Improving Nutrient Use Efficiency of Rice Under Alternative Wetting and Drying Irrigation Combined with Slow-Release Nitrogen Fertilization
Abstract
1. Introduction
2. Results
2.1. Growth Responses
2.2. Photosynthesis and Soluble Carbohydrates
2.3. Nitrogen Metabolism
2.4. Nitrogen Use Efficiency
2.5. Principal Component Analysis (PCA)
3. Discussion
3.1. Growth and Yield Responses to Water and Nitrogen Management
3.2. Improved Photosynthetic Performance Under SRF + AWD
3.3. Carbohydrate Accumulation and Nitrogen Uptake Efficiency
3.4. Gene Expression and Metabolic Profiling Reveal Cultivar-Specific NUE Responses
4. Materials and Methods
4.1. Plant Materials and Treatments
4.2. Photosynthesis Measurement
4.3. Soluble Sugars and Starch Analysis
4.4. RNA Extraction and Quantitative Real-Time PCR Analysis
4.5. Total Nitrogen and Nitrogen Use Efficiency (NUE)
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ungureanu, N.; Vlăduț, V.; Voicu, G. Water scarcity and wastewater reuse in crop irrigation. Sustainability 2020, 12, 9055. [Google Scholar] [CrossRef]
- Surendran, U.; Raja, P.; Jayakumar, M.; Subramoniam, S.R. Use of efficient water saving techniques for production of rice in India under climate change scenario: A critical review. J. Clean. Prod. 2021, 309, 127272. [Google Scholar] [CrossRef]
- Abid, A.A.; Zhang, Q.; Adil, M.F.; Batool, I.; Abbas, M.; Hassan, Z.; Khan, A.A.; Castellano-Hinojosa, A.; Zaidi, S.H.R.; Di, H. Nitrogen optimization coupled with alternate wetting and drying practice enhances rhizospheric nitrifier and denitrifier abundance and rice productivity. Front. Plant Sci. 2022, 13, 927229. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Chen, Y.; Nie, Z.; Ye, Y.; Liu, J.; Tian, G.; Wang, G.; Tuong, T. Mitigation of nutrient losses via surface runoff from rice cropping systems with alternate wetting and drying irrigation and site-specific nutrient management practices. Environ. Sci. Pollut. Res. 2013, 20, 6980–6991. [Google Scholar] [CrossRef]
- Cabangon, R.; Castillo, E.; Tuong, T. Chlorophyll meter-based nitrogen management of rice grown under alternate wetting and drying irrigation. Field Crops Res. 2011, 121, 136–146. [Google Scholar] [CrossRef]
- Malumpong, C.; Ruensuk, N.; Rossopa, B.; Channu, C.; Intarasathit, W.; Wongboon, W.; Poathong, K.; Kunket, K. Alternate wetting and drying (AWD) in broadcast rice (Oryza sativa L.) management to maintain yield, conserve water, and reduce gas emissions in Thailand. Agric. Res. 2021, 10, 116–130. [Google Scholar] [CrossRef]
- Chen, K.; Ma, T.; Ding, J.; Yu, S.; Dai, Y.; He, P.; Ma, T. Effects of straw return with nitrogen fertilizer reduction on rice (Oryza sativa L.) morphology, photosynthetic capacity, yield and water–nitrogen use efficiency traits under different water regimes. Agronomy 2022, 13, 133. [Google Scholar] [CrossRef]
