Genomic Survey of Genes Encoding Major Intrinsic Proteins (MIPs) and Their Response to Arsenite Stress in Pepper (Capsicum annum)
Abstract
:1. Introduction
2. Results
2.1. Identification and Classification of Genes Encoding MIPs in Pepper
2.2. MIP Genes Characteristics and Chromosomal Localization
2.3. Phylogeny, Gene Structure and Motif Structure of MIP Genes
2.4. Synteny Analysis of MIP Genes in Pepper
2.5. Effect of Heavy Metals on Chlorophyll, Nitrogen Content and Root Length in Pepper
2.6. Tissue Differential Expression Patterns of CaMIPs
2.7. Response of Genes Encoding Pepper MIPs to As(III) Exposure
3. Discussion
3.1. Identification, Classification, and Synteny of MIP Genes in Pepper
3.2. Phylogeny, Characteristics, and Chromosomal Localization of MIP Genes
3.3. Spatio-Temporal Expression of CAMIP Encoding Genes
3.4. Effect of Arsenite on the Physio-Morphology in Pepper
3.5. Response of CAMIPs to Arsenite Stress
4. Materials and Methods
4.1. Identification of MIP Homologous Sequences
4.2. Characteristics and Chromosomal Localization of MIP Genes
4.3. Phylogeny and Sequence Similarity of Pineapple MIP Homologs
4.4. Gene Structure Analysis and Conserved Motif Identification
4.5. Synteny Analysis and Collinearity Analysis of MIP Genes in Pepper
4.6. Plant Material, Growth Conditions, and Heavy Metals Assay
4.7. Leaf Chlorophyll, Nitrogen Content, and Root Length
4.8. RNA Extraction and qRT PCR
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MIPs | Major intrinsic proteins |
PIPs | Plasma membrane intrinsic proteins |
TIPs | Tonoplast intrinsic proteins |
NIPs | NOD26-like intrinsic proteins |
SIPs | Small basic intrinsic proteins |
As(III) | Arsenite |
References
- Bhattacharjee, H.; Mukhopadhyay, R.; Thiyagarajan, S.; Rosen, B.P. Aquaglyceroporins: Ancient Channels for Metalloids. J. Biol. 2008, 7, 33. [Google Scholar] [CrossRef]
- Zeng, Q.; Jia, H.; Ma, Y.; Xu, L.; Ming, R.; Yue, J. Genome-Wide Identification and Expression Pattern Profiling of the Aquaporin Gene Family in Papaya (Carica papaya L.). Int. J. Mol. Sci. 2023, 24, 17276. [Google Scholar] [CrossRef] [PubMed]
- Afzal, Z.; Howton, T.C.; Sun, Y.; Mukhtar, M.S. The Roles of Aquaporins in Plant Stress Responses. J. Dev. Biol. 2016, 4, 9. [Google Scholar] [CrossRef] [PubMed]
- Kozono, D.; Ding, X.; Iwasaki, I.; Meng, X.; Kamagata, Y.; Agre, P.; Kitagawa, Y. Functional Expression and Characterization of an Archaeal Aquaporin: AqpM From Methanothermobacter marburgensis. J. Biol. Chem. 2003, 278, 10649–10656. [Google Scholar] [CrossRef]
- Verkman, A.S.; Mitra, A.K. Structure and Function of Aquaporin Water Channels. Am. J. Physiol. Ren. Physiol. 2000, 278, F13–F28. [Google Scholar] [CrossRef] [PubMed]
- Calamita, G.; Bishai, W.R.; Preston, G.M.; Guggino, W.B.; Agre, P. Molecular Cloning and Characterization of AqpZ, a Water Channel from Escherichia coli. J. Biol. Chem. 1995, 270, 29063–29066. [Google Scholar] [CrossRef]
