Sugar and Free Amino Acid Contents in Winter Wheat Flour Under Fusarium Head Blight Treatment and Natural Infection
Abstract
:1. Introduction
2. Results
2.1. General and Type I Resistance
2.2. Sugars Under FHB and Naturally Infected Treatment
2.3. Free Amino Acid Level Under FHB Treatment and Natural Infection
2.4. Correlation Analysis of Investigated Traits
3. Discussion
3.1. Sugar Changes in Flour with Fusarium Infection
3.1.1. Fructose and Glucose
3.1.2. Maltose, Total Sugars, and Total Reducing Sugars
3.2. Free Amino Acid Content Fluctuations in Flour with Fusarium Infection
3.2.1. Non-Essential Amino Acids in FHB-Susceptible Varieties
3.2.2. Essential Amino Acids in FHB-Susceptible Varieties
3.2.3. Amino Acid Content in Relation to FHB Resistance
3.3. Correlation of FHB Resistance with Sugar and Free Amino Acid Content
4. Materials and Methods
4.1. Field Experiment
4.2. Inoculum Production and Inoculation
4.3. Disease Assessment
4.4. Analytical Procedures
4.4.1. Analysis of Sugars
4.4.2. Analysis of Free Amino Acids
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Leonard, K.J.; Bushnell, W.R. Fusarium Head Blight of Wheat and Barley; APS Press: St. Paul, MN, USA, 2003; p. 512. [Google Scholar]
- McMullen, M.G.; Bergstrom, E.; De Wolf, R.; Dill-Macky, D.; Hershamn, G.; Shaner, D.; Van Sanford, D. A unified effort to fight an enemy of wheat and barley: Fusarium Head Blight. Plant Dis. 2012, 96, 1712–1728. [Google Scholar] [CrossRef] [PubMed]
- Somma, S.; Petruzzella, A.M.; Logrieco, A.F.; Meca, G.; Cacciola, S.O.; Moretti, A. Phylogenetic analysis of Fusarium graminearum strains from cereals in Italy, and characterisation of their molecular and chemical chemotypes. Crop Pature Sci. 2014, 65, 52–60. [Google Scholar] [CrossRef]
- Beccari, G.; Prodi, A.; Senatore, M.T.; Balmas, V.; Tini, F.; Onofri, A.; Pedini, L.; Sulyok, M.; Brocca, L.; Covarelli, L. Cultivation area affects the presence of fungal communities and secondary metabolites in Italian durum wheat grains. Toxins 2020, 12, 97. [Google Scholar] [CrossRef] [PubMed]
- Pancaldi, D.; Tonti, S.; Prodi, A.; Salomoni, D.; Dal Prà, M.; Nipoti, P.; Alberti, I.; Pisi, A. Survey of the main causal agents of Fusarium head blight of durum wheat around Bologna, northern Italy. Phytopathol. Mediterr. 2010, 49, 258–266. [Google Scholar]
- Petrovic, I.; Vucajnk, F.; Spanic, V. Detection of Fusarium head blight in wheat using NDVI from multispectral UAS measurements and its correlation with DON contamination. Agric. Eng. 2025, 7, 37. [Google Scholar] [CrossRef]
- Vucajnk, F.; Spanic, V.; Trdan, S.; Kosir, I.J.; Ocvirk, M.; Vidrih, M. Performance of symmetric double flat fan nozzles against Fusarium head blight in durum wheat. Agriculture 2024, 14, 343. [Google Scholar] [CrossRef]
- Stenglein, S.A.; Dinolfo, M.I.; Barros, G.; Bongiorno, F.; Chulze, S.N.; Moreno, M.V. Fusarium poae pathogenicity and mycotoxin accumulation on selected wheat and barley genotypes at a single location in Argentina. Plant Dis. 2014, 98, 1733–1738. [Google Scholar] [CrossRef]
- Sunic, K.; Brkljacic, L.; Vukovic, R.; Katanic, Z.; Salopek-Sondi, B.; Spanic, V. Fusarium head blight infection induced responses of six winter wheat varieties in ascorbate–glutathione pathway, photosynthetic efficiency and stress hormones. Plants 2023, 12, 3720. [Google Scholar] [CrossRef]