- LING, Q.-h. Study on precise and quantitative N application in rice. Sci. Agric. Sin. 2005, 38, 2457–2467. [Google Scholar]
- Zhang, F.; Cui, Z.; Fan, M.; Zhang, W.; Chen, X.; Jiang, R. Integrated soil–crop system management: Reducing environmental risk while increasing crop productivity and improving nutrient use efficiency in China. J. Environ. Qual. 2011, 40, 1051–1057. [Google Scholar] [CrossRef]
- Peng, S.; Buresh, R.J.; Huang, J.; Yang, J.; Zou, Y.; Zhong, X.; Wang, G.; Zhang, F. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China. Field Crops Res. 2006, 96, 37–47. [Google Scholar] [CrossRef]
- Trenkel, M.E. Controlled-Release and Stabilized Fertilizers in Agriculture; International fertilizer industry association Paris: Paris, France, 1997; Volume 11. [Google Scholar]
- Duan, Q.; Jiang, S.; Chen, F.; Li, Z.; Ma, L.; Song, Y.; Yu, X.; Chen, Y.; Liu, H.; Yu, L. Fabrication, evaluation methodologies and models of slow-release fertilizers: A review. Ind. Crops Prod. 2023, 192, 116075. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, C.; Li, G.; Jiang, Y.; Hou, P.; Xue, L.; Yang, L.; Ding, Y. Lower dose of controlled/slow release fertilizer with higher rice yield and N utilization in paddies: Evidence from a meta-analysis. Field Crops Res. 2023, 294, 108879. [Google Scholar] [CrossRef]
- Liang, K.; Zhong, X.; Huang, N.; Lampayan, R.M.; Liu, Y.; Pan, J.; Peng, B.; Hu, X.; Fu, Y. Nitrogen losses and greenhouse gas emissions under different N and water management in a subtropical double-season rice cropping system. Sci. Total Environ. 2017, 609, 46–57. [Google Scholar] [CrossRef]
- Wang, C.; Lv, J.; Coulter, J.A.; Xie, J.; Yu, J.; Li, J.; Zhang, J.; Tang, C.; Niu, T.; Gan, Y. Slow-release fertilizer improves the growth, quality, and nutrient utilization of wintering Chinese chives (Allium tuberosum Rottler ex Spreng.). Agronomy 2020, 10, 381. [Google Scholar] [CrossRef]
- Jiang, Z.; Chen, Q.; Liu, D.; Tao, W.; Gao, S.; Li, J.; Lin, C.; Zhu, M.; Ding, Y.; Li, W. Application of slow-controlled release fertilizer coordinates the carbon flow in carbon-nitrogen metabolism to effect rice quality. BMC Plant Biol. 2024, 24, 621. [Google Scholar] [CrossRef]
- Priya, E.; Sarkar, S.; Maji, P.K. A review on slow-release fertilizer: Nutrient release mechanism and agricultural sustainability. J. Environ. Chem. Eng. 2024, 12, 113211. [Google Scholar]
- Geng, J.; Ma, Q.; Zhang, M.; Li, C.; Liu, Z.; Lyu, X.; Zheng, W. Synchronized relationships between nitrogen release of controlled release nitrogen fertilizers and nitrogen requirements of cotton. Field Crops Res. 2015, 184, 9–16. [Google Scholar] [CrossRef]
