; Naydov, I.A.; Rudenko, N.N.; Zhurikova, E.M.; Balashov, N.V.; Ignatova, L.K.; Fedorchuk, T.P.; Ivanov, B.N. Regulation of the Size of Photosystem II Light Harvesting Antenna Represents a Universal Mechanism of Higher Plant Acclimation to Stress Conditions. Funct. Plant Biol. 2020, 47, 959. [Google Scholar] [CrossRef]
- Desikan, R.; A.-H.-Mackerness, S.; Hancock, J.T.; Neill, S.J. Regulation of the Arabidopsis Transcriptome by Oxidative Stress. Plant Physiol. 2001, 127, 159–172. [Google Scholar] [CrossRef]
- Vandenabeele, S.; Van Der Kelen, K.; Dat, J.; Gadjev, I.; Boonefaes, T.; Morsa, S.; Rottiers, P.; Slooten, L.; Van Montagu, M.; Zabeau, M.; et al. A Comprehensive Analysis of Hydrogen Peroxide-Induced Gene Expression in Tobacco. Proc. Natl. Acad. Sci. USA. 2003, 100, 16113–16118. [Google Scholar] [CrossRef]
- Baier, M.; Dietz, K.-J. Chloroplasts as Source and Target of Cellular Redox Regulation: A Discussion on Chloroplast Redox Signals in the Context of Plant Physiology. J. Exp. Bot. 2005, 56, 1449–1462. [Google Scholar] [CrossRef]
- Mubarakshina, M.; Khorobrykh, S.; Ivanov, B. Oxygen Reduction in Chloroplast Thylakoids Results in Production of Hydrogen Peroxide inside the Membrane. Biochim. Biophys. Acta (BBA) Bioenerg. 2006, 1757, 1496–1503. [Google Scholar] [CrossRef]
- Borisova-Mubarakshina, M.M.; Naydov, D.V.V.; Vetoshkina, I.V.; Kozuleva, M.A.; Vilyanen, D.V.; Rudenko, N.N.; Ivanov, N.B. Photosynthetic Antenna Size Regulation as an Essential Mechanism of Higher Plants Acclimation to Biotic and Abiotic Factors: The Role of the Chloroplast Plastoquinone Pool and Hydrogen Peroxide. In Vegetation Index and Dynamics; Cano Carmona, E., Cano Ortiz, A., Quinto Canas, R., Maria Musarella, C., Eds.; IntechOpen: London, UK, 2022; ISBN 978-1-83969-385-4. [Google Scholar]
- Sun, X.; Feng, P.; Xu, X.; Guo, H.; Ma, J.; Chi, W.; Lin, R.; Lu, C.; Zhang, L. A Chloroplast Envelope-Bound PHD Transcription Factor Mediates Chloroplast Signals to the Nucleus. Nat. Commun. 2011, 2, 477. [Google Scholar] [CrossRef]
- Zhang, Z.-W.; Zhang, G.-C.; Zhu, F.; Zhang, D.-W.; Yuan, S. The Roles of Tetrapyrroles in Plastid Retrograde Signaling and Tolerance to Environmental Stresses. Planta 2015, 242, 1263–1276. [Google Scholar] [CrossRef]
- Yurina, N.P.; Odintsova, M.S. Chloroplast Retrograde Signaling System. Russ. J. Plant Physiol. 2019, 66, 509–520. [Google Scholar] [CrossRef]
- Wetzel, C.M.; Harmacek, L.D.; Yuan, L.H.; Wopereis, J.L.M.; Chubb, R.; Turini, P. Loss of Chloroplast Protease SPPA Function Alters High Light Acclimation Processes in Arabidopsis thaliana L. (Heynh.). J. Exp. Bot. 2009, 60, 1715–1727. [Google Scholar] [CrossRef]
- Adam, Z. Plastid Intramembrane Proteolysis. Biochim. Biophys. Acta (BBA) Bioenerg. 2015, 1847, 910–914. [Google Scholar] [CrossRef]
