Fruit and Fruit-Derived Products of Selected Sambucus Plants as a Source of Phytosterols and Triterpenoids
Abstract
:1. Introduction
2. Results
2.1. Identification of Steroids and Triterpenoids in Extracts Obtained from Fruits and Fruit-Derived Products
2.2. The Content of Steroids and Triterpenoids in S. nigra and S. racemosa Fruits
2.3. The Content of Steroids and Triterpenoids in Fruit Cuticular Waxes
2.4. The Content of Steroids and Triterpenoids in Elderberry-Derived Food Products
3. Discussion
3.1. Composition of Steroids and Triterpenoids in S. nigra and S. racemosa Fruits
3.2. Content of Steroids and Triterpenoids in Fruits and Fruit-Derived Products
4. Materials and Methods
4.1. Plant Material
4.2. Fruit-Derived Products
4.3. Extraction
4.4. Fractionation of Extracts via Thin-Layer Adsorption Chromatography (TLC)
4.5. Methylation of Triterpenoid Acids
4.6. Identification and Quantification of Steroids and Triterpenoids via Gas Chromatography-Mass Spectrometry (GC-MS)
4.7. Statistical Analysis of Data
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
COVID-19 | Coronavirus disease of 2019 |
FID | Flame ionization detector |
GC-MS | Gas chromatography coupled with mass spectrometry |
IL-6 | Interleukin 6 |
IL-8 | Interleukin-8 |
LDL-C | Low-density lipoprotein cholesterol |
MERS | Middle East respiratory syndrome |
N.d. | Not detected |
SARS | Severe acute respiratory syndrome |
S.D. | Standard deviation |
TLC | Thin-layer chromatography |
TNF | Tumor necrosis factor |
Tr. | Traces |
References
- Samtiya, M.; Aluko, R.E.; Dhewa, T.; Moreno-Rojas, J.M. Potential health benefits of plant food-derived bioactive components: An overview. Foods 2021, 10, 839. [Google Scholar] [CrossRef] [PubMed]
- Gleńsk, M.; Czapińska, E.; Woźniak, M.; Ceremuga, I.; Włodarczyk, M.; Terlecki, G.; Ziółkowski, P.; Seweryn, E. Triterpenoid acids as important antiproliferative constituents of European elderberry fruits. Nutr. Cancer 2017, 69, 643–651. [Google Scholar] [CrossRef] [PubMed]
- Młynarczyk, K.; Walkowiak-Tomczak, D.; Łysiak, G.P. Bioactive properties of Sambucus nigra L. as a functional ingredient for food and pharmaceutical industry. J. Funct. Foods 2018, 40, 377–390. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, R.; Zhang, L.; Rocchetti, G.; Lucini, L.; Pateiro, M.; Munekata, P.E.S.; Lorenzo, J.M. Elderberry (Sambucus nigra L.) as potential source of antioxidants. Characterization, optimization of extraction parameters and bioactive properties. Food Chem. 2020, 330, 127266. [Google Scholar] [CrossRef]
- Nurzyńska-Wierdak, R.; Najda, A.; Sałata, A.; Krajewska, A. Bioactive compounds and antioxidant properties of black elderberry (Sambucus nigra L.). Acta Sci. Pol. Hortorum Cultus 2022, 21, 143–156. [Google Scholar]