- Zhao, B.; Dong, S.; Zhang, J.; Liu, P. Effects of controlled-release fertiliser on nitrogen use efficiency in summer maize. PLoS ONE 2013, 8, e70569. [Google Scholar] [CrossRef]
- METrenkel, T. Slow-and Controlled-Release and Stabilized Fertilizers: An Option for Enhancing Nutrient Use Effiiency in Agriculture; International Fertilizer Industry Association (IFA): Paris, France, 2021. [Google Scholar]
- Qi, D.; Zhu, J.; Wang, X. Nitrogen loss via runoff and leaching from paddy fields with the proportion of controlled-release urea and conventional urea rates under alternate wetting and drying irrigation. Environ. Sci. Pollut. Res. 2023, 30, 61741–61752. [Google Scholar] [CrossRef]
- Shakoor, A.; Xu, Y.; Wang, Q.; Chen, N.; He, F.; Zuo, H.; Yin, H.; Yan, X.; Ma, Y.; Yang, S. Effects of fertilizer application schemes and soil environmental factors on nitrous oxide emission fluxes in a rice-wheat cropping system, east China. PLoS ONE 2018, 13, e0202016. [Google Scholar] [CrossRef]
- Kim, J.K.; Park, S.-Y.; Lim, S.-H.; Yeo, Y.; Cho, H.S.; Ha, S.-H. Comparative metabolic profiling of pigmented rice (Oryza sativa L.) cultivars reveals primary metabolites are correlated with secondary metabolites. J. Cereal Sci. 2013, 57, 14–20. [Google Scholar] [CrossRef]
- Xiao, W.; Ye, X.; Yang, X.; Li, T.; Zhao, S.; Zhang, Q. Effects of alternating wetting and drying versus continuous flooding on chromium fate in paddy soils. Ecotoxicol. Environ. Saf. 2015, 113, 439–445. [Google Scholar] [CrossRef]
- Hamoud, Y.A.; Shaghaleh, H.; Sheteiwy, M.; Guo, X.; Elshaikh, N.A.; Khan, N.U.; Oumarou, A.; Rahim, S.F. Impact of alternative wetting and soil drying and soil clay content on the morphological and physiological traits of rice roots and their relationships to yield and nutrient use-efficiency. Agric. Water Manag. 2019, 223, 105706. [Google Scholar] [CrossRef]
- Ye, T.; Liu, B.; Wang, X.; Zhou, J.; Liu, L.; Tang, L.; Cao, W.; Zhu, Y. Effects of water-nitrogen interactions on the fate of nitrogen fertilizer in a wheat-soil system. Eur. J. Agron. 2022, 136, 126507. [Google Scholar] [CrossRef]
- Long, S.P.; ZHU, X.G.; Naidu, S.L.; Ort, D.R. Can improvement in photosynthesis increase crop yields? Plant Cell Environ. 2006, 29, 315–330. [Google Scholar] [CrossRef]
- Zhang, H.; Xue, Y.; Wang, Z.; Yang, J.; Zhang, J. An alternate wetting and moderate soil drying regime improves root and shoot growth in rice. Crop Sci. 2009, 49, 2246–2260. [Google Scholar] [CrossRef]
- Azeem, B.; KuShaari, K.; Man, Z. Effect of coating thickness on release characteristics of controlled release urea produced in fluidized bed using waterborne starch biopolymer as coating material. Procedia Eng. 2016, 148, 282–289. [Google Scholar] [CrossRef]