- Powell, A.J.; Vujanovic, V. Evolution of Fusarium head blight management in wheat: Scientific perspectives on biological control agents and crop genotypes protocooperation. Appl. Sci. 2021, 11, 8960. [Google Scholar] [CrossRef]
- Buerstmayr, M.; Steiner, B.; Buerstmayr, H. Breeding for Fusarium head blight resistance in wheat-progress and challenges. Plant Breed. 2020, 139, 429–454. [Google Scholar] [CrossRef]
- Maričević, M.; Španić, V.; Bukan, M.; Rajković, B.; Šarčević, H. Diallel analysis of wheat resistance to Fusarium head blight and mycotoxin accumulation under conditions of artificial inoculation and natural infection. Plants 2024, 13, 1022. [Google Scholar] [CrossRef] [PubMed]
- Bentivenga, G.; Spina, A.; Ammar, K.; Allegra, M.; Cacciola, S.O. Screening of durum wheat (Triticum turgidum L. subsp. durum (Desf.) Husn.) Italian cultivars for susceptibility to Fusarium Head Blight incited by Fusarium graminearum. Plants 2021, 10, 68. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, H.W.; Christensen, J.J.; Christensen, J.D.; Platz-Christensen, J.; Schroeder, H.W. Factors affecting resistance of wheat to scab caused by Gibberella zeae. Phytopathology 1963, 53, 831–838. [Google Scholar]
- Miller, D.J. Degradation of deoxynivalenol by suspension cultures of the Fusarium head blight resistant wheat cultivar Frontana. Can. J. Plant Pathol. 1986, 8, 147–150. [Google Scholar] [CrossRef]
- Mesterhazy, A. Types and components of resistance to Fusarium head blight of wheat. Plant Breed. 1995, 114, 377–386. [Google Scholar] [CrossRef]
- Mesterházy, Á.; Bartók, T.; Mirocha, C.G.; Komoroczy, R. Nature of wheat resistance to Fusarium head blight and the role of deoxynivalenol for breeding. Plant Breed. 1999, 118, 97–110. [Google Scholar] [CrossRef]
- Oliveira, P.M.; Waters, D.M.; Arendt, E.K. The impact of Fusarium culmorum infection on the protein fractions of raw barley and malted grains. Appl. Microbiol. Biotechnol. 2013, 97, 2053–2065. [Google Scholar] [CrossRef]
- Goswami, R.; Kistler, H. Heading for disaster: Fusarium graminearum on cereal crops. Mol. Plant Pathol. 2004, 5, 515–525. [Google Scholar] [CrossRef]
- Eggert, K.; Rawel, H.M.; Pawelzik, E. In vitro degradation of wheat gluten fractions by Fusarium graminearum proteases. Eur. Food Res. Technol. 2011, 233, 697–705. [Google Scholar] [CrossRef]
- Peršić, V.; Božinović, I.; Varnica, I.; Babić, J.; Španić, V. Impact of Fusarium head blight on wheat flour quality: Examination of protease activity, technological quality and rheological properties. Agronomy 2023, 13, 662. [Google Scholar] [CrossRef]
- Himani, P.; Madan, S. Analysis of carbohydrate changes in durum wheat (Triticum durum L.) genotypes. Int. J. Chem. Stud. 2018, 6, 1951–1954. [Google Scholar]
- Lojkova, L.; Vranová, V.; Formánek, P.; Drápelová, I.; Brtnicky, M.; Datta, R. Enantiomers of carbohydrates and their role in ecosystem interactions: A review. Symmetry 2020, 12, 470. [Google Scholar] [CrossRef]
- Mochizuki, K.; Ishiyama, S.; Hariya, N.; Goda, T. Regulation of carbohydrate-responsive metabolic genes by histone acetylation and the acetylated histone reader BRD4 in the gene body region. Front. Mol. Biosci. 2021, 8, 682–696. [Google Scholar] [CrossRef] [PubMed]