- Sala, G.; Pasta, S.; Maggio, A.; La Mantia, T. Sambucus nigra L. (fam. Viburnaceae) in Sicily: Distribution, ecology, traditional use and therapeutic properties. Plants 2023, 12, 3457. [Google Scholar] [CrossRef]
- Vlachojannis, J.E.; Cameron, M.; Chrubasik, S. A systematic review on the Sambuci fructus effect and efficacy profiles. Phytother. Res. 2010, 24, 1–8. [Google Scholar] [CrossRef]
- Wieland, L.S.; Piechotta, V.; Feinberg, T.; Ludeman, E.; Hutton, B.; Kanji, S.; Seely, D.; Garritty, C. Elderberry for prevention and treatment of viral respiratory illnesses: A systematic review. BMC Complement. Med. Ther. 2021, 21, 112. [Google Scholar] [CrossRef]
- Kolesarova, A.; Baldovska, S.; Kohut, L.; Sirotkin, A.V. Black elder and its constituents: Molecular mechanisms of action associated with female reproduction. Pharmaceuticals 2022, 15, 239. [Google Scholar] [CrossRef]
- Mahboubi, M. Sambucus nigra (black elder) as alternative treatment for cold and flu. ADTM 2021, 21, 405–414. [Google Scholar] [CrossRef]
- Stępień, A.E.; Trojniak, J.; Tabarkiewicz, J. Health-promoting properties: Anti-inflammatory and anticancer properties of Sambucus nigra L. flowers and fruits. Molecules 2023, 28, 6235. [Google Scholar] [CrossRef] [PubMed]
- Osman, A.G.; Avula, B.; Katragunta, K.; Ali, Z.; Chittiboyina, A.G.; Khan, I.A. Elderberry extracts: Characterization of the polyphenolic chemical composition, quality consistency, safety, adulteration, and attenuation of oxidative stress and inflammation-induced health disorders. Molecules 2023, 28, 3148. [Google Scholar] [CrossRef] [PubMed]
- Senica, M.; Stampar, F.; Veberic, R.; Mikulic-Petkovsek, M. Processed elderberry (Sambucus nigra L.) products: A beneficial or harmful food alternative? LWT–Food Sci. Techno. 2016, 72, 182–188. [Google Scholar] [CrossRef]
- Młynarczyk, K.; Walkowiak-Tomczak, D.; Staniek, H.; Kidoń, M.; Łysiak, G.P. The content of selected minerals, bioactive compounds, and the antioxidant properties of the flowers and fruit of selected cultivars and wildly growing plants of Sambucus nigra L. Molecules 2020, 25, 876. [Google Scholar] [CrossRef]
- Corrado, G.; Basile, B.; Mataffo, A.; Yousefi, S.; Salami, S.A.; Perrone, A.; Martinelli, F. Cultivation, phytochemistry, health claims, and genetic diversity of Sambucus nigra, a versatile plant with many beneficial properties. Horticulturae 2023, 9, 488. [Google Scholar] [CrossRef]
- Fang, S.; Belwal, T.; Li, L.; Limwachiranon, J.; Liu, X.; Luo, Z. Phytosterols and their derivatives: Potential health-promoting uses against lipid metabolism and associated diseases, mechanism and safety issues. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1243–1267. [Google Scholar] [CrossRef]
- Li, X.; Xin, Y.; Mo, Y.; Marozik, P.; He, T.; Guo, H. The bioavailability and biological activities of phytosterols as modulators of cholesterol metabolism. Molecules 2022, 27, 523. [Google Scholar] [CrossRef]