- Carbrey, J.M.; Gorelick-Feldman, D.A.; Kozono, D.; Praetorius, J.; Nielsen, S.; Agre, P. Aquaglyceroporin AQP9: Solute Permeation and Metabolic Control of Expression in Liver. Proc. Natl. Acad. Sci. USA 2003, 100, 2945. [Google Scholar] [CrossRef]
- Beuron, F.; Le Cahérec, F.; Guillam, M.T.; Cavalier, A.; Garret, A.; Tassan, J.P.; Delamarche, C.; Schultz, P.; Mallouh, V.; Rolland, J.P.; et al. Structural Analysis of a MIP Family Protein from the Digestive Tract of Cicadella viridis. J. Biol. Chem. 1995, 270, 17414–17422. [Google Scholar] [CrossRef]
- Fortin, M.G.; Morrison, N.A.; Verma, D.P.S. Nodulin-26, a Peribacteroid Membrane Nodulin Is Expressed Independently of the Development of the Peribacteroid Compartment. Nucleic Acids Res. 1987, 15, 812–824. [Google Scholar] [CrossRef]
- Kammerloher, W.; Fischer, U.; Piechottka, G.P.; Schäffner, A.R. Water Channels in the Plant Plasma Membrane Cloned by Immuno selection from a Mammalian Expression System. Plant J. 1994, 6, 187–199. [Google Scholar] [CrossRef]
- Maurel, C.; Reizer, J.; Schroeder, J.I.; Chrispeels, M.J. The Vacuolar Membrane Protein Gamma-TIP Creates Water Specific Channels in Xenopus oocytes. EMBO J. 1993, 12, 2241. [Google Scholar] [CrossRef]
- Przedpelska-Wasowicz, E.M.; Wierzbicka, M. Gating of Aquaporins by Heavy Metals in Allium cepa L. Epidermal Cells. Protoplasma 2011, 248, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Danielson, J.Å.H.; Johanson, U. Unexpected Complexity of the Aquaporin Gene Family in the Moss physcomitrella Patens. BMC Plant Biol. 2008, 8, 45. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Santoni, V.; Maurel, C. Plant Aquaporins: Roles in Plant Physiology. Biochim. Biophys. Acta Gen. Subjects 2014, 1840, 1574–1582. [Google Scholar] [CrossRef] [PubMed]
- Sanders, O.I.; Rensing, C.; Kuroda, M.; Mitra, B.; Rosen, B.P. Antimonite Is Accumulated by the Glycerol Facilitator GlpF in Escherichia coli. J. Bact. 1997, 179, 3365–3367. [Google Scholar] [CrossRef]
- Agre, P.; Sasaki, S.; Chrispeels, M.J. Aquaporins: A Family of Water Channel Proteins. Am. J. Physiol.-Ren. Physiol. 1993, 265, F461. [Google Scholar] [CrossRef]
- Maurel, C. Aquaporins And Water Permeability of Plant Membranes. Annu. Rev Plt. 1997, 48, 399–429. [Google Scholar] [CrossRef]
- Meng, Y.L.; Liu, Z.; Rosen, B.P. As(III) and Sb(III) Uptake by GlpF and Efflux by ArsB in Escherichia coli. J. Biol Chem. 2004, 279, 18334–18341. [Google Scholar] [CrossRef]
- Xu, W.; Dai, W.; Yan, H.; Li, S.; Shen, H.; Chen, Y.; Xu, H.; Sun, Y.; He, Z.; Ma, M. Arabidopsis NIP3;1 Plays an Important Role in Arsenic Uptake and Root-to-Shoot Translocation under Arsenite Stress Conditions. Mol. Plant 2015, 8, 722–733. [Google Scholar] [CrossRef]
- Ma, J.F.; Yamaji, N. Silicon Uptake and Accumulation in Higher Plants. Trends Plant Sci. 2006, 11, 392–397. [Google Scholar] [CrossRef]