- Aoki, N.; Scofield, G.N.; Wang, X.D.; Offler, C.E.; Patrick, J.W.; Furbank, R.T. Pathway of sugar transport in germinating wheat seeds. Plant Physiol. 2006, 141, 1255–1263. [Google Scholar] [CrossRef] [PubMed]
- Sami, F.; Yusuf, M.; Faizan, M.; Faraz, A.; Hayat, S. Role of sugars under abiotic stress. Plant Physiol. Biochem. 2016, 109, 54–61. [Google Scholar] [CrossRef] [PubMed]
- D’Appolonia, B.L.; Rayas-Duarte, P. Wheat carbohydrates: Structure and functionality. In Wheat: Production, Properties and Quality; Springer: Boston, MA, USA, 1994; pp. 107–127. [Google Scholar]
- Chernova, A.I.; Gubaev, R.F.; Singh, A.; Sherbina, K.; Goryunova, S.V.; Martynova, E.U.; Goryunov, D.V.; Boldyrev, S.V.; Vanyushkina, A.A.; Anikanov, N.A.; et al. Genotyping and lipid profiling of 601 cultivated sunflower lines reveals novel genetic determinants of oil fatty acid content. BMC Genom. 2021, 22, 505. [Google Scholar] [CrossRef]
- Siddiqi, R.A.; Singh, T.P.; Rani, M.; Sogi, D.S.; Bhat, M.A. Diversity in grain, flour, amino acid composition, protein profiling, and proportion of total flour proteins of different wheat cultivars of North India. Front. Nutr. 2020, 7, 141. [Google Scholar] [CrossRef]
- Gardiner, D.M.; Kazan, K.; Manners, J.M. Nutrient profiling reveals potent inducers of trichothecene biosynthesis in Fusarium graminearum. Fungal Genet. Biol. 2009, 46, 604–613. [Google Scholar] [CrossRef]
- Gardiner, D.M.; Kazan, K.; Praud, S.; Torney, F.J.; Rusu, A.; Manners, J.M. Early activation of wheat polyamine biosynthesis during Fusarium head blight implicates putrescine as an inducer of trichothecene mycotoxin production. BMC Plant Biol. 2010, 10, 289. [Google Scholar] [CrossRef]
- Warth, B.; Parich, A.; Bueschl, C.; Schoefbeck, D.; Neumann, N.K.; Kluger, B.; Schuster, K.; Krska, R.; Adam, G.; Lemmens, M.; et al. GC-MS based targeted metabolic profiling identifies changes in the wheat metabolome following deoxynivalenol treatment. Metabolomics 2015, 11, 722–738. [Google Scholar] [CrossRef]
- Zhao, P.; Gu, S.; Han, C.; Lu, Y.; Ma, C.; Tian, J.; Bi, J.; Deng, Z.; Wang, Q.; Xu, Q. Targeted and untargeted metabolomics profiling of wheat reveals amino acids increase resistance to Fusarium head blight. Front. Plant Sci. 2021, 12, 762605. [Google Scholar] [CrossRef]
- Barampouti, E.M.; Mai, S.; Moustakas, K.; Malamis, D.; Loizidou, M. Chapter 3—Status and perspectives of agricultural residues in a circular and resource-efficient context. In Clean Energy and Resources Recovery; Elsevier: Amsterdam, The Netherlands, 2021; pp. 49–102. [Google Scholar]
- Spanic, V.; Dvojkovic, K.; Babic, J.; Drezner, G.; Zdunic, Z. Fusarium head blight infestation in relation to winter wheat end-use quality-a three-year study. Agronomy 2021, 11, 1648. [Google Scholar] [CrossRef]
- Laze, A.; Arapi, V.; Ceca, E.; Gusho, K.; Pezo, L.; Brahushi, F.; Kneževic, D. Chemical composition and amino acid content in different genotypes of wheat flour. Period. Polytech. Chem. Eng. 2019, 63, 618–628. [Google Scholar] [CrossRef]
- Spanic, V.; Vukovic, A.; Cseplo, M.; Vukovic, R.; Buchvaldt, D.A.; Westergaard, J.C.; Puskas, K.; Roitsch, T. Early leaf responses of cell physiological and sensor-based signatures reflect susceptibility of wheat seedlings to infection by leaf rust. Physiol. Plant. 2023, 4, e13990. [Google Scholar] [CrossRef]