- Nattagh-Eshtivani, E.; Barghchi, H.; Pahlavani, N.; Barati, M.; Amiri, Y.; Fadel, A.; Khosravi, M.; Talebi, S.; Arzhang, P.; Ziaei, R.; et al. Biological and pharmacological effects and nutritional impact of phytosterols: A comprehensive review. Phytother. Res. 2022, 36, 299–322. [Google Scholar] [CrossRef]
- Salehi-Sahlabadi, A.; Varkaneh, H.K.; Shahdadian, F.; Ghaedi, E.; Nouri, M.; Singh, A.; Farhadnejad, H.; Găman, M.A.; Hekmatdoost, A.; Mirmiran, P. Effects of phytosterols supplementation on blood glucose, glycosylated hemoglobin (HbA1c) and insulin levels in humans: A systematic review and meta-analysis of randomized controlled trials. J. Diabetes Metab. Disord. 2020, 19, 625–632. [Google Scholar] [CrossRef]
- Vezza, T.; Canet, F.; de Marañón, A.M.; Bañuls, C.; Rocha, M.; Victor, M.V. Phytosterols: Nutritional health players in the management of obesity and its related disorders. Antioxidants 2020, 9, 1266. [Google Scholar] [CrossRef]
- Suryamani; Sindhu, R.; Singh, I. Phytosterols: Physiological functions and therapeutic applications. In Bioactive Food Components Activity in Mechanistic Approach; Cazarin, C.B.B., Pastore, G.M., Bicas, J.L., Morostica, M.R., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 223–238. [Google Scholar]
- Shen, M.; Yuan, L.; Zhang, J.; Wang, X.; Zhang, M.; Li, H.; Jing, Y.; Zeng, F.; Xie, J. Phytosterols: Physiological functions and potential application. Foods 2024, 13, 1754. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Tian, Z.; Wang, Y.; Si, L.; Zhang, L.; Zhou, D. Recent progress in the antiviral activity and mechanism study of pentacyclic triterpenoids and their derivatives. Med. Res. Rev. 2018, 38, 951–976. [Google Scholar] [CrossRef]
- Sandeep; Ghosh, S. Triterpenoids: Structural diversity, biosynthetic pathways and bioactivity. In Studies in Natural Products Chemistry; Atta-ur-Rahman, Ed.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 67, pp. 411–461. [Google Scholar]
- Liu, S.; Liu, H.; Zhang, L.; Ma, C.; Abd El-Aty, A.M. Edible pentacyclic triterpenes: A review of their sources, bioactivities, bioavailability, self-assembly behavior, and emerging applications as functional delivery vehicles. Crit. Rev. Food Sci. Nutr. 2022, 64, 5203–5219. [Google Scholar] [CrossRef] [PubMed]
- Tolufashe, G.F.; Lawal, M.M.; Govender, K.K.; Shode, F.O.; Singh, T. Exploring the bioactivity of pentacyclic triterpenoids as potential antimycobacterial nutraceutics: Insights through comparative biomolecular modeling. J. Mol. Graph. Model. 2021, 105, 1007900. [Google Scholar] [CrossRef]
- Harley, B.K.; Neglo, D.; Tawiah, P.; Pipim, M.A.; Mireku-Gyimah, N.A.; Tettey, C.O.; Amengor, C.D.; Fleisher, T.C.; Waikhom, S.D. Bioactive triterpenoids from Solanum torvum fruits with antifungal, resistance modulatory and antibiofilm formation activities against fluconazole-resistant Candida albicans strains. PLoS ONE 2021, 16, e0260956. [Google Scholar] [CrossRef]
