Smart Chip Technology for the Control and Management of Invasive Plant Species: A Review
Abstract
:1. Introduction
2. Smart Chip Technology: An Innovative Approach
3. Smart Chip-Enabled Invasive Plant Management
4. Challenges and Prospects of Smart Chip-Enabled Invasive Plant Management
5. Conclusions
5.1. Summary of Key Findings
5.2. Call for Further Research and Technology Development
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SCT | Smart Chip Technology |
AI | Artificial Intelligence |
IoT | Internet of Things |
IR | Infrared Bands |
RGB | Red, Green, and Blue cameras |
CNNs | Convolutional Neural Networks |
ML | Machine Learning |
DL | Deep Learning |
UASYS | Unmanned Aerial Systems |
References
- Khattak, W.A.; Sun, J.; Hameed, R.; Zaman, F.; Abbas, A.; Khan, K.A.; Elboughdiri, N.; Akbar, R.; He, F.; Ullah, M.W. Unveiling the resistance of native weed communities: Insights for managing invasive weed species in disturbed environments. Biol. Rev. 2024, 99, 753–777. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Khattak, W.A.; Abbas, A.; Nawaz, M.; Hameed, R.; Javed, Q.; Bo, Y.; Khan, K.A.; Du, D. Ecological adaptability of invasive weeds under environmental pollutants: A review. Environ. Exp. Bot. 2023, 215, 105492. [Google Scholar] [CrossRef]
- FAO. Forest Health and Protection, Forest Invasive Species. 2015. Available online: https://www.fao.org/forestry/pests/forest-invasive-species/en (accessed on 28 April 2025).
- Convention on Biological Diversity (CBD). Guiding Principles for the Prevention, Introduction and Mitigation of Impacts of Alien Species That Threaten Ecosystems, Habitats or Species. Annex to Decision VI/23. 2002. Available online: https://www.cbd.int/decision/cop/?id=7197 (accessed on 23 March 2025).
- IUCN, 2000. IUCN Guidelines for the Prevention of Biodiversity Loss Caused by Alien Invasive Species. World Conservation Congress, Montreal (Canada). Management 1996, 24, 449–465. Available online: https://portals.iucn.org/library/node/7207 (accessed on 28 April 2025).
- Cui, M.; Wang, J.; Zhang, X.; Wang, C.; Li, G.; Wan, J.S.; Du, D. Warming significantly inhibited the competitive advantage of native plants in interspecific competition under phosphorus deposition. Plant Soil 2023, 486, 503–518. [Google Scholar] [CrossRef]
- Zhang, H.-Y.; Goncalves, P.; Copeland, E.; Qi, S.-S.; Dai, Z.-C.; Li, G.-L.; Wang, C.-Y.; Du, D.-L.; Thomas, T. Invasion by the weed Conyza canadensis alters soil nutrient supply and shifts microbiota structure. Soil Biol. Biochem. 2020, 143, 107739. [Google Scholar] [CrossRef]
- Javed, Q.; Sun, J.; Rutherford, S.; Li, J.; Iqbal, B.; Xiang, Y.; Ren, G.; He, F.; Pan, L.; Bo, Y. Soil pollution and the invasion of congener sphagneticola in crop lands. J. Environ. Manag. 2023, 340, 118013. [Google Scholar] [CrossRef]
- Sultana, S.N.; Zubayer, M.; Islam, M.S.; Ashab, K.R.; Shanta, S.H.; Kayesh, E. Sustainable and ecofriendly approach to weed management. In Weed Management-Global Strategies; IntechOpen: London, UK, 2024; p. 83. [Google Scholar]
- Heringer, G.; Fernandez, R.D.; Bang, A.; Cordonnier, M.; Novoa, A.; Lenzner, B.; Capinha, C.; Renault, D.; Roiz, D.; Moodley, D. Economic costs of invasive non-native species in urban areas: An underexplored financial drain. Sci. Total Environ. 2024, 917, 170336. [Google Scholar] [CrossRef]
- Angulo, E.; Diagne, C.; Ballesteros-Mejia, L.; Adamjy, T.; Ahmed, D.A.; Akulov, E.; Banerjee, A.K.; Capinha, C.; Dia, C.A.; Dobigny, G. Non-English languages enrich scientific knowledge: The example of economic costs of biological invasions. Sci. Total Environ. 2021, 775, 144441. [Google Scholar] [CrossRef]
- Diagne, C.; Leroy, B.; Vaissière, A.C.; Gozlan, R.E.; Roiz, D.; Jarić, I.; Salles, J.M.; Bradshaw, C.J.; Courchamp, F. High and rising economic costs of biological invasions worldwide. Nature 2021, 592, 571–576. [Google Scholar] [CrossRef]
- Leroy, B.; Diagne, C.; Angulo, E.; Ballesteros-Mejia, L.; Adamjy, T.; Assailly, C.; Albert, C.; Andrews, L.; Balzani, P.; Banerjee, A. Global Costs of Biological Invasions: Living Figure. BorisLeroy.com. 2021. Available online: https://borisleroy.com/invacost/invacost_livingfigure.html (accessed on 20 April 2025).