- Willems, P.; Horne, A.; Van Parys, T.; Goormachtig, S.; De Smet, I.; Botzki, A.; Van Breusegem, F.; Gevaert, K. The Plant PTM Viewer, a Central Resource for Exploring Plant Protein Modifications. Plant J. 2019, 99, 752–762. [Google Scholar] [CrossRef]
- Wind, J.J.; Peviani, A.; Snel, B.; Hanson, J.; Smeekens, S.C. ABI4: Versatile Activator and Repressor. Trends Plant Sci. 2013, 18, 125–132. [Google Scholar] [CrossRef]
- Lindahl, M.; Yang, D.; Andersson, B. Regulatory Proteolysis of the Major Light-Harvesting Chlorophyll a/b Protein of Photosystem II by a Light-Induced Membrane-Associated Enzymic System. Eur. J. Biochem. 1995, 231, 503–509. [Google Scholar] [CrossRef]
- Frigerio, S.; Campoli, C.; Zorzan, S.; Fantoni, L.I.; Crosatti, C.; Drepper, F.; Haehnel, W.; Cattivelli, L.; Morosinotto, T.; Bassi, R. Photosynthetic Antenna Size in Higher Plants Is Controlled by the Plastoquinone Redox State at the Post-Transcriptional Rather than Transcriptional Level. J. Biol. Chem. 2007, 282, 29457–29469. [Google Scholar] [CrossRef]
- Ballottari, M.; Dall’Osto, L.; Morosinotto, T.; Bassi, R. Contrasting Behavior of Higher Plant Photosystem I and II Antenna Systems during Acclimation. J. Biol. Chem. 2007, 282, 8947–8958. [Google Scholar] [CrossRef]
- Alexandrina Stirbet, G. On the Relation between the Kautsky Effect (Chlorophyll a Fluorescence Induction) and Photosystem II: Basics and Applications of the OJIP Fluorescence Transient. J. Photochem. Photobiol. B Biol. 2011, 104, 236–257. [Google Scholar] [CrossRef]
- Borisova-Mubarakshina, M.M.; Ivanov, B.N.; Vetoshkina, D.V.; Lubimov, V.Y.; Fedorchuk, T.P.; Naydov, I.A.; Kozuleva, M.A.; Rudenko, N.N.; Dall’Osto, L.; Cazzaniga, S.; et al. Long-Term Acclimatory Response to Excess Excitation Energy: Evidence for a Role of Hydrogen Peroxide in the Regulation of Photosystem II Antenna Size. J. Exp. Bot. 2015, 66, 7151–7164. [Google Scholar] [CrossRef]
- Borisova-Mubarakshina, M.M.; Vetoshkina, D.V.; Rudenko, N.N.; Shirshikova, G.N.; Fedorchuk, T.P.; Naydov, I.A.; Ivanov, B.N. The Size of the Light-Harvesting Antenna of Higher Plant Photosystem Ii Is Regulated by Illumination Intensity through Transcription of Antenna Protein Genes. Biochemistry 2014, 79, 520–523. [Google Scholar] [CrossRef]
- Foyer, C.H.; Noctor, G. Redox Regulation in Photosynthetic Organisms: Signaling, Acclimation, and Practical Implications. Antioxid. Redox Signal. 2009, 11, 861–905. [Google Scholar] [CrossRef]
- Biver, S.; Portetelle, D.; Vandenbol, M. Characterization of a New Oxidant-Stable Serine Protease Isolated by Functional Metagenomics. SpringerPlus 2013, 2, 410. [Google Scholar] [CrossRef]
- Zmijewski, J.W.; Banerjee, S.; Bae, H.; Friggeri, A.; Lazarowski, E.R.; Abraham, E. Exposure to Hydrogen Peroxide Induces Oxidation and Activation of AMP-Activated Protein Kinase. J. Biol. Chem. 2010, 285, 33154–33164. [Google Scholar] [CrossRef]