- Azeem, B.; KuShaari, K.; Man, Z.B.; Basit, A.; Thanh, T.H. Review on materials & methods to produce controlled release coated urea fertilizer. J. Control. Release 2014, 181, 11–21. [Google Scholar]
- Magray, J.A.; Zargar, S.A.; Islam, T.; Javid, H. Factors affecting nitrogen uptake, transport, and assimilation. In Advances in Plant Nitrogen Metabolism; CRC Press: Boca Raton, FL, USA, 2022; pp. 69–85. [Google Scholar]
- Akhtar, K.; Ain, N.U.; Prasad, P.V.; Naz, M.; Aslam, M.M.; Djalovic, I.; Riaz, M.; Ahmad, S.; Varshney, R.K.; He, B. Physiological, molecular, and environmental insights into plant nitrogen uptake, and metabolism under abiotic stresses. Plant Genome 2024, 17, e20461. [Google Scholar] [CrossRef]
- Geem, K.R.; Lee, Y.-J.; Lee, J.; Hong, D.; Kim, G.-E.; Sung, J. Role of Carrot (Daucus carota L.) Storage Roots in Drought Stress Adaptation: Hormonal Regulation and Metabolite Accumulation. Metabolites 2025, 15, 56. [Google Scholar] [CrossRef]
- Du, Y.; Zhao, Q.; Chen, L.; Yao, X.; Zhang, W.; Zhang, B.; Xie, F. Effect of drought stress on sugar metabolism in leaves and roots of soybean seedlings. Plant Physiol. Biochem. 2020, 146, 1–12. [Google Scholar] [CrossRef]
- Granda, E.; Camarero, J.J. Drought reduces growth and stimulates sugar accumulation: New evidence of environmentally driven non-structural carbohydrate use. Tree Physiol. 2017, 37, 997–1000. [Google Scholar] [CrossRef]
- Junaid, M.D.; Öztürk, Z.N.; Gökçe, A.F. Exploitation of tolerance to drought stress in carrot (Daucus carota L.): An overview. Stress. Biol. 2023, 3, 55. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Ruan, Y.-L. Shoot–root carbon allocation, sugar signalling and their coupling with nitrogen uptake and assimilation. Funct. Plant Biol. 2015, 43, 105–113. [Google Scholar] [CrossRef]
- Praxedes, S.C.; DaMatta, F.M.; Loureiro, M.E.; Ferrao, M.A.; Cordeiro, A.T. Effects of long-term soil drought on photosynthesis and carbohydrate metabolism in mature robusta coffee (Coffea canephora Pierre var. kouillou) leaves. Environ. Exp. Bot. 2006, 56, 263–273. [Google Scholar] [CrossRef]
- Shrestha, J.; Karki, T.B.; Hossain, M.A. Application of nitrogenous fertilizer in rice production: A review. J. Nepal. Agric. Res. Counc. 2022, 8, 16–26. [Google Scholar] [CrossRef]
- Kunjaroenruk, J.; Koonmanee, S.; Singkham, N.; Chankaew, S.; Suriharn, K. Genotypic variation and seasonal effects on rice (Oryza sativa L.) grain protein content and yield in tropical savannah environment. J. Agric. Food Res. 2025, 20, 101778. [Google Scholar] [CrossRef]
- Asadirahmani, H.; Kari Dolatabad, H. Long-term Effects of Mineral Fertilizers on Soil Microorganisms. Land. Manag. J. 2020, 8, 105–127. [Google Scholar]