- IPBES. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Summary for Policy Makers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; IPBES Secretariat: Bonn, Germany, 2019. [Google Scholar]
- Hocking, S.; Toop, T.; Jones, D.; Graham, I.; Eastwood, D. Assessing the relative impacts and economic costs of Japanese knotweed management methods. Sci. Rep. 2023, 13, 3872. [Google Scholar] [CrossRef]
- Schaffner, U.; Steinbach, S.; Sun, Y.; Skjøth, C.A.; de Weger, L.A.; Lommen, S.T.; Augustinus, B.A.; Bonini, M.; Karrer, G.; Šikoparija, B. Biological weed control to relieve millions from ambrosia allergies in Europe. Nat. Commun. 2020, 11, 1745. [Google Scholar] [CrossRef] [PubMed]
- Albert, W. Climate Change, Technology, and the Future of National Parks. Bachelor’s Thesis, Faculty of Worcester Polytechnic Institute, Worcester, MA, USA, 2023. Available online: https://unfccc.int/ttclear/gnwoerk_cms/TEC_tab_1_archive/attachments/file:The_Climate_Technology_Progress_Report_2023_WEB.pdf (accessed on 26 April 2025).
- Karunathilake, E.; Le, A.T.; Heo, S.; Chung, Y.S.; Mansoor, S. The path to smart farming: Innovations and opportunities in precision agriculture. Agriculture 2023, 13, 1593. [Google Scholar] [CrossRef]
- Paul, K.; Chatterjee, S.S.; Pai, P.; Varshney, A.; Juikar, S.; Prasad, V.; Bhadra, B.; Dasgupta, S. Viable smart sensors and their application in data driven agriculture. Comput. Electron. Agric. 2022, 198, 107096. [Google Scholar] [CrossRef]
- Ataei Kachouei, M.; Kaushik, A.; Ali, M.A. Internet of things-enabled food and plant sensors to empower sustainability. Adv. Intell. Syst. 2023, 5, 2300321. [Google Scholar] [CrossRef]
- HALY.ID. Using Artificial Intelligence to Monitor Invasive Insect Species in Europe. A Collaborative European Research of Tyndall National Institute and Teagasc. 2023. Available online: https://www.teagasc.ie/news--events/daily/other/using-artificial-intelligence-to-monitor-invasive-insect-species-in-europe.php? (accessed on 28 April 2025).
- Ansari, R.; Manna, A.; Hazra, S.; Bose, S.; Chatterjee, A.; Sen, P. Breeding 4.0 vis-à-vis application of artificial intelligence (ai) in crop improvement: An overview. N. Z. J. Crop Hortic. Sci. 2024, 1–43. [Google Scholar] [CrossRef]
- Terrence, S.; Siddiq, K.; John, Y.; Ann, F.M.; Kelley, M.; Don, H.; Richard, E.; Elizabeth, Z. A preliminary assessment of hyperspectral remote sensing technology for mapping submerged aquatic vegetation in the upper Delaware River National Parks (USA). Adv. Remote Sens. 2018, 7, 290–312. [Google Scholar] [CrossRef]
- Rajak, P.; Ganguly, A.; Adhikary, S.; Bhattacharya, S. Internet of things and smart sensors in agriculture: Scopes and challenges. J. Agric. Food Res. 2023, 14, 100776. [Google Scholar] [CrossRef]
- Nahiyoon, S.A.; Ren, Z.; Wei, P.; Li, X.; Li, X.; Xu, J.; Yan, X.; Yuan, H. Recent development trends in plant protection UAVs: A journey from conventional practices to cutting-edge technologies—A comprehensive review. Drones 2024, 8, 457. [Google Scholar] [CrossRef]
- Gautam, D.; Mawardi, Z.; Elliott, L.; Loewensteiner, D.; Whiteside, T.; Brooks, S. Detection of invasive species (Siam weed) using drone-based imaging and yolo deep learning model. Remote Sens. 2025, 17, 120. [Google Scholar] [CrossRef]
- Singh, K.K.; Surasinghe, T.D.; Frazier, A.E. Systematic review and best practices for drone remote sensing of invasive plants. Methods Ecol. Evol. 2024, 15, 998–1015. [Google Scholar] [CrossRef]
- Zarei, M.; Lee, G.; Lee, S.G.; Cho, K. Advances in biodegradable electronic skin: Material progress and recent applications in sensing, robotics, and human–machine interfaces. Adv. Mater. 2023, 35, 2203193. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.A. Endless Ecosystems Designing a World Without Waste. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2023. [Google Scholar]