- Junnan, W.; Xiaoxi, W.; Sen, M. Study on Changes in the characteristics of key carbohydrates in wheat during the after-ripening period. Grain Oil Sci. Technol. 2018, 1, 15–19. [Google Scholar]
- Codină, G.G.; Mironeasa, S.; Voica, D.V.; Mironeasa, C. Multivariate analysis of wheat flour dough sugars, gas production, and dough development at different fermentation times. Czech J. Food Sci. 2013, 31, 222–229. [Google Scholar] [CrossRef]
- Magliano, T.M.A.; Kikot, G.E. Fungal infection and disease progression. Fusarium spp. enzymes associated with pathogenesis and loss of commercial value of wheat grains. Fusarium Head Blight Lat. Am. 2013, 99–122. [Google Scholar]
- Žilić, S.; Dodig, D.; Basić, Z.; Vančetović, J.; Titan, P.; Đurić, N.; Tolimir, N. Free asparagine and sugars profile of cereal species: The potential of cereals for acrylamide formation in foods. Food Additives and Contaminants. Chem. Anal. Control Expo. Risk Assess. 2017, 34, 705–713. [Google Scholar]
- Nishanth, M.; Sheshadri, S.; Rathore, S.S.; Srinidhi, S.; Simon, B. Expression analysis of cell wall invertase under abiotic stress conditions influencing specialized metabolism in Catharanthus roseus. Sci. Rep. 2018, 8, 15059. [Google Scholar] [CrossRef]
- Kim, K.H.; Kim, J.Y. Understanding wheat starch metabolism in properties, environmental stress condition, and molecular approaches for value-added utilization. Plants 2021, 10, 2282. [Google Scholar] [CrossRef]
- Seung, D. Amylose in starch: Towards an understanding of biosynthesis, structure and function. New Phytol. 2020, 228, 1490–1504. [Google Scholar] [CrossRef] [PubMed]
- Saddhe, A.A.; Manuka, R.; Penna, S. Plant sugars: Homeostasis and transport under abiotic stress in plants. Physiol. Plant 2021, 171, 739–755. [Google Scholar] [CrossRef] [PubMed]
- Tahmasebi, A.; Roach, T.; Shin, S.Y.; Lee, C.W. Fusarium solani infection disrupts metabolism during the germination of roselle (Hibiscus sabdariffa L.) seeds. Front Plant Sci. 2023, 14, 1225426. [Google Scholar] [CrossRef]
- Acs, K.; Varga, M.; Szekeres, A.; Salgo, A.; Lantos, C.; Bekes, F.; Pauk, J.; Mesterhazy, A. Alteration of carbohydrate metabolism in Fusarium infected wheat kernels treated with fungicides and its relation to baking technological parameters and deoxynivalenol contamination. Agriculture 2023, 13, 868. [Google Scholar] [CrossRef]
- Singletary, G.W. Starch synthesis and grain filling in wheat. In Carbohydrate Reserves in Plants–Synthesis and Regulation, 1st ed.; Gupta, A.K., Kaur, N., Eds.; Elsevier Science: Amsterdam, The Netherlands, 2000; pp. 79–105. [Google Scholar]
- Biemelt, S.; Sonnewald, U. Plant-microbe interactions to probe regulation of plant carbon metabolism. J. Plant Physiol. 2006, 163, 307–318. [Google Scholar] [CrossRef]
- Breia, R.; Conde, A.; Badim, H.; Fortes, A.M.; Gerós, H.; Granell, A. Plant SWEETs: From sugar transport to plant-pathogen interaction and more unexpected physiological roles. Plant Physiol. 2021, 186, 836–852. [Google Scholar] [CrossRef]
- Berger, S.; Sinha, A.K.; Roitsch, T. Plant physiology meets phytopathology: Plant primary metabolism and plant–pathogen interaction. J. Exp. Bot. 2007, 58, 4019–4026. [Google Scholar] [CrossRef]