- Wu, Q.; Feng, R.; Guo, J.; Wang, R.; Xu, Y.; Fan, Z.; Mo, L. Interactions between Selenite and Different Forms of Antimony and Their Effects on Root Morphology of Paddy Rice. Plant Soil 2017, 413, 231–242. [Google Scholar] [CrossRef]
- Awasthi, S.; Chauhan, R.; Srivastava, S.; Tripathi, R.D. The Journey of Arsenic from Soil to Grain in Rice. Front. Plant Sci. 2017, 8, 1007. [Google Scholar] [CrossRef]
- Niazi, N.K.; Bibi, I.; Fatimah, A.; Shahid, M.; Javed, M.T.; Wang, H.; Ok, Y.S.; Bashir, S.; Murtaza, B.; Saqib, Z.A.; et al. Phosphate-Assisted Phytoremediation of Arsenic by Brassica napus and Brassica juncea: Morphological and Physiological Response. Int. J. Phytoremediation 2017, 19, 670–678. [Google Scholar] [CrossRef] [PubMed]
- Eric, B. Holub the Arms Race Is Ancient History in Arabidopsis. Nat. Rev. Genet. 2001, 2, 516–527. [Google Scholar]
- Kim, S.; Park, M.; Yeom, S.I.; Kim, Y.M.; Lee, J.M.; Lee, H.A.; Seo, E.; Choi, J.; Cheong, K.; Kim, K.T.; et al. Genome Sequence of the Hot Pepper Provides Insights into the Evolution of Pungency in Capsicum Species. Nat. Genet. 2014, 46, 270–278. [Google Scholar] [CrossRef]
- Han, Y.; Li, R.; Liu, Y.; Fan, S.; Wan, S.; Zhang, X.; Li, G. The Major Intrinsic Protein Family and Their Function Under Salt-Stress in Peanut. Front. Genet. 2021, 12, 153. [Google Scholar] [CrossRef]
- Yuan, D.; Li, W.; Hua, Y.; King, G.J.; Xu, F.; Shi, L. Genome-Wide Identification and Characterization of the Aquaporin Gene Family and Transcriptional Responses to Boron Deficiency in Brassica napus. Front. Plant Sci. 2017, 8, 1336. [Google Scholar] [CrossRef]
- Jhonasson, U.; Karlsson, M.; Johnasson, I.; Gustavsson, S.; Sjövall, S.; Fraysse, L.; Weig, A.R.; Kjellbom, P. The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol. 2001, 126, 1358–1369. [Google Scholar] [CrossRef]
- Sakurai, J.; Ishikawa, F.; Yamaguchi, T.; Uemura, M.; Maeshima, M. Identification of 33 Rice Aquaporin Genes and Analysis of Their Expression and Function. Plant Cell Physiol. 2005, 46, 1568–1577. [Google Scholar] [CrossRef]
- Chaumont, F.; Barrieu, F.; Wojcik, E.; Chrispeels, M.J.; Jung, R. Aquaporins Constitute a Large and Highly Divergent Protein Family in Maize. Plant Physiol. 2001, 125, 1206–1215. [Google Scholar] [CrossRef]
- De Paula Santos Martins, C.; Pedrosa, A.M.; Du, D.; Gonçalves, L.P.; Yu, Q.; Gmitter, F.G.; Costa, M.G.C. Genome-Wide Characterization and Expression Analysis of Major Intrinsic Proteins during Abiotic and Biotic Stresses in Sweet Orange (Citrus sinensis L.). PLoS ONE 2015, 10, e0138786. [Google Scholar] [CrossRef]
- Tao, P.; Zhong, X.; Li, B.; Wang, W.; Yue, Z.; Lei, J.; Guo, W.; Huang, X. Genome-Wide Identification and Characterization of Aquaporin Genes (AQPs) in Chinese Cabbage (Brassica rapa ssp. Pekinensis). Mol. Genet. Genom. 2014, 289, 1131–1145. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.B.; Sankararamakrishnan, R. Genome-Wide Analysis of Major Intrinsic Proteins in the Tree Plant Populus trichocarpa: Characterization of XIP Subfamily of Aquaporins from Evolutionary Perspective. BMC Plant Biol. 2009, 9, 134. [Google Scholar] [CrossRef] [PubMed]