- Barbinta-Patrascu, M.-E.; Bita, B.; Negut, I. From nature to technology: Exploring the potential of plant-based materials and modified plants in biomimetics, bionics, and green innovations. Biomimetics 2024, 9, 390. [Google Scholar] [CrossRef] [PubMed]
- Bharti, A.; Jain, U.; Chauhan, N. From lab to field: Nano-biosensors for real-time plant nutrient tracking. Plant Nano Biol. 2024, 9, 100079. [Google Scholar] [CrossRef]
- Li, X.H.; Li, M.Z.; Li, J.Y.; Gao, Y.Y.; Liu, C.R.; Hao, G.F. Wearable sensor supports in-situ and continuous monitoring of plant health in precision agriculture era. Plant Biotechnol. J. 2024, 22, 1516–1535. [Google Scholar] [CrossRef]
- Coatsworth, P.; Gonzalez-Macia, L.; Collins, A.S.P.; Bozkurt, T.; Güder, F. Continuous monitoring of chemical signals in plants under stress. Nat. Rev. Chem. 2023, 7, 7–25. [Google Scholar] [CrossRef]
- Ehiagwina, F.O.; Kehinde, O.O.; Iromin, N.; Nafiu, A.S.; Punetha, D. Ultra-low power wireless sensor networks: Overview of applications, design requirements and challenges. ABUAD J. Eng. Res. Dev. 2018, 1, 331–345. [Google Scholar]
- Xiao, H.; Li, M.; Ohad, N.; Hao, G.-F. Genetically encoded biosensors for spatiotemporal monitoring of plant proteins in growth and stress responses. Adv. Agrochem. 2025; in press, corrected proof. [Google Scholar] [CrossRef]
- Ferrari, E.; Palma, C.; Vesentini, S.; Occhetta, P.; Rasponi, M. Integrating biosensors in organs-on-chip devices: A perspective on current strategies to monitor microphysiological systems. Biosensors 2020, 10, 110. [Google Scholar] [CrossRef]
- Gill, S.S.; Xu, M.; Ottaviani, C.; Patros, P.; Bahsoon, R.; Shaghaghi, A.; Golec, M.; Stankovski, V.; Wu, H.; Abraham, A. AI for next generation computing: Emerging trends and future directions. Internet Things 2022, 19, 100514. [Google Scholar] [CrossRef]
- Dhanaraju, M.; Chenniappan, P.; Ramalingam, K.; Pazhanivelan, S.; Kaliaperumal, R. Smart farming: Internet of things (IoT)-based sustainable agriculture. Agriculture 2022, 12, 1745. [Google Scholar] [CrossRef]
- García, L.; Parra, L.; Jimenez, J.M.; Lloret, J.; Lorenz, P. IoT-based smart irrigation systems: An overview on the recent trends on sensors and IoT systems for irrigation in precision agriculture. Sensors 2020, 20, 1042. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo-Bueno, I.; Moraga, J.; Cantoral, J.M.; Carbú, M.; Garrido, C.; González-Rodríguez, V.E. Smart viniculture: Applying artificial intelligence for improved winemaking and risk management. Appl. Sci. 2024, 14, 10277. [Google Scholar] [CrossRef]
- Verma, N.V.; Shukla, M.; Kulkarni, R.; Srivastava, K.; Claudic, B.; Savara, J.; Joseph Mathew, M.; Maurya, R.; Bhattacharjee, G.; Singh, V. Emerging extraction and diagnostic tools for detection of plant pathogens: Recent trends, challenges, and future scope. ACS Agric. Sci. Technol. 2022, 2, 858–881. [Google Scholar] [CrossRef]
- Zain, M.; Ma, H.; Nuruzzaman, M.; Chaudhary, S.; Nadeem, M.; Shakoor, N.; Azeem, I.; Duan, A.; Sun, C.; Ahamad, T. Nanotechnology based precision agriculture for alleviating biotic and abiotic stress in plants. Plant Stress. 2023, 10, 100239. [Google Scholar] [CrossRef]
- Mtyobila, V.E. Modelling the Spatial Distribution of Lantana camara in the Inkomati Catchment in Mpumalanga, South Africa; University of the Witwatersrand: Johannesburg, South Africa, 2023. [Google Scholar]
- Mbatha, S.K. Parthenium hysterophorus Distribution and Efficacy of Control in Hluhluwe-Imfolozi Park, Northern KwaZulu-Natal. AGRIS—International System for Agricultural Science and Technology. 2020. Available online: https://researchspace.ukzn.ac.za/handle/10413/19559 (accessed on 20 April 2025).