- Beyer, M.; Aumann, J. Effects of Fusarium infection on the amino acid composition of winter wheat grain. Food Chem. 2008, 111, 750–754. [Google Scholar] [CrossRef]
- Pratelli, R.; Pilot, G. Regulation of amino acid metabolic enzymes and transporters in plants. J. Exp. Bot. 2014, 65, 5535–5556. [Google Scholar] [CrossRef]
- Norero, N.S.; Rey Burusco, M.F.; D’Ippólito, S.; Décima Oneto, C.A.; Massa, G.A.; Castellote, M.A.; Feingold, S.E.; Guevara, M.G. Genome-wide analyses of aspartic proteases on potato genome (Solanum tuberosum): Generating new tools to improve the resistance of plants to abiotic stress. Plants 2022, 11, 544. [Google Scholar] [CrossRef]
- Li, Y.; Shi, W.; Zhang, W. Vibrio splendidus AJ01 promotes pathogenicity via L-glutamic acid. Microorganisms 2023, 11, 2333. [Google Scholar] [CrossRef] [PubMed]
- Deuel, T.F.; Prusiner, S. Regulation of glutamine synthetase from Bacillus subtilis by divalent cations, feedback inhibitors, and L-glutamine. J. Biol. Chem. 1974, 249, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Wang, Y.; Zhang, Z.; Liu, X.; Li, C.; Ma, F. Arginine increases tolerance to nitrogen deficiency in Malus hupehensis via alterations in photosynthetic capacity and amino acids metabolism. Front. Plant Sci. 2022, 12, 772086. [Google Scholar] [CrossRef]
- Oddy, J.; Alarcón-Reverte, R.; Wilkinson, M.; Ravet, K.; Raffan, S.; Minter, A.; Mead, A.; Elmore, J.S.; de Almeida, I.M.; Cryer, N.C.; et al. Reduced free asparagine in wheat grain resulting from a natural deletion of TaASN-B2: Investigating and exploiting diversity in the asparagine synthetase gene family to improve wheat quality. BMC Plant Biol. 2021, 21, 302. [Google Scholar] [CrossRef] [PubMed]
- Žilić, S.; Gürsul, A.I.; Dodig, D.; Filipović, M.; Gökmen, V. Acrylamide formation in biscuits made of different whole grain flours depending on their free asparagine content and baking conditions. Int. Food Res. 2020, 132, 109109. [Google Scholar] [CrossRef]
- Mottram, D.S.; Wedzicha, B.L.; Dodson, A.T. Acrylamide is formed in the Maillard reaction. Nature 2002, 419, 448–449. [Google Scholar] [CrossRef]
- Oddy, J.; Raffan, S.; Wilkinson, M.D.; Elmore, J.S.; Halford, N.G. Understanding the relationships between free asparagine in grain and other traits to breed low-asparagine wheat. Plants 2022, 11, 669. [Google Scholar] [CrossRef]
- Rousta, N.; Larsson, K.; Fristedt, R.; Undeland, I.; Agnihotri, S.; Mohammad, J. Taherzadeh production of fungal biomass from oat flour for the use as a nutritious food source. NFS J. 2022, 29, 8–15. [Google Scholar] [CrossRef]
- Cuperlovic-Culf, M.; Wang, L.; Forseille, L.; Boyle, K.; Merkley, N.; Burton, I.; Fobert, P.R. Metabolic biomarker panels of response to Fusarium head blight infection in different wheat varieties. PLoS ONE 2016, 11, e0153642. [Google Scholar] [CrossRef]
- Yan, L.; Yang, X.; Sun, Z.; Du, J.; Pu, X.; Yang, J.; Zeng, Y. Analysis and mapping quantitative trait loci for histidine content in barley (Hordeum vulgare L.) using microsatellite markers. Genet. Resour. Crop. Evol. 2021, 68, 2107–2118. [Google Scholar] [CrossRef]
- Zhou, Q.; Jiang, D.; Dai, T.B.; Jing, Q.; Cao, W.X. Effect of glutamine on content of starch, protein and potein components in grains of in vitro-cultured wheat spikes. Chin. Bull. Bot. 2005, 22, 549–554. [Google Scholar]