- Reuscher, S.; Akiyama, M.; Mori, C.; Aoki, K.; Shibata, D.; Shiratake, K. Genome-Wide Identification and Expression Analysis of Aquaporins in Tomato. PLoS ONE 2013, 8, e79052. [Google Scholar] [CrossRef]
- Park, W.; Scheffler, B.E.; Bauer, P.J.; Campbell, B.T. Identification of the Family of Aquaporin Genes and Their Expression in Upland Cotton (Gossypium hirsutum L.). BMC Plant Biol. 2010, 10, 142. [Google Scholar] [CrossRef]
- Reddy, P.S.; Rao, T.S.R.B.; Sharma, K.K.; Vadez, V. Genome-Wide Identification and Characterization of the Aquaporin Gene Family in Sorghum bicolor (L.). Plant Gene 2015, 1, 18–28. [Google Scholar] [CrossRef]
- Zou, Z.; Gong, J.; Huang, Q.; Mo, Y.; Yang, L.; Xie, G. Gene Structures, Evolution, Classification and Expression Profiles of the Aquaporin Gene Family in Castor Bean (Ricinus communis L.). PLoS ONE 2015, 10, e0141022. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tang, H.; Debarry, J.D.; Tan, X.; Li, J.; Wang, X.; Lee, T.H.; Jin, H.; Marler, B.; Guo, H.; et al. MCScanX: A Toolkit for Detection and Evolutionary Analysis of Gene Synteny and Collinearity. Nucleic Acids Res. 2012, 40, e49. [Google Scholar] [CrossRef]
- Zhu, Y.X.; Yang, L.; Liu, N.; Yang, J.; Zhou, X.K.; Xia, Y.C.; He, Y.; He, Y.Q.; Gong, H.J.; Ma, D.F.; et al. Genome-Wide Identification, Structure Characterization, and Expression Pattern Profiling of Aquaporin Gene Family in Cucumber. BMC Plant Biol. 2019, 19, 345. [Google Scholar] [CrossRef]
- Deokar, A.A.; Tar’an, B. Genome-Wide Analysis of the Aquaporin Gene Family in Chickpea (Cicer arietinum L.). Front. Plant Sci. 2016, 7, 1802. [Google Scholar] [CrossRef]
- Guruprasad, K.; Reddy, B.V.B.; Pandit, M.W. Correlation between Stability of a Protein and Its Dipeptide Composition: A Novel Approach for Predicting in Vivo Stability of a Protein from Its Primary Sequence. Protein Engineering, Design and Selection. Protein Eng. Des. Sel. 1990, 4, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Madrid-Espinoza, J.; Brunel-Saldias, N.; Guerra, F.P.; Gutiérrez, A.; Del Pozo, A. Genome-Wide Identification and Transcriptional Regulation of Aquaporin Genes in Bread Wheat (Triticum aestivum L.) under Water Stress. Genes 2018, 9, 497. [Google Scholar] [CrossRef]
- Hu, W.; Hou, X.; Huang, C.; Yan, Y.; Ti, W.W.; Ding, Z.; Wei, Y.X.; Liu, J.H.; Miao, H.G.; Lu, Z.W.; et al. Genome-Wide Identification and Expression Analyses of Aquaporin Gene Family during Development and Abiotic Stress in Banana. Int. J. Mol. Sci. 2015, 16, 19728–19751. [Google Scholar] [CrossRef] [PubMed]
- Feng, R.; Liao, G.; Guo, J.; Wang, R.; Xu, Y.; Ding, Y.; Mo, L.; Fan, Z.; Li, N. Responses of Root Growth and Antioxidative Systems of Paddy Rice Exposed to Antimony and Selenium. Environ. Exp. Bot. 2016, 122, 29–38. [Google Scholar] [CrossRef]