- Edorh Tossa, P.; Belorgey, M.; Dashbaldan, S.; Pączkowski, C.; Szakiel, A. Flowers and inflorescences of selected medicinal plants as a source of triterpenoids and phytosterols. Plants 2023, 12, 1838. [Google Scholar] [CrossRef] [PubMed]
- Salvador, Â.C.; Charlebois, D.; Silvestre, A.J.D.; Rocha, S.M. Berry lipophilic constituents from three important Sambucus nigra cultivars grown in Portugal—Preliminary results. Acta Hortic. 2015, 1061, 53–60. [Google Scholar] [CrossRef]
- Salvador, Â.C.; Rocha, S.M.; Silvestre, A.J.D. Lipophilic phytochemicals from elderberries (Sambucus nigra L.): Influence of ripening, cultivar and season. Ind. Crop. Prod. 2015, 71, 15–23. [Google Scholar] [CrossRef]
- Nawirska-Olszańska, A.; Oziembłowski, M.; Brandova, P.; Czaplicka, M. Comparison of the chemical composition of selected varieties of elderberry with wild growing elderberry. Molecules 2022, 27, 5050. [Google Scholar] [CrossRef]
- Becker, R.; Pączkowski, C.; Szakiel, A. Triterpenoid profile of fruit and leaf cuticular waxes of edible honeysuckle Lonicera caerulea var. kamtschatica. Acta Soc. Bot. Pol. 2017, 86, 3539. [Google Scholar] [CrossRef]
- Szakiel, A.; Niżyński, B.; Pączkowski, C. Triterpenoid profile of flower and leaf cuticular waxes of heather Calluna vulgaris. Nat. Prod. Res. 2013, 27, 1404–1407. [Google Scholar] [CrossRef] [PubMed]
- Schmitzer, V.; Veberic, R.; Slatnar, A.; Stampar, F. Elderberry (Sambucus nigra L.) wine: A product rich in health promoting compounds. J. Agric. Food Chem. 2010, 58, 10143–10146. [Google Scholar] [CrossRef] [PubMed]
- Silva, P.; Ferreira, S.; Nunes, F.M. Elderberry (Sambucus nigra L.) by-products a source of anthocyanins and antioxidant polyphenols. Ind. Crop. Prod. 2017, 95, 227–234. [Google Scholar] [CrossRef]
- Kaloustian, J.; Alhanout, K.; Amiot-Carlin, M.J.; Lairon, D.; Portugal, H.; Nicolay, A. Effect of water cooking on free phytosterol levels in beans and vegetables. Food Chem. 2008, 107, 1379–1386. [Google Scholar] [CrossRef]
- Kmiecik, D.; Fedko, M.; Rudzińska, M.; Siger, A.; Gramza-Michałowska, A.; Kobus-Cisowska, J. Thermo-oxidation of phytosterol molecules in rapeseed oil during heating: The impact of unsaturation level of the oil. Foods 2021, 10, 50. [Google Scholar] [CrossRef]
- Ferreira, R.G.S.; Silva Júnior, W.F.; Veiga Junior, V.F.; Lima, Á.A.N.; Lima, E.S. Physicochemical characterization and biological activities of the triterpenic mixture α,β-amyrenone. Molecules 2017, 22, 298. [Google Scholar] [CrossRef]
- Lyu, Q.; Zheng, W.; Shan, Q.; Huang, L.; Wang, Y.; Wang, L.; Kuang, H.; Azam, M.; Cao, G. Expanding annotation of chemical compounds in hawthorn fruits and their variations in thermal processing using integrated mass spectral similarity networking. Food Res. Int. 2023, 172, 113114. [Google Scholar] [CrossRef]