- Li, G.; Zhou, J.; Jia, H.; Gao, Z.; Fan, M.; Luo, Y.; Zhao, P.; Xue, S.; Li, N.; Yuan, Y.; et al. Mutation of a histidine-rich calcium-binding-protein gene in wheat confers resistance to Fusarium head blight. Nat. Genet. 2019, 51, 1106–1112. [Google Scholar] [CrossRef]
- Mäkinen, K.; De, S. The significance of methionine cycle enzymes in plant virus infections. Curr. Opin. Plant Biol. 2019, 50, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Tiourebaev, K.S.; Nelson, S.; Zidack, N.K.; Kaleyva, G.T.; Pilgeram, A.L.; Anderson, T.W.; Sands, D.C. Amino acid excretion enhances virulence of bioherbicides. In Proceedings of the X International Symposium on Biological Control of Weeds, Montana State University, Bozeman, MT, USA, 4–14 July 1999. [Google Scholar]
- Pasquet, J.C.; Chaouch, S.; Macadré, C.; Balzergue, S.; Huguet, S.; Martin-Magniette, M.L.; Bellvert, F.; Deguercy, X.; Thareau, V.; Heintz, D.; et al. Differential gene expression and metabolomic analyses of Brachypodium distachyon infected by deoxynivalenol producing and non-producing strains of Fusarium graminearum. BMC Genom. 2014, 15, 629. [Google Scholar] [CrossRef] [PubMed]
- Thapa, G.; Gunupuru, L.R.; Hehir, J.G.; Kahla, A.; Mullins, E.; Doohan, F.M. A pathogen-responsive leucine rich receptor like kinase contributes to Fusarium resistance in cereals. Front. Plant Sci. 2018, 9, 867. [Google Scholar] [CrossRef]
- Kurmanbayeva, M.; Makhatov, Z.; Kusmangazinov, A.; Karabalayeva, D.; Yerezhepova, N. Protein, amino acid and carbohydrate content of fungal treated annual and perennial wheat straw. J. Ecol. Eng. 2023, 24, 235–246. [Google Scholar] [CrossRef]
- Yang, Q.; Zhao, D.; Liu, Q. Connections between amino acid metabolisms in plants: Lysine as an example. Front. Plant Sci. 2020, 11, 928. [Google Scholar] [CrossRef]
- Dong, Y.; Xia, X.; Ahmad, D.; Wang, Y.; Zhang, X.; Wu, L.; Jiang, P.; Zhang, P.; Yang, X.; Li, G.; et al. Investigating the resistance mechanism of wheat varieties to Fusarium head blight using comparative metabolomics. Int. J. Mol. Sci. 2023, 24, 3214. [Google Scholar] [CrossRef]
- Browne, R.A.; Brindle, K.M. H NMR-based metabolite profiling as a potential selection tool for breeding passive resistance against Fusarium head blight (FHB) in wheat. Mol. Plant Pathol. 2007, 8, 401–410. [Google Scholar] [CrossRef]
- Wei, Y.; Xiong, S.; Zhang, Z.; Meng, X.; Wang, L.; Zhang, X.; Yu, M.; Yu, H.; Wang, X.; Ma, X. Localization, gene expression, and functions of glutamine synthetase isozymes in wheat grain (Triticum aestivum L.). Front. Plant Sci. 2021, 9, 580405. [Google Scholar] [CrossRef]
- Spanic, V.; Viljevac Vuletic, M.; Abicic, I.; Marvek, T. Early response of wheat antioxidant system with special reference to Fusarium head blight stress. Plant Physiol. Biochem. 2017, 115, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Morkunas, I.; Ratajczak, L. The role of sugar signaling in plant defense responses against fungal pathogens. Acta Physiol. Plant 2014, 36, 1607–1619. [Google Scholar] [CrossRef]
- Tombari, E.; Salvetti, G.; Ferrari, C.; Johari, G.P. Kinetics and thermodynamics of sucrose hydrolysis from real-time enthalpy and heat capacity measurements. J. Phys. Chem. 2007, 111, 496–501. [Google Scholar] [CrossRef] [PubMed]