- Abbas, G.; Murtaza, B.; Bibi, I.; Shahid, M.; Niazi, N.K.; Khan, M.I.; Amjad, M.; Hussain, M. Natasha Arsenic Uptake, Toxicity, Detoxification, and Speciation in Plants: Physiological, Biochemical, and Molecular Aspects. Int. J. Environ. Res. Public Health 2018, 15, 59. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Parihar, P.; Singh, R.; Singh, V.P.; Prasad, S.M. Heavy Metal Tolerance in Plants: Role of Transcriptomics, Proteomics, Metabolomics, and Ionomics. Front. Plant Sci. 2016, 6, 1143. [Google Scholar] [CrossRef]
- Li, W.X.; Chen, T.B.; Huang, Z.C.; Lei, M.; Liao, X.Y. Effect of Arsenic on Chloroplast Ultrastructure and Calcium Distribution in Arsenic Hyperaccumulator Pteris vittata L. Chemosphere 2006, 62, 803–809. [Google Scholar] [CrossRef]
- Chen, X.M.; Yu, T.T.; Zeng, X.C. Functional features of a novel Sb(III)- and As(III)-oxidizing bacterium: Implications for the interactions between bacterial Sb(III) and As(III) oxidation pathways. Chemosphere 2024, 352, 141385. [Google Scholar] [CrossRef]
- Pan, X.; Zhang, D.; Chen, X.; Bao, A.; Li, L. Antimony Accumulation, Growth Performance, Antioxidant Defense System and Photosynthesis of Zea mays in Response to Antimony Pollution in Soil. Water Air Soil Pollut. 2011, 215, 517–523. [Google Scholar] [CrossRef]
- Ortega, A.; Garrido, I.; Casimiro, I.; Espinosa, F. Effects of Antimony on Redox Activities and Antioxidant Defence Systems in Sunflower (Helianthus annuus L.) Plants. PLoS ONE 2017, 12, e0183991. [Google Scholar] [CrossRef]
- Yu, L.J.; Luo, Y.F.; Liao, B.; Xie, L.J.; Chen, L.; Xiao, S.; Li, J.T.; Hu, S.N.; Shu, W.S. Comparative Transcriptome Analysis of Transporters, Phytohormone and Lipid Metabolism Pathways in Response to Arsenic Stress in Rice (Oryza Sativa). New Phytol. 2012, 195, 97–112. [Google Scholar] [CrossRef]
- He, M.; Yang, J. Effects of Different Forms of Antimony on Rice during the Period of Germination and Growth and Antimony Concentration in Rice Tissue. Sci. Total Environ. 1999, 243–244, 149–155. [Google Scholar] [CrossRef]
- Álvarez-Robles, M.J.; Bernal, M.P.; Sánchez-Guerrero, A.; Sevilla, F.; Clemente, R. Major As Species, Lipid Peroxidation and Protein Carbonylation in Rice Plants Exposed to Increasing As(V) Concentrations. Heliyon 2020, 6, e04703. [Google Scholar] [CrossRef] [PubMed]
- Meharg, A.A.; Hartley-Whitaker, J. Arsenic Uptake and Metabolism in Arsenic Resistant and Nonresistant Plant Species. New Phytol. 2002, 154, 29–43. [Google Scholar] [CrossRef]
- Jian, F.M.; Yamaji, N.; Mitani, N.; Xu, X.Y.; Su, Y.H.; McGrath, S.P.; Zhao, F.J. Transporters of Arsenite in Rice and Their Role in Arsenic Accumulation in Rice Grain. Proc. Natl. Acad. Sci. USA 2008, 105, 9931. [Google Scholar] [CrossRef]
- Bienert, G.P.; Schüssler, M.D.; Jahn, T.P. Metalloids: Essential, Beneficial or Toxic? Major Intrinsic Proteins Sort It Out. Trends Biochem. Sci. 2008, 33, 20–26. [Google Scholar] [CrossRef]