- Roe, J.H. The determination of sugar in blood and spinal fluid with anthrone reagent. J. Biol. Chem. 1955, 212, 335–343. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Rozen, S.; Skaletsky, H. Primer3 on the WWW for general users and for biologist programmers. In Bioinformatics Methods and Protocols; Springer: Berlin/Heidelberg, Germany, 1999; pp. 365–386. [Google Scholar]
Variety | Nitrogen | Water | Tillering | Heading | Harvest | |||
---|---|---|---|---|---|---|---|---|
Plant Height (cm) | Tiller (no. Plant−1) | Plant Height (cm) | Tiller (no. Plant−1) | Shoot DW (g Plant−1) | Grain DW (g Plant−1) | |||
Samgwang (SG) | UREA | CF | 66.5 ± 4.2 a | 11 ± 1ab | 87.1 ± 5.4 ns | 14 ± 1 ns | 17.4 ± 3.3 a | 5.4 ± 0.4 a |
AWD | 58.0 ± 0.5 b | 6 ± 1c | 94.8 ± 4.5 | 14 ± 1 | 18.0 ± 1.6 a | 4.7 ± 0.6 ab | ||
SRF | CF | 62.0 ± 1.1 ab | 13 ± 1 a | 85.7 ± 1.8 | 14 ± 2 | 11.5 ± 0.1 b | 4.1 ± 0.2 b | |
AWD | 60.1 ± 2.1 b | 8 ± 2 bc | 91.0 ± 7.8 | 14 ± 3 | 16.3 ± 1.1 ab | 5.6 ± 0.2 a | ||
f value | 6.6408 (*) | 27.333 (***) | 1.7723 (ns) | 0.3333 (ns) | 7.2863 (*) | 3.9854 (**) | ||
Milyang#360 (ML) | UREA | CF | 67.7 ± 0.5 a | 10 ± 1 a | 86.0 ± 2.2 ns | 14 ± 1 ns | 12.5 ± 1.6 b | 4.5 ± 1.2 ns |
AWD | 57.8 ± 1.9 c | 7 ± 0 b | 90.8 ± 9.3 | 14 ± 1 | 19.7 ± 0.8 a | 4.4 ± 0.6 | ||
SRF | CF | 66.5 ± 2.2 a | 9 ± 2 ab | 85.1 ± 5.2 | 12 ± 4 | 11.7 ± 0.7 b | 3.2 ± 0.7 | |
AWD | 62.2 ± 1.2 b | 10 ± 1 ab | 85.9 ± 2.6 | 18 ± 2 | 14.2 ± 1.7 b | 4.1 ± 0.5 | ||
f value | 24.386 (***) | 5.3333 (*) | 0.6582 (ns) | 2.5476 (ns) | 23.791 (***) | 1.7597 (ns) | ||
Variety | p value | 0.5372 | 0.7586 | 0.3086 | 0.6509 | 0.601 | 0.09464 |
Variety | Nitrogen | Water | Pn (μmol CO2 m−2 s−1) | gs (μmol H2O m−2 s−1) | E (mmol H2O m−2 s−1) | Ci (μmol CO2 m−2 s−1) | CEi [(μmol m−2 s−1) (μmol mol−1)]−1 | WUEi (μmol CO2 mol−1 H2O) |
---|---|---|---|---|---|---|---|---|
Samgwang (SG) | UREA | CF | 11.3 ± 1.0 ab | 0.4 ± 0.0 b | 4.4 ± 1.6 b | 316.0 ± 1.0 b | 0.04 ± 0.00 ns | 2.1 ± 0.2 ab |
AWD | 10.9 ± 0.7 ab | 0.3 ± 0.0 b | 8.5 ± 0.3 a | 288.0 ± 1.7 c | 0.04 ± 0.00 | 1.3 ± 0.1 b | ||
SRF | CF | 9.5 ± 1.8 b | 0.3 ± 0.0 b | 7.8 ± 0.3 a | 314.0 ± 1.0 b | 0.03 ± 0.01 | 1.2 ± 0.2 b | |
AWD | 13.1 ± 0.3 a | 0.8 ± 0.1 a | 3.8 ± 0.1 b | 343.3 ± 1.0 a | 0.04 ± 0.00 | 3.4 ± 0.0 a | ||
f value | 5.2992 (*) | 27.838 (***) | 25.854 (***) | 173.58 (***) | 3.1141 (ns) | 6.5197 (*) | ||
Milyang#360 (ML) | UREA | CF | 12.8 ± 1.0 ns | 0.5 ± 0.1 b | 5.6 ± 1.4 ns | 355.0 ± 19.1 a | 0.04 ± 0.00 ab | 2.4 ± 0.9 ns |
AWD | 12.6 ± 0.6 | 0.3 ± 0.1 c | 4.2 ± 0.1 | 282.7 ± 2.9 b | 0.04 ± 0.00 a | 3.0 ± 0.1 | ||
SRF | CF | 10.6 ± 2.0 | 0.3 ± 0.0 c | 5.9 ± 1.5 | 305.0 ± 6.2 b | 0.03 ± 0.01 b | 2.0 ± 1.0 | |