- Yuan, H.; Song, M.; Liu, Y.; Xie, Q.; Cao, W.; Zhu, Y.; Ni, J. Field phenotyping monitoring systems for high-throughput: A survey of enabling technologies, equipment, and research challenges. Agronomy 2023, 13, 2832. [Google Scholar] [CrossRef]
- Patel, D.H.; Shah, K.P.; Gupta, R.; Jadav, N.K.; Tanwar, S.; Neagu, B.C.; Attila, S.; Alqahtani, F.; Tolba, A. Blockchain-based crop recommendation system for precision farming in IoT environment. Agronomy 2023, 13, 2642. [Google Scholar] [CrossRef]
- Wang, Y.; Gu, X.; Zhao, L.; Zhou, D. Nanozymes: An innovative approach to regulating heavy metal accumulation in plants and alleviating toxicity-a comprehensive review. Crit. Rev. Environ. Sci. Technol. 2024, 55, 1–25. [Google Scholar] [CrossRef]
- Mittal, D.; Kaur, G.; Singh, P.; Yadav, K.; Ali, S.A. Nanoparticle-based sustainable agriculture and food science: Recent advances and future outlook. Front. Nanotechnol. 2020, 2, 579954. [Google Scholar] [CrossRef]
- da Cunha, V.A.G.; Hariharan, J.; Ampatzidis, Y.; Roberts, P.D. Early detection of tomato bacterial spot disease in transplant tomato seedlings utilizing remote sensing and artificial intelligence. Biosyst. Eng. 2023, 234, 172–186. [Google Scholar] [CrossRef]
- Gatou, P.; Tsiara, X.; Spitalas, A.; Sioutas, S.; Vonitsanos, G. Artificial intelligence techniques in grapevine research: A comparative study with an extensive review of datasets, diseases, and techniques evaluation. Sensors 2024, 24, 6211. [Google Scholar] [CrossRef]
- Aldea, J.; del Río, M.; Cattaneo, N.; Riofrío, J.; Ordóñez, C.; Uzquiano, S.; Bravo, F. Short-term thinning effect on inter-and intra-annual radial increment of Mediterranean scots pine-oak mixed forest. bioRxiv 2023. bioRxiv:2023.06.22.546107. [Google Scholar] [CrossRef]
- Hernanda, R.A.P.; Lee, H.; Cho, J.-I.; Kim, G.; Cho, B.-K.; Kim, M.S. Current trends in the use of thermal imagery in assessing plant stresses: A review. Comput. Electron. Agric. 2024, 224, 109227. [Google Scholar] [CrossRef]
- Zhou, Z.; Majeed, Y.; Naranjo, G.D.; Gambacorta, E.M. Assessment for crop water stress with infrared thermal imagery in precision agriculture: A review and future prospects for deep learning applications. Comput. Electron. Agric. 2021, 182, 106019. [Google Scholar] [CrossRef]
- Pu, R. Detecting and mapping invasive plant species using hyperspectral data. In Biophysical and Biochemical Characterization and Plant Species Studies; CRC Press: Boca Raton, FL, USA, 2018; pp. 255–273. [Google Scholar]
- Sheffield, K.J.; Clements, D.; Clune, D.J.; Constantine, A.; Dugdale, T.M. Detection of aquatic alligator weed (Alternanthera philoxeroides) from aerial imagery using random forest classification. Remote Sens. 2022, 14, 2674. [Google Scholar] [CrossRef]
- Oletic, D.; Bilas, V. How thirsty the crops are: Emerging instrumentation for plant-based field measurement of water stress. IEEE Instrum. Meas. Mag. 2020, 23, 37–46. [Google Scholar] [CrossRef]
- Suárez, J.C.; Vanegas, J.I.; Anzola, J.A.; Contreras, A.T.; Urban, M.O.; Beebe, S.E.; Rao, I.M. Impact of web blight on photosynthetic performance of an elite common bean line in the western Amazon region of Colombia. Plants 2022, 11, 3238. [Google Scholar] [CrossRef]
- Nguyen, D. Application of Modern Trait Mapping Methods to Explore the Genetic Control of Plant Vigour in Chickpea (Cicer arietinum L.). Ph.D. Thesis, The University of Western Australia, Perth, WA, Australia, 2022. [Google Scholar]