- Sun, S.K.; Chen, Y.; Che, J.; Konishi, N.; Tang, Z.; Miller, A.J.; Ma, J.F.; Zhao, F.J. Decreasing Arsenic Accumulation in Rice by Overexpressing OsNIP1;1 and OsNIP3;3 through Disrupting Arsenite Radial Transport in Roots. New Phytol. 2018, 219, 641–653. [Google Scholar] [CrossRef]
- Mosa, K.A.; Kumar, K.; Chhikara, S.; Mcdermott, J.; Liu, Z.; Musante, C.; White, J.C.; Dhankher, O.P. Members of Rice Plasma Membrane Intrinsic Proteins Subfamily Are Involved in Arsenite Permeability and Tolerance in Plants. Transgenic Res. 2012, 21, 1265–1277. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Yan, H.; Chen, Y.; Shen, H.; Xu, W.; Zhang, H.; Shi, L.; Zhu, Y.G.; Ma, M. An Aquaporin PvTIP4;1 from Pteris vittata May Mediate Arsenite Uptake. New Phytol. 2016, 209, 746–761. [Google Scholar] [CrossRef]
- Verkman, A.S. Aquaporins. Curr. Biol. 2013, 23, 52–55. [Google Scholar] [CrossRef]
- Fu, S.F.; Chen, P.Y.; Nguyen, Q.T.T.; Huang, L.Y.; Zeng, G.R.; Huang, T.L.; Lin, C.Y.; Huang, H.J. Transcriptome Profiling of Genes and Pathways Associated with Arsenic Toxicity and Tolerance in Arabidopsis. BMC Plant Biol. 2014, 14, 94. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.L.; Nguyen, Q.T.T.; Fu, S.F.; Lin, C.Y.; Chen, Y.C.; Huang, H.J. Transcriptomic Changes and Signaling Pathways Induced by Arsenic Stress in Rice Roots. Plant Mol. Biol. 2012, 80, 587–608. [Google Scholar] [CrossRef] [PubMed]
- Deng, F.; Liu, X.; Chen, Y.; Rathinasabapathi, B.; Rensing, C.; Chen, J.; Bi, J.; Xiang, P.; Ma, L.Q. Aquaporins Mediated Arsenite Transport in Plants: Molecular Mechanisms and Applications in Crop Improvement. Crit. Rev. Environ. Sci. Technol. 2019, 50, 1613–1639. [Google Scholar] [CrossRef]
- Maciaszczyk-Dziubinska, E.; Migdal, I.; Migocka, M.; Bocer, T.; Wysocki, R. The Yeast Aquaglyceroporin Fps1p Is a Bidirectional Arsenite Channel. FEBS Lett. 2010, 584, 726–732. [Google Scholar] [CrossRef]
- Shao, J.F.; Yamaji, N.; Liu, X.W.; Yokosho, K.; Shen, R.F.; Ma, J.F. Preferential Distribution of Boron to Developing Tissues Is Mediated by the Intrinsic Protein OsNIP3. Plant Physiol. 2018, 176, 1739–1750. [Google Scholar] [CrossRef]
- Wang, F.-Z.; Chen, M.-X.; Yu, L.-J.; Xie, L.-J.; Yuan, L.-B.; Qi, H.; Xiao, M.; Guo, W.; Chen, Z.; Yi, K.; et al. OsARM1, an R2R3 MYB Transcription Factor, Is Involved in Regulation of the Response to Arsenic Stress in Rice. Front. Plant Sci. 2017, 8, 1868. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, H. Molecular Identification and Analysis of Arsenite Stress-Responsive miRNAs in Rice. J. Agric. Food Chem. 2012, 60, 6524–6536. [Google Scholar] [CrossRef]
- Sharma, D.; Tiwari, M.; Lakhwani, D.; Tripathi, R.D.; Trivedi, P.K. Differential Expression of microRNAs by Arsenate and Arsenite Stress in Natural Accessions of Rice. Metallomics 2015, 7, 174–187. [Google Scholar] [CrossRef] [PubMed]
- Ji, R.; Zhou, L.; Liu, J.; Wang, Y.; Yang, L.; Zheng, Q.; Zhang, C.; Zhang, B.; Ge, H.; Yang, Y.; et al. Calcium-Dependent Protein Kinase CPK31 Interacts with Arsenic Transporter AtNIP1;1 and Regulates Arsenite Uptake in Arabidopsis thaliana. PLoS ONE 2017, 12, e0173681. [Google Scholar] [CrossRef]