AWD | 11.2 ± 0.2 | 0.6 ± 0.0 a | 3.9 ± 0.0 | 344.0 ± 4.4 a | 0.03 ± 0.00 b | 2.8 ± 0.0 | ||
f value | 2.7221 (ns) | 45.656 (***) | 2.7117 (ns) | 31.684 (***) | 6.012 (*) | 1.503 (ns) | ||
Variety | p value | 0.5429 | 0.8175 | 0.366 | 0.7655 | 0.6671 | 0.3635 |
Cultivar | Nitrogen | Water | Grain T-N (%) | Shoot T-N (%) | NUE (g g −1) | NUpE (g g −1) | NUtE (g g −1) | gNUE (g g −1) | NHI (%) |
---|---|---|---|---|---|---|---|---|---|
Samgwang (SG) | Urea | CF | 1.00 ± 0.02 b | 0.93 ± 0.05 ab | 86.3 ± 9.6 ns | 0.8 ± 0.1 b | 104.4 ± 4.2 a | 35.8 ± 2.6 a | 43.7 ± 4.1 b |
AWD | 1.02 ± 0.03 ab | 0.90 ± 0.02 bc | 96.6 ± 9.5 | 0.9 ± 0.1 ab | 105.6 ± 2.1 b | 36.8 ± 4.6 ab | 40.9 ± 2.1 b | ||
SRF | CF | 1.02 ± 0.03 ab | 0.80 ± 0.05 c | 83.2 ± 1.3 | 0.7 ± 0.0 b | 112.9 ± 2.5 b | 32.1 ± 1.7 b | 44.4 ± 2.3 a | |
AWD | 1.09 ± 0.03 a | 1.02 ± 0.03 a | 103.7 ± 10.2 | 1.1 ± 0.1 a | 95.3 ± 0.8 c | 43.3 ± 1.2 a | 43.6 ± 3.8 ab | ||
f value | 5.9705 (*) | 5.066 (**) | 3.7165 | 8.5881 (**) | 21.494 (***) | 8.9854 (**) | 7.6725 (**) | ||
Milyang#360 (ML) | Urea | CF | 1.00 ± 0.04 a | 0.83 ± 0.01 ns | 92.0 ± 9.8 ns | 0.8 ± 0.1 ns | 112.0 ± 2.4 ns | 36.6 ± 7.2 ns | 44.2 ± 5.3 a |
AWD | 0.96 ± 0.03 ab | 0.83 ± 0.02 | 99.5 ± 5.8 | 0.9 ± 0.0 | 114.2 ± 1.1 | 34.0 ± 5.0 | 37.2 ± 3.9 b | ||
SRF | CF | 0.89 ± 0.01 b | 0.87 ± 0.01 | 84.4 ± 8.7 | 0.7 ± 0.1 | 114.0 ± 0.7 | 32.4 ± 5.7 | 38.9 ± 2.9 ab | |
AWD | 0.97 ± 0.04 ab | 0.83 ± 0.02 | 84.1 ± 1.7 | 0.7 ± 0.0 | 113.5 ± 4.2 | 32.2 ± 3.9 | 42.1 ± 6.0 ab | ||
f value | 5.269 (*) | 4.0586 (ns) | 3.1028 | 3.3273 | 0.4617 | 1.7597 | 4.1781 (*) | ||
Variety | p value | 17.887 (***) | 8.1165 (**) | 0.349 | 3.8973 | 17.796 | 2.5016 | 2.2892 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, B.; Kim, M.; Geem, K.R.; Sung, J. Improving Nutrient Use Efficiency of Rice Under Alternative Wetting and Drying Irrigation Combined with Slow-Release Nitrogen Fertilization. Plants 2025, 14, 1530. https://doi.org/10.3390/plants14101530
Lee B, Kim M, Geem KR, Sung J. Improving Nutrient Use Efficiency of Rice Under Alternative Wetting and Drying Irrigation Combined with Slow-Release Nitrogen Fertilization. Plants. 2025; 14(10):1530. https://doi.org/10.3390/plants14101530
Chicago/Turabian StyleLee, Boyun, Minji Kim, Kyoung Rok Geem, and Jwakyung Sung. 2025. "Improving Nutrient Use Efficiency of Rice Under Alternative Wetting and Drying Irrigation Combined with Slow-Release Nitrogen Fertilization" Plants 14, no. 10: 1530. https://doi.org/10.3390/plants14101530
APA StyleLee, B., Kim, M., Geem, K. R., & Sung, J. (2025). Improving Nutrient Use Efficiency of Rice Under Alternative Wetting and Drying Irrigation Combined with Slow-Release Nitrogen Fertilization. Plants, 14(10), 1530. https://doi.org/10.3390/plants14101530