- Viinikka, A.; Hurskainen, P.; Keski-Saari, S.; Kivinen, S.; Tanhuanpää, T.; Mäyrä, J.; Poikolainen, L.; Vihervaara, P.; Kumpula, T. Detecting European aspen (Populus tremula L.) in boreal forests using airborne hyperspectral and airborne laser scanning data. Remote Sens. 2020, 12, 2610. [Google Scholar] [CrossRef]
- Ahmad, Z.; Niyazi, S.; Firdoos, A.; Wang, C.; Manzoor, M.A.; Ramakrishnan, M.; Upadhyay, A.; Ding, Y. Enhancing plant resilience: Nanotech solutions for sustainable agriculture. Heliyon 2024, 10, e40735. [Google Scholar] [CrossRef]
- Keefe, R.F.; Wempe, A.M.; Becker, R.M.; Zimbelman, E.G.; Nagler, E.S.; Gilbert, S.L.; Caudill, C.C. Positioning methods and the use of location and activity data in forests. Forests 2019, 10, 458. [Google Scholar] [CrossRef]
- Mishra, V.; Avtar, R.; Prathiba, A.; Mishra, P.K.; Tiwari, A.; Sharma, S.K.; Singh, C.H.; Chandra Yadav, B.; Jain, K. Uncrewed aerial systems in water resource management and monitoring: A review of sensors, applications, software, and issues. Adv. Civil Eng. 2023, 2023, 3544724. [Google Scholar] [CrossRef]
- Sharpe, S.M.; Martin, S.L.; Page, E.R.; Geddes, C.M. Palmer amaranth (Amaranthus palmeri s. Wats.) and waterhemp (Amaranthus tuberculatus (Moq.) Jd Sauer) biovigilance in Canadian agro-ecosystems. Can. J. Plant Sci. 2024, 104, 277–297. [Google Scholar] [CrossRef]
- Aldwairy, H.R. The Development of Low-Cost Remote Sensing Technology to Monitor Invasive Alien Plant Species: The Case of Japanese Knotweed. Ph.D. Thesis, University of South Wales, Wales, UK, 2024. [Google Scholar]
- Juanes, F. Visual and acoustic sensors for early detection of biological invasions: Current uses and future potential. J. Nat. Conserv. 2018, 42, 7–11. [Google Scholar] [CrossRef]
- Smerdu, A.; Kanjir, U.; Kokalj, Ž. Automatic detection of Japanese knotweed in urban areas from aerial and satellite data. Manag. Biol. Invasions 2020, 11, 661. [Google Scholar] [CrossRef]
- Catala-Roman, P.; Segura-Garcia, J.; Dura, E.; Navarro-Camba, E.A.; Alcaraz-Calero, J.M.; Garcia-Pineda, M. AI-based autonomous UAV swarm system for weed detection and treatment: Enhancing organic orange orchard efficiency with agriculture 5.0. Internet Things 2024, 28, 101418. [Google Scholar] [CrossRef]
- Cook, B. How a Start-Up Is Using High-Tech Methods to Monitor Biodiversity the Sunday Times, 1 London Bridge Street, SE1 9GF. Available online: https://www.thetimes.com/business-money/entrepreneurs/article/environmental-dna-monitoring-how-a-guildford-startup-is-using-high-tech-methods-to-monitor-biodiversity-enterprise-network-ntkd7fvj8?utm_source=chatgpt.com®ion=global (accessed on 20 February 2025).
- Trellis Data. Biosecurity Cameras to Help Detect Foreign Invasive Species Threat Published by Canberra, Canberra (HQ) Level 3, 44 Sydney Ave, Forrest ACT 2603, Sydney, NSW, Adelaide, SA. Available online: https://trellisdata.com/newsroom/biosecurity-cameras-to-help-detect-foreign-invasive-species-threat (accessed on 5 July 2021).
- Wildlife Drones. Invasive Species—Discover How Our Tracking Technology Can Help You. CEAT, Gould Building, Daley Road, Acton, ACT 2601, Australia. Available online: https://wildlifedrones.net/invasive-species-and-pest-animals/?utm (accessed on 25 April 2025).
- Fulcrum. Invasive Species Monitoring, A Mobile APP. 548 Market St, PMB 14914, San Francisco, CA, 94104–95401. Available online: https://www.fulcrumapp.com/apps/invasive-plant-species/?utm (accessed on 25 April 2025).
- Shen, M. Remote Sensing Mapping of the Invasive Plant Species, Kudzu. Ph.D. Thesis, University of Tennessee, Knoxville, TN, USA, 2024. Available online: https://trace.tennessee.edu/utk_graddiss/11388 (accessed on 26 April 2025).