- Wang, P.; Du, Y.; An, G.; Zhou, Y.; Miao, C.; Song, C. Analysis of Global Expression Profiles of Arabidopsis Genes Under Abscisic Acid and H2 O2 Applications. J. Integr. Plant Biol. 2006, 48, 62–74. [Google Scholar] [CrossRef]
- Medina-Puche, L.; Castelló, M.J.; Canet, J.V.; Lamilla, J.; Colombo, M.L.; Tornero, P. β-Carbonic Anhydrases Play a Role in Salicylic Acid Perception in Arabidopsis. PLoS ONE 2017, 12, e0181820. [Google Scholar] [CrossRef]
- Proietti, S.; Bertini, L.; Timperio, A.M.; Zolla, L.; Caporale, C.; Caruso, C. Crosstalk between Salicylic Acid and Jasmonate in Arabidopsis Investigated by an Integrated Proteomic and Transcriptomic Approach. Mol. BioSyst. 2013, 9, 1169. [Google Scholar] [CrossRef]
- Lazova, G.N.; Kicheva, M.I.; Popova, L.P. The Effect of Abscisic Acid and Methyl Jasmonate on Carbonic Anhydrase Activity in Pea. Photosynthetica 1999, 36, 631–634. [Google Scholar] [CrossRef]
- Liu, R.; Xu, Y.-H.; Jiang, S.-C.; Lu, K.; Lu, Y.-F.; Feng, X.-J.; Wu, Z.; Liang, S.; Yu, Y.-T.; Wang, X.-F.; et al. Light-Harvesting Chlorophyll a/b-Binding Proteins, Positively Involved in Abscisic Acid Signalling, Require a Transcription Repressor, WRKY40, to Balance Their Function. J. Exp. Bot. 2013, 64, 5443–5456. [Google Scholar] [CrossRef]
- Xu, Y.-H.; Liu, R.; Yan, L.; Liu, Z.-Q.; Jiang, S.-C.; Shen, Y.-Y.; Wang, X.-F.; Zhang, D.-P. Light-Harvesting Chlorophyll a/b-Binding Proteins Are Required for Stomatal Response to Abscisic Acid in Arabidopsis. J. Exp. Bot. 2012, 63, 1095–1106. [Google Scholar] [CrossRef]
- Minagawa, J. Dynamic Reorganization of Photosynthetic Supercomplexes during Environmental Acclimation of Photosynthesis. Front. Plant Sci. 2013, 4, 513. [Google Scholar] [CrossRef]
- Gomes, M.T.G.; Da Luz, A.C.; Dos Santos, M.R.; Do Carmo Pimentel Batitucci, M.; Silva, D.M.; Falqueto, A.R. Drought Tolerance of Passion Fruit Plants Assessed by the OJIP Chlorophyll a Fluorescence Transient. Sci. Hortic. 2012, 142, 49–56. [Google Scholar] [CrossRef]
- Asrar, H.; Hussain, T.; Hadi, S.M.S.; Gul, B.; Nielsen, B.L.; Khan, M.A. Salinity Induced Changes in Light Harvesting and Carbon Assimilating Complexes of Desmostachya bipinnata (L.) Staph. Environ. Exp. Bot. 2017, 135, 86–95. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of Salinity Tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [PubMed]
- Jubany-Marí, T.; Munné-Bosch, S.; Alegre, L. Redox Regulation of Water Stress Responses in Field-Grown Plants. Role of Hydrogen Peroxide and Ascorbate. Plant Physiol. Biochem. 2010, 48, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Ullah, A.; Manghwar, H.; Shaban, M.; Khan, A.H.; Akbar, A.; Ali, U.; Ali, E.; Fahad, S. Phytohormones Enhanced Drought Tolerance in Plants: A Coping Strategy. Environ. Sci. Pollut. Res. 2018, 25, 33103–33118. [Google Scholar] [CrossRef] [PubMed]