- Santana de Almeida, A.C.; Costa de Araújo, L.; Mendes Costa, A.; Moraes de Abreu, C.A.; Gomes de Andrade Lima, M.A.; Perez Fernandez Palha, M.L.A. Sucrose hydrolysis catalyzed by auto-immobilized invertase into intact cells of Cladosporium cladosporioides. Electron. J. Biotechnol. 2005, 8, 54–62. [Google Scholar]
- Loro, M.V.; Carvalho, I.R.; Filho, A.C.; Hoffmann, J.F.; Kehl, K. Wheat grain biofortification for essential amino acids. Pesqui. AgropecuáRia Bras. 2023, 58, e02860. [Google Scholar] [CrossRef]
- Batista-Silva, W.; Heinemann, B.; Rugen, N.; Nunes-Nesi, A.; Araújo, W.L.; Braun, H.P.; Hildebrandt, T.M. The role of amino acid metabolism during abiotic stress release. Plant Cell Environ. 2019, 42, 1630–1644. [Google Scholar] [CrossRef]
- Xu, Q.; Li, Y.; Gao, X.; Kang, K.; Williams, J.G.; Tong, L.; Liu, J.; Ji, M.; Deterding, L.J.; Tong, X.; et al. Hnf4α regulates sulfur amino acid metabolism and confers sensitivity to methionine restriction in liver cancer. Nat. Commun. 2020, 11, 3978. [Google Scholar] [CrossRef]
- Snijders, C.H.A.; Van Eeuwijk, F.A. Genotype X strain interactions for resistance to Fusarium head blight caused by Fusarium culmorum in winter wheat. Theor. Appl. Genet. 1991, 81, 239–244. [Google Scholar] [CrossRef]
- Zadoks, J.C.; Chang, T.T.; Konzac, F.C. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Sunic, K.; Kovac, T.; Loncaric, A.; Babic, J.; Sulyok, M.; Krska, R.; Drezner, G.; Spanic, V. Fusarium secondary metabolite content in naturally produced and artificially provoked FHB pressure in winter wheat. Agronomy 2021, 11, 2239. [Google Scholar] [CrossRef]
- Wang, L.; Xu, R.; Hu, B.; Li, W.; Tu, Y.; Zeng, X. Analysis of free amino acids in Chinese teas and flower of tea plant by high performance liquid chromatography combined with solid-phase extraction. Food Chem. 2010, 123, 1259–1266. [Google Scholar] [CrossRef]
- Sarić, B.; Buđen, M.; Simić, M.; Milovanović, D.; Nikolić, V.; Žilić, S. The effect of sulfur fertilizers on the free asparagine content in wheat grains, its chemical composition and agronomic properties. In Proceedings of the Eucarpia General Congress, Leipzig, Germany, 18–23 August 2024. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Španić, V.; Sarić, B.; Šunić Budimir, K.; Duvnjak, J.; Žilić, S. Sugar and Free Amino Acid Contents in Winter Wheat Flour Under Fusarium Head Blight Treatment and Natural Infection. Plants 2025, 14, 1504. https://doi.org/10.3390/plants14101504
Španić V, Sarić B, Šunić Budimir K, Duvnjak J, Žilić S. Sugar and Free Amino Acid Contents in Winter Wheat Flour Under Fusarium Head Blight Treatment and Natural Infection. Plants. 2025; 14(10):1504. https://doi.org/10.3390/plants14101504
Chicago/Turabian StyleŠpanić, Valentina, Beka Sarić, Katarina Šunić Budimir, Jurica Duvnjak, and Slađana Žilić. 2025. "Sugar and Free Amino Acid Contents in Winter Wheat Flour Under Fusarium Head Blight Treatment and Natural Infection" Plants 14, no. 10: 1504. https://doi.org/10.3390/plants14101504
APA StyleŠpanić, V., Sarić, B., Šunić Budimir, K., Duvnjak, J., & Žilić, S. (2025). Sugar and Free Amino Acid Contents in Winter Wheat Flour Under Fusarium Head Blight Treatment and Natural Infection. Plants, 14(10), 1504. https://doi.org/10.3390/plants14101504