- Malinowski, J.M.; Gehret, M.M. Phytosterols for dyslipidemia. Am. J. Health-Syst. Pharm. 2010, 67, 1165–1173. [Google Scholar] [CrossRef]
- Wrońska, N.; Szlaur, M.; Zawadzka, K.; Lisowska, K. The synergistic effect of triterpenoids and flavonoids-new approaches for treating bacterial infections? Molecules 2022, 27, 847. [Google Scholar] [CrossRef]
- Lara, I.; Belge, B.; Goulao, L.F. A focus on the biosynthesis and composition of cuticle in fruits. J. Agric. Food Chem. 2015, 63, 4005–4019. [Google Scholar] [CrossRef]
- Tie, F.; Dong, Q.; Zhu, X.; Ren, L.; Liu, Z.; Wang, Z.; Wang, H.; Hu, N. Optimized extraction, enrichment, identification and hypoglycemic effects of triterpenoid acids from Hippophae rhamnoides L. pomace. Food Chem. 2024, 457, 140143. [Google Scholar] [CrossRef] [PubMed]
- Banaś, A.; Korus, A.; Tabaszewska, M. Antioxidant properties of low-sugar strawberry jam enriched with plant raw materials. Pol. J. Natur. Sci. 2018, 33, 385–399. [Google Scholar]
Compound | S. nigra Haschberg | S. nigra Wild | S. nigra f. porphyrophylla | S. racemosa |
---|---|---|---|---|
µg/g dry weight | ||||
Phytosterols | ||||
campesterol | 75.62 ± 8.25 a | 107.58 ± 12.04 b | 131.35 ± 12.91 b | 40.05 ± 3.90 c |
isofucosterol | 23.61 ± 2.04 a | 29.04 ± 3.16 a | 27.83 ± 2.91 a | 36.99 ± 4.05 b |
sitosterol | 410.84 ± 36.18 a | 553.68 ± 42.20 b | 728.37 ± 68.33 c | 664.63 ± 51.19 c |
stigmasterol | 33.82 ± 3.04 a | 49.56 ± 5.18 b | 75.97 ± 8.25 c | 12.48 ± 1.52 d |
sum | 543.89 | 739.86 | 963.52 | 754.15 |
Steroid ketones | ||||
tremulone | 19.10 ± 2.06 a | 23.79 ± 2.93 a | 34.32 ± 3.66 b | 25.79 ± 3.90 a |
sitostenone | 20.97 ± 2.91 a | 27.70 ± 3.36 b | 53.09 ± 6.75 c | 56.85 ± 6.94 c |
sum | 40.07 | 51.49 | 87.41 | 82.64 |
Neutral triterpenoids | ||||
α-amyrin | 70.85 ± 5.11 a | 114.47 ± 20.13 b | 173.36 ± 22.80 c | 63.70 ± 8.02 a |
β-amyrin | 39.53 ± 4.87 a | 52.20 ± 6.18 b | 80.74 ± 9.42 c | 24.34 ± 3.88 d |
α-amyrenone | 52.79 ± 7.4 a | 73.58 ± 9.26 b | 127.73 ± 15.65 c | 9.97 ± 1.53 d |
germanicol | 14.86 ± 1.64 a | 11.71 ± 1.95 a | 14.45 ± 1.80 a | 20.00 ± 2.96 b |
taraxasterol | 10.85 ± 1.23 a | 9.67 ± 1.51 a | 11.82 ± 1.36 a | 18.52 ± 2.48 b |
oleanolic aldehyde | 6.96 ± 0.82 a | 10.27 ± 1.03 b | 11.77 ± 1.25 b | 10.12 ± 1.46 b |
ursolic aldehyde | 27.41 ± 3.05 a | 48.38 ± 5.10 b | 44.39 ± 4.67 b | 29.96 ± 3.12 a |
sum | 223.25 | 320.28 | 464.26 | 176.61 |
Triterpenoid acids | ||||
betulinic acid | 36.88 ± 4.56 a | 48.12 ± 6.08 b | 230.52 ± 25.66 c | n.d. |
olean-2,12-dien-28-oic acid | 40.13 ± 5.49 a | 79.24 ± 9.06 b | 92.90 ± 10.35 b | 22.12 ± 3.48 c |
ursa-2,12-dien-28-oic acid | 151.57 ± 12.41 a | 202.48 ± 24.06 b | 321.20 ± 34.54 c | 48.27 ± 5.9 d |
3-oxo-oleanolic acid | 44.70 ± 5.15 a | 53.78 ± 6.02 a | 84.83 ± 9.6 b | n.d. |
3-oxo-ursolic acid | 71.44 ± 8.06 a | 109.62 ± 14.56 b | 245.09 ± 2.95 c | n.d. |