- Baker, C.M.; Blonda, P.; Casella, F.; Diele, F.; Marangi, C.; Martiradonna, A.; Montomoli, F.; Pepper, N.; Tamborrino, C.; Tarantino, C. Using remote sensing data within an optimal spatiotemporal model for invasive plant management: The case of Ailanthus altissima in the Alta Murgia National Park. Sci. Rep. 2023, 13, 14587. [Google Scholar] [CrossRef]
- Monteiro, A.; Santos, S. Sustainable approach to weed management: The role of precision weed management. Agronomy 2022, 12, 118. [Google Scholar] [CrossRef]
- Roslim, M.H.M.; Juraimi, A.S.; Che'Ya, N.N.; Sulaiman, N.; Manaf, M.N.H.A.; Ramli, Z.; Motmainna, M. Using remote sensing and an unmanned aerial system for weed management in agricultural crops: A review. Agronomy 2021, 11, 1809. [Google Scholar] [CrossRef]
- Shaikh, T.A.; Rasool, T.; Lone, F.R. Towards leveraging the role of machine learning and artificial intelligence in precision agriculture and smart farming. Comput. Electron. Agric. 2022, 198, 107119. [Google Scholar] [CrossRef]
- Dawn, N.; Ghosh, T.; Ghosh, S.; Saha, A.; Mukherjee, P.; Sarkar, S.; Guha, S.; Sanyal, T. Implementation of artificial intelligence, machine learning, and internet of things (IoT) in revolutionizing agriculture: A review on recent trends and challenges. Int. J. Exp. Res. Rev. 2023, 30, 190–218. [Google Scholar] [CrossRef]
- Priyadarshini, A.; Dash, S.; Jena, J.; Kusumavathi, K.; Pattnaik, P.; Holderbaum, W. Review of the cutting edge technologies for weed control in field crops. Int. J. Agric. Biol. Eng. 2024, 17, 44–57. [Google Scholar] [CrossRef]
- López-Granados, F.; Torres-Sánchez, J.; De Castro, A.-I.; Serrano-Pérez, A.; Mesas-Carrascosa, F.-J.; Peña, J.-M. Object-based early monitoring of a grass weed in a grass crop using high resolution UAV imagery. Agron. Sustain. Dev. 2016, 36, 1–12. [Google Scholar] [CrossRef]
- Nikolić, N.; Rizzo, D.; Marraccini, E.; Gotor, A.A.; Mattivi, P.; Saulet, P.; Persichetti, A.; Masin, R. Site and time-specific early weed control is able to reduce herbicide use in maize-a case study. Ital. J. Agron. 2021, 16, 1780. [Google Scholar] [CrossRef]
- Zijlstra, C.; Lund, I.; Justesen, A.F.; Nicolaisen, M.; Jensen, P.K.; Bianciotto, V.; Posta, K.; Balestrini, R.; Przetakiewicz, A.; Czembor, E. Combining novel monitoring tools and precision application technologies for integrated high-tech crop protection in the future (a discussion document). Pest Manag. Sci. 2011, 67, 616–625. [Google Scholar] [CrossRef] [PubMed]
- Mensah, B.; Rai, N.; Betitame, K.; Sun, X. Advances in weed identification using hyperspectral imaging: A comprehensive review of platform sensors and deep learning techniques. J. Agric. Food Res. 2024, 18, 101388. [Google Scholar] [CrossRef]
- Esposito, M.; Crimaldi, M.; Cirillo, V.; Sarghini, F.; Maggio, A. Drone and sensor technology for sustainable weed management: A review. Chem. Biol. Technol. Agric. 2021, 8, 1–11. [Google Scholar] [CrossRef]
- Ram, B.G.; Zhang, Y.; Costa, C.; Ahmed, M.R.; Peters, T.; Jhala, A.; Howatt, K.; Sun, X. Palmer amaranth identification using hyperspectral imaging and machine learning technologies in soybean field. Comput. Electron. Agric. 2023, 215, 108444. [Google Scholar]
- dos Santos Ferreira, A.; Freitas, D.M.; da Silva, G.G.; Pistori, H.; Folhes, M.T. Weed detection in soybean crops using convnets. Comput. Electron. Agric. 2017, 143, 314–324. [Google Scholar] [CrossRef]
- Wieme, J.; Mollazade, K.; Malounas, I.; Zude-Sasse, M.; Zhao, M.; Gowen, A.; Argyropoulos, D.; Fountas, S.; Van Beek, J. Application of hyperspectral imaging systems and artificial intelligence for quality assessment of fruit, vegetables and mushrooms: A review. Biosyst. Eng. 2022, 222, 156–176. [Google Scholar] [CrossRef]
- Pringle, S.; Davies, Z.G.; Goddard, M.A.; Dallimer, M.; Hart, E.; Le Goff, L.E.; Langdale, S.J. Robotics and Automated Systems for Environmental Sustainability: Monitoring Terrestrial Biodiversity; Technical report. EPSRC UK-RAS Network 10.31256/WP2023.4; UK-RAS Network: Manchester, UK, 2023. [Google Scholar] [CrossRef]
- Upadhyay, A.; Zhang, Y.; Koparan, C.; Rai, N.; Howatt, K.; Bajwa, S.; Sun, X. Advances in ground robotic technologies for site-specific weed management in precision agriculture: A review. Comput. Electron. Agric. 2024, 225, 109363. [Google Scholar] [CrossRef]
- Bakker, T.; Bontsema, J.; Müller, J. Systematic design of an autonomous platform for robotic weeding. J. Terramechanics 2010, 47, 63–73. [Google Scholar] [CrossRef]
- Nørremark, M.; Griepentrog, H.; Nielsen, J.; Søgaard, H.T. Evaluation of an autonomous GPS-based system for intra-row weed control by assessing the tilled area. Precis. Agric. 2012, 13, 149–162. [Google Scholar] [CrossRef]
- Kunz, C.; Weber, J.F.; Gerhards, R. Benefits of precision farming technologies for mechanical weed control in soybean and sugar beet—Comparison of precision hoeing with conventional mechanical weed control. Agronomy 2015, 5, 130–142. [Google Scholar] [CrossRef]
- Oliveira, L.F.; Moreira, A.P.; Silva, M.F. Advances in agriculture robotics: A state-of-the-art review and challenges ahead. Robotics 2021, 10, 52. [Google Scholar] [CrossRef]
- Langsenkamp, F.; Sellmann, F.; Kohlbrecher, M.; Kielhorn, A.; Strothmann, W.; Michaels, A.; Ruckelshausen, A.; Trautz, D. Tube stamp for mechanical intra-row individual plant weed control. In Proceedings of the 18th World Congress of CIGR, Beijing, China, 16–19 September 2014; pp. 16–19. [Google Scholar]
- Chapman, N.; Jackson, B. Environmentally Conscious Ways to Kill Invasive Plants. Santa Lucia Conservancy, 5240 Carmel Valley Road, Carmel CA 93923. Available online: https://slconservancy.org/2021/08/16/4-environmentally-conscious-ways-to-kill-invasive-plants/ (accessed on 16 August 2021).