- Strasser, R.J.; Srivastava, A.; Tsimilli-Michael, M. The Fluorescence Transient as a Tool to Characterize and Screen Photosynthetic Samples. In Probing Photosynthesis: Mechanisms, Regulation and Adaptation; Yunus, M., Pathre, U., Mohanty, P., Eds.; Taylor & Francis: London, UK; New York, NY, USA, 2000; pp. 445–483. [Google Scholar]
- Lichtenthaler, H.K. Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1987; Volume 148, pp. 350–382. ISBN 978-0-12-182048-0. [Google Scholar]
- Casazza, A.P.; Tarantino, D.; Soave, C. Preparation and Functional Characterization of Thylakoids from Arabidopsis thaliana. Photosynth. Res. 2001, 68, 175–180. [Google Scholar] [CrossRef]
Plants | Pigment Content (mg/g Fresh Weight) | |||
---|---|---|---|---|
Chl a | Chl b | Chl a/Chl b | Carotenoids | |
WT | 0.71 ± 0.06 | 0.29 ± 0.02 | 2.45 ± 0.06 | 0.15 ± 0.02 |
α-CA2-KO (9–11) | 0.87 ± 0.09 | 0.41 ± 0.04 * | 2.12± 0.01 | 0.17 ± 0.02 |
α-CA2-KO (8–3) | 0.89 ± 0.07 | 0.38 ± 0.02 * | 2.34 ± 0.01 | 0.18 ± 0.02 |
Genes | Nucleotide Sequences of Primers | |
---|---|---|
At1g73990 (Arabidopsis Serin Protease (SPPA) gene) | F | TCATTCTCGTGGTCTAATAGATGCTGTC |
R | CGT CGA GCA GTC CTT TTA ATG TTC TG | |
At2g32480 (Arabidopsis Serin Protease (ASP) gene) | F | TGTGGGAAGGGAGTTTATGGGG |
R | GCTGCGAATTGGTAAAGCCC | |
At5g35210 (Arabidopsis PTM gene) | F | TGA AAAGGGTCTGAGATATTCATATAA GAGATCA |
R | GAGCACTCTGAGTCCAAGCAT | |
At2g40220 (Arabidopsis ABI4 gene) | F | GTTGGAGATGGATCTTCGACCATTT |
R | TTG ACC GAC CTT AGG GAT GCT | |
At1g29930 (Arabidopsis Lhcb1 gene) | F | AGCTCAAGAACGGAAGATTGG |
R | GCCAAATGGTCAGCAAGGTT | |
At2g05070 (Arabidopsis Lhcb2 gene) | F | GTCCATACCAGATGCTTTGGGGAG |
R | CTCACACTCTCTCTTCAATCCTTTCCTTTCAT | |
At5g25760 (Arabidopsis Ubiquitin gene) | F | TGCTTGGAGTCCTGCTTGGA |
R | TGTGCCATTGAATTGAACCCTCT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nadeeva, E.M.; Rudenko, N.N.; Ignatova, L.K.; Vetoshkina, D.V.; Ivanov, B.N. Effect of the Absence of α Carbonic Anhydrase 2 on the PSII Light-Harvesting Complex Size in Arabidopsis thaliana. Plants 2025, 14, 1529. https://doi.org/10.3390/plants14101529
Nadeeva EM, Rudenko NN, Ignatova LK, Vetoshkina DV, Ivanov BN. Effect of the Absence of α Carbonic Anhydrase 2 on the PSII Light-Harvesting Complex Size in Arabidopsis thaliana. Plants. 2025; 14(10):1529. https://doi.org/10.3390/plants14101529
Chicago/Turabian StyleNadeeva, Elena M., Natalia N. Rudenko, Lyudmila K. Ignatova, Daria V. Vetoshkina, and Boris N. Ivanov. 2025. "Effect of the Absence of α Carbonic Anhydrase 2 on the PSII Light-Harvesting Complex Size in Arabidopsis thaliana" Plants 14, no. 10: 1529. https://doi.org/10.3390/plants14101529
APA StyleNadeeva, E. M., Rudenko, N. N., Ignatova, L. K., Vetoshkina, D. V., & Ivanov, B. N. (2025). Effect of the Absence of α Carbonic Anhydrase 2 on the PSII Light-Harvesting Complex Size in Arabidopsis thaliana. Plants, 14(10), 1529. https://doi.org/10.3390/plants14101529