oleanolic acid | 778.83 ± 86.65 a | 1309.63 ± 154.9 b | 2883.61 ± 303.05 c | 204.83 ± 25.49 d |
ursolic acid | 2898.88 ± 314.02 a | 3595.10 ± 402.66 b | 9245.74 ± 1038.5 c | 850.93 ± 98.71 d |
corosolic acid | 106.40 ± 11.62 a | 82.60 ± 9.08 a | 110.65 ± 12.7 a | n.d. |
oleanolic acid acetate | n.d. | tr. | 34.70 ± 4.45 a | 28.69 ± 3.44 a |
ursolic acid acetate | n.d. | tr. | 97.52 ± 10.36 a | 81.56 ± 10.64 a |
sum | 4128.83 | 5480.57 | 13,346.76 | 1236.40 |
Total | 4936.04 | 6592.20 | 14,861.95 | 2249.80 |
Compound | S. nigra Haschberg | S. nigra Wild | S. nigra f. porphyrophylla | S. racemosa |
---|---|---|---|---|
µg/mg wax extract | ||||
Phytosterols | ||||
campesterol | 0.79 ± 0.08 a | 1.05 ± 0.11 a | 1.22 ± 0.12 a | 0.86 ± 0.09 a |
isofucosterol | 0.23 ± 0.02 a | 0.27± 0.02 a | 0.25 ± 0.01 a | 0.75 ± 0.08 b |
sitosterol | 7.64 ± 0.62 a | 8.97 ± 0.90 a | 11.09 ± 1.35 a | 7.99 ± 0.51 a |
stigmasterol | 0.52 ± 0.05 a | 0.65 ± 0.06 a | 0.98 ± 1.02 b | 0.30 ± 0.01 c |
sum | 9.18 | 10.94 | 13.54 | 9.90 |
Steroid ketones | ||||
tremulone | 3.96 ± 0.42 a | 4.82 ± 0.54 a | 5.18 ± 0.60 a | 2.19 ± 0.11 b |
sitostenone | 2.81 ± 0.08 a | 4.15 ± 0.10 b | 6.73± 0.75 c | 3.64 ± 0.05 d |
sum | 6.76 | 7.97 | 11.91 | 4.83 |
Neutral triterpenoids | ||||
α-amyrin | 2.93 ± 0.31 a | 3.57 ± 0.41 a | 5.32 ± 0.58 b | 2.39 ± 0.25 a |
β-amyrin | 1.05 ± 0.10 a | 1.51 ± 0.02 b | 2.66 ± 0.30 c | 0.96 ± 0.10 a |
α-amyrenone | 4.08 ± 0.46 a | 4.30 ± 0.40 a | 4.82 ± 0.44 a | 0.31 ± 0.02 b |
germanicol | 0.93 ± 0.10 a | 0.76 ± 0.08 a | 0.85 ± 0.10 a | 0.88 ± 0.08 a |
taraxasterol | 2.34 ± 0.24 a | 2.25 ± 0.21 a | 2.41 ± 0.26 a | 0.52 ± 0.06 b |
oleanolic aldehyde | 1.47 ± 0.11 a | 3.31 ± 0.35 b | 3.52 ± 0.36 b | 0.43± 0.04 c |
ursolic aldehyde | 5.88 ± 0.62 a | 12.01 ± 1.35 b | 14.08 ± 1.40 b | 1.56 ± 0.14 c |
sum | 18.68 | 27.71 | 33.66 | 7.05 |
Triterpenoid acids | ||||
betulinic acid | 4.38 ± 0.42 a | 5.04 ± 0.52 a | 20.95 ± 2.21 b | n.d. |
olean-2,12-dien-28-oic acid | 4.69 ± 0.48 a | 6.98 ± 0.72 b | 8.03 ± 0.95 c | 1.58 ± 0.11 dc |
ursa-2,12-dien-28-oic acid | 16.03 ± 1.75 a | 20.58 ± 2.46 b | 29.78 ± 2.46 c | 3.39 ± 0.30 |
3-oxo-oleanolic acid | 4.27 ± 0.43 a | 4.72 ± 0.49 a | 7.84 ± 8.20 b | n.d. |
3-oxo-ursolic acid | 8.54 ± 0.90 a | 11.69 ± 1.21 b | 20.35 ± 2.11 c | n.d. |
oleanolic acid | 80.14 ± 8.26 a | 104.62 ± 12.04 b | 249.86 ± 30.14 c | 17.36 ± 2.04 d |
ursolic acid | 298.15 ± 32.40 a | 369.55 ± 38.01 b | 796.02 ± 82.40 c | 70.69 ± 8.05 d |
corosolic acid | 14.08± 1.46 a | 10.12 ± 1.24 b | 14.47 ± 1.63 a | n.d. |
oleanolic acid acetate | n.d. | tr. | 3.15 ± 0.33 a | 1.58 ± 0.18 b |
ursolic acid acetate | n.d. | tr. | 9.58 ± 1.06 a | 4.69 ± 0.52 b |
sum | 430.28 | 526.32 | 1160.03 | 99.29 |
Total | 464.92 | 572.94 | 1219.14 | 121.07 |
Compound | Jam [µg/g] | Juice [µg/mL] | Syrup [µg/mL] | Wine [µg/mL] |
---|---|---|---|---|
Phytosterols | ||||