- Michez, A.; Piégay, H.; Jonathan, L.; Claessens, H.; Lejeune, P. Mapping of riparian invasive species with supervised classification of unmanned aerial system (UAS) imagery. Int. J. Appl. Earth Obs. Geoinf. 2016, 44, 88–94. [Google Scholar] [CrossRef]
- Lehmann, J.R.; Prinz, T.; Ziller, S.R.; Thiele, J.; Heringer, G.; Meira-Neto, J.A.; Buttschardt, T.K. Open-source processing and analysis of aerial imagery acquired with a low-cost unmanned aerial system to support invasive plant management. Front. Environ. Sci. 2017, 5, 44. [Google Scholar] [CrossRef]
- Takekawa, J.Y.; Hagani, J.S.; Edmunds, T.J.; Collins, J.M.; Chappell, S.C.; Reynolds, W.H. The sky is not the limit: Use of a spray drone for the precise application of herbicide and control of an invasive plant in managed wetlands. Remote Sens. 2023, 15, 3845. [Google Scholar] [CrossRef]
- Lloret, F.; Escudero, A.; Lloret, J.; Valladares, F. An ecological perspective for analyzing rural depopulation and abandonment. People Nat. 2024, 6, 490–506. [Google Scholar] [CrossRef]
- Janus, J.; Bożek, P.; Taszakowski, J.; Doroż, A. Decaying villages in the centre of Europe with no population decline: Long-term analysis using historical aerial images and remote sensing data. Habitat Int. 2022, 121, 102520. [Google Scholar] [CrossRef]
- Ghosh, S.; Yadav, D.K.; Ronanki, S.; Yeasin, M.; Bhargavi, B.; Das, K.; Meena, B.P. Weed Management in Dryland Agriculture. In Enhancing Resilience of Dryland Agriculture Under Changing Climate: Interdisciplinary and Convergence Approaches; Springer: Berlin/Heidelberg, Germany, 2023; pp. 411–440. [Google Scholar]
- Jing, L.; Wang, X.; Zhao, Y.; Li, F.; Su, Y.; Cai, Y.; Zhao, F.; Dong, G.; Yang, L.; Wang, Y. Impact of duckweed (Lemna minor L.) growing in paddy fields on rice yield and its underlying causes. Agronomy 2024, 14, 726. [Google Scholar] [CrossRef]
- Larson, K.B.; Tuor, A.R. Deep learning classification of cheatgrass invasion in the western United States using biophysical and remote sensing data. Remote Sens. 2021, 13, 1246. [Google Scholar] [CrossRef]
- Bibri, S.E.; Krogstie, J.; Kaboli, A.; Alahi, A. Smarter eco-cities and their leading-edge artificial intelligence of things solutions for environmental sustainability: A comprehensive systematic review. Environ. Sci. Ecotechnol. 2024, 19, 100330. [Google Scholar] [CrossRef] [PubMed]
- Martinez, B.; Reaser, J.K.; Dehgan, A.; Zamft, B.; Baisch, D.; McCormick, C.; Giordano, A.J.; Aicher, R.; Selbe, S. Technology innovation: Advancing capacities for the early detection of and rapid response to invasive species. Biol. Invasions 2020, 22, 75–100. [Google Scholar] [CrossRef]
- Luetkemeyer, O. Detecting Invasive Lespedeza cuneata Through 3D Point Cloud Analysis. Master’s Thesis, Southern Illinois University Edwardsville, Edwardsville, IL, USA, 2024. [Google Scholar]
- Edwards, K.R. Lythrum salicaria L. (purple loosestrife). In A Handbook of Global Freshwater Invasive Species; Routledge: Oxfordshire, UK, 2012; pp. 106–117. [Google Scholar]
- Prodanova-Marinova, N.; Staneva, I.; Tsvetanov, E. Competitive relations between young vines and weed species for mineral nutrients uptake in the nursery. Bulg. J. Agric. Sci. 2023, 29, 458. [Google Scholar]
Sensor Type | Application in Field | Data Collected | Data Collection Method | Studied Crop/Plant/Species | References |
---|---|---|---|---|---|
Biosensors | Detect plant diseases, stress responses, and allelopathic interactions. | Enzyme activity, secondary metabolites, stress markers | Embedded microchips with biochemical detection, wireless transmission | Zea mays L. (Maize), Oryza sativa L. (Rice) | [42] |
GPS Sensors | Track the movement and spread of invasive plant species. | Geolocation, plant movement patterns | GPS-embedded chips, satellite-based tracking. | Parthenium hysterophorus L., Lantana camara L | [43,44] |