campesterol | 5.36 ± 0.68 | 1.07 ± 0.15 | 0.32 ± 0.03 | 0.070 ± 0.008 |
isofucosterol | 1.64 ± 0.20 | 0.35 ± 0.04 | 0.11 ± 0.01 | 0.003 ± 0.0002 |
sitosterol | 25.28 ± 3.14 | 5.37 ± 0.65 | 1.53 ± 0.16 | 0.510 ± 0.06 |
stigmasterol | 2.36 ± 0.28 | 0.62 ± 0.07 | 0.18 ± 0.01 | 0.030 ± 0.004 |
sum | 34.64 | 7.41 | 2.14 | 0.613 |
Steroid ketones | ||||
tremulone | 1.36 ± 0.12 | 0.25 ± 0.03 | 0.10 ± 0.01 | 0.025 ± 0.003 |
sitostenone | 1.49 ± 0.15 | 0.30 ± 0.04 | 0.12 ± 0.01 | 0.038 ± 0.004 |
sum | 2.35 | 0.55 | 0.22 | 0.063 |
Neutral triterpenoids | ||||
α-amyrin | 3.82 ± 0.40 | 0.89 ± 0.10 | 0.20 ± 0.02 | 0.073 ± 0.008 |
β-amyrin | 2.74 ± 0.32 | 0.40 ± 0.05 | 0.09 ± 0.01 | 0.038 ± 0.004 |
α-amyrenone | 2.52 ± 0.26 | 0.27 ± 0.03 | 0.08 ± 0.009 | 0.030 ± 0.003 |
germanicol | 0.96 ± 0.10 | 0.12 ± 0.01 | 0.02 ± 0.003 | 0.016 ± 0.002 |
taraxasterol | 0.78 ± 0.08 | 0.10 ± 0.01 | 0.02 ± 0.002 | 0.011 ± 0.001 |
oleanolic aldehyde | 0.49 ± 0.05 | 0.05 ± 0.01 | 0.01 ± 0.001 | 0.006 ± 0.0008 |
ursolic aldehyde | 1.86 ± 0.20 | 0.16 ± 0.02 | 0.04 ± 0.005 | 0.021 ± 0.003 |
sum | 13.17 | 1.99 | 0.82 | 0.195 |
Triterpenoid acids | ||||
betulinic acid | n.d. | 0.06 ± 0.007 | n.d. | n.d. |
olean-2,12-dien-28-oic acid | 2.86 ± 0.34 | 0.11 ± 0.02 | n.d. | n.d. |
ursa-2,12-dien-28-oic acid | 10.83 ± 1.46 | 0.42 ± 0.05 | n.d. | n.d. |
3-oxo-oleanolic acid | 3.19 ± 0.45 | 0.05 ± 0.006 | n.d. | n.d. |
3-oxo-ursolic acid | 5.08 ± 0.58 | 0.09 ± 0.010 | n.d. | n.d. |
oleanolic acid | 57.63 ± 6.81 | 1.36 ± 0.18 | tr. | tr. |
ursolic acid | 202.43 ± 25.03 | 4.11 ± 0.53 | tr. | tr. |
corosolic acid | 6.57 ± 0.87 | 0.01 ± 0.001 | n.d. | n.d. |
oleanolic acid acetate | n.d. | 0.07 ± 0.008 | n.d. | tr. |
ursolic acid acetate | n.d. | 0.15 ± 0.02 | n.d. | tr. |
sum | 288.59 | 6.43 | 0 | 0 |
Total | 338.75 | 16.38 | 3.18 | 0.871 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Onolbaatar, O.; Dashbaldan, S.; Pączkowski, C.; Szakiel, A. Fruit and Fruit-Derived Products of Selected Sambucus Plants as a Source of Phytosterols and Triterpenoids. Plants 2025, 14, 1490. https://doi.org/10.3390/plants14101490
Onolbaatar O, Dashbaldan S, Pączkowski C, Szakiel A. Fruit and Fruit-Derived Products of Selected Sambucus Plants as a Source of Phytosterols and Triterpenoids. Plants. 2025; 14(10):1490. https://doi.org/10.3390/plants14101490
Chicago/Turabian StyleOnolbaatar, Otgonbileg, Soyol Dashbaldan, Cezary Pączkowski, and Anna Szakiel. 2025. "Fruit and Fruit-Derived Products of Selected Sambucus Plants as a Source of Phytosterols and Triterpenoids" Plants 14, no. 10: 1490. https://doi.org/10.3390/plants14101490
APA StyleOnolbaatar, O., Dashbaldan, S., Pączkowski, C., & Szakiel, A. (2025). Fruit and Fruit-Derived Products of Selected Sambucus Plants as a Source of Phytosterols and Triterpenoids. Plants, 14(10), 1490. https://doi.org/10.3390/plants14101490