IoT-Based Smart Sensors | Monitor soil parameters for precision agriculture. | Soil moisture, temperature, pH, salinity, humidity | Wireless IoT network, real-time monitoring. | Triticum aestivum L. (Wheat), Gossypium hirsutum L. (Cotton) | [45,46] |
Electrochemical Sensors | Measure soil nutrient levels and heavy metal contamination. | pH, nitrogen, phosphorus, potassium levels, contaminants. | Integrated electrochemical probes, automated soil analysis | Brassica napus L. (Canola), Glycine max (L.) Merr. (Soybean) | [47,48] |
AI-Integrated Image Sensors | Identify plant diseases and classify species using machine learning. | Leaf shape, disease symptoms, chlorophyll content | AI-driven image analysis, UAV and drone-based monitoring | Solanum lycopersicum L. (Tomato), Vitis vinifera L. (Grapevine) | [49,50] |
Dendrometers | Monitor tree and shrub growth rates. | Stem diameter, biomass accumulation | Sensor-equipped microchips attached to plant stems. | Quercus robur L. (Oak), Pinus sylvestris L. (Scots Pine) | [51] |
Thermal Infrared Sensors | Detect plant stress and drought conditions. | Leaf temperature, transpiration rates, canopy stress | UAV-based infrared thermography, real-time heat mapping | Citrus × sinensis (L.) Osbeck. (Orange), Capsicum annuum L. (Pepper) | [52,53] |
Hyperspectral Sensors | Differentiate between native and invasive species based on spectral signatures. | Reflectance indices, vegetation health data | UAV and satellite-based spectral imaging. | Alternanthera philoxeroides (Mart.) Griseb. (Alligator weed) | [54,55] |
Microfluidic Sensors | Analyze plant sap flow, water use efficiency | Xylem conductivity, nutrient transport rates | Embedded chip with microfluidic flow analysis | Woody plants | [56] |
Chlorophyll Fluorescence Sensors | Detect photosynthetic efficiency and plant health | Fv/Fm ratio, electron transport rate | Portable fluorescence imaging, automated leaf-level analysis | Phaseolus vulgaris L. (Common bean), Coffea arabica L. (Coffee) | [57] |
Drones with Multispectral Cameras | Conduct large-scale monitoring of crop health and invasive weeds | NDVI, LAI, canopy cover, disease identification | UAV-based remote sensing, automated GIS mapping | Cicer arietinum L. (Chickpea) | [58] |
LIDAR Sensors | Assess plant canopy structure, biomass estimation | Canopy height, vegetation density | Airborne LIDAR scanning, 3D mapping | Populus tremuloides Michx., Eucalyptus globulus Labill | [59] |
Nano-Sensors | Detect chemical stressors, pollutant levels in soil and plants | Heavy metals, pesticide residues, soil contamination | Nanoscale biosensor technology, colorimetric detection | Zea mays L. (Maize), Nicotiana tabacum L. (Tobacco) | [60] |
Radio Frequency Identification (RFID) Sensors | Track movements of fishes | Identification tags, plant movement patterns | RFID-embedded plant tracking, real-time monitoring | Fishes | [61] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Javed, Q.; Bouhadi, M.; Ban, S.G.; Ban, D.; Heath, D.; Iqbal, B.; Sun, J.; Černe, M. Smart Chip Technology for the Control and Management of Invasive Plant Species: A Review. Plants 2025, 14, 1510. https://doi.org/10.3390/plants14101510
Javed Q, Bouhadi M, Ban SG, Ban D, Heath D, Iqbal B, Sun J, Černe M. Smart Chip Technology for the Control and Management of Invasive Plant Species: A Review. Plants. 2025; 14(10):1510. https://doi.org/10.3390/plants14101510
Chicago/Turabian StyleJaved, Qaiser, Mohammed Bouhadi, Smiljana Goreta Ban, Dean Ban, David Heath, Babar Iqbal, Jianfan Sun, and Marko Černe. 2025. "Smart Chip Technology for the Control and Management of Invasive Plant Species: A Review" Plants 14, no. 10: 1510. https://doi.org/10.3390/plants14101510
APA StyleJaved, Q., Bouhadi, M., Ban, S. G., Ban, D., Heath, D., Iqbal, B., Sun, J., & Černe, M. (2025). Smart Chip Technology for the Control and Management of Invasive Plant Species: A Review. Plants, 14(10), 1510. https://doi.org/10.3390/plants14101510