- Kawahara, Y.; de la Bastide, M.; Hamilton, J.P.; Kanamori, H.; McCombie, W.R.; Ouyang, S.; Schwartz, D.C.; Tanaka, T.; Wu, J.; Zhou, S. Improvement of the Oryza sativa Nipponbare Reference Genome Using next Generation Sequence and Optical Map Data. Rice 2013, 6, 4. [Google Scholar] [CrossRef]
- Chen, P.; Li, Y.; Zhao, L.; Hou, Z.; Yan, M.; Hu, B.; Liu, Y.; Azam, S.M.; Zhang, Z.; Rahman, Z.U.; et al. Genome-Wide Identification and Expression Profiling of Atp-Binding Cassette (ABC) Transporter Gene Family in Pineapple (Ananas comosus (L.) Merr.) Reveal the Role of AcABCG38 in Pollen Development. Front. Plant Sci. 2017, 8, 2150. [Google Scholar] [CrossRef]
- Rahman, Z.U.; Azam, S.M.; Liu, Y.; Yan, C.; Ali, H.; Zhao, L.; Chen, P.; Yi, L.; Priyadarshani, S.V.G.N.; Yuan, Q. Expression Profiles of Wuschel-Related Homeobox Gene Family in Pineapple (Ananas comosus L.). Trop. Plant Biol. 2017, 10, 204–215. [Google Scholar] [CrossRef]
- Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol. Biol. Evol. 2011, 28, 2731–2739. [Google Scholar] [CrossRef] [PubMed]
- Guo, A.-Y.; Zhu, Q.-H.; Chen, X.; Luo, J.-C. GSDS: A gene structure display server. Hereditas 2007, 29, 1023–1026. [Google Scholar] [CrossRef]
- Ji, Y.; Mestrot, A.; Schulin, R.; Tandy, S. Uptake and Transformation of Methylated and Inorganic Antimony in Plants. Front. Plant Sci. 2018, 9, 140. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Arafat, Y.; Din, I.U.; Yang, B.; Zhou, L. Nitrogen Fertilizer Amendment Alter the Bacterial Community Structure in the Rhizosphere of Rice (Oryza sativa L.) and Improve Crop Yield. Front. Microbiol. 2019, 10, 2623. [Google Scholar] [CrossRef]
- Ali, H.; Liu, Y.; Azam, S.M.; Ali, I.; Ali, U.; Li, W.; Ashraf, H.J.; Jie, Y.; Olsson, S.; Qin, Y. Genome Wide Identification and Expression Profiles of TALE Genes in Pineapple (Ananas comosus L.). Trop. Plant Biol. 2019, 2, 304–317. [Google Scholar] [CrossRef]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate Normalization of Real-Time Quantitative RT-PCR Data by Geometric Averaging of Multiple Internal Control Genes. Genome Biol. 2002, 3, research0034.1. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Metsalu, T.; Vilo, J. ClustVis: A Web Tool for Visualizing Clustering of Multivariate Data Using Principal Component Analysis and Heatmap. Nucleic Acids Res. 2015, 43, W566–W570. [Google Scholar] [CrossRef]
Gene ID | Gene Names | Chr. No. | Length of A.A | Subcellular Localization | IP | No. of ORFs | MW (Da) | I.I | A.I |
---|---|---|---|---|---|---|---|---|---|
CA12g14150 | CAPIP1-8 | 12 | 279 | PM | 8.3 | 6 | 30,858.9 | 32.1 | 100.4 |
CA11g19000 | CAPIP2-7 | 11 | 286 | PM | 7.7 | 5 | 30,657.7 | 32.3 | 97.0 |
CA11g14810 | CATIP1-14 | 10 | 287 | PM, V | 7.7 | 7 | 26,998.9 | 30.8 | 96.3 |
CA11g13570 | CATIP1-13 | 10 | 288 | V | 8.7 | 9 | 29,363.2 | 31.7 | 98.7 |
CA11g00880 | CATIP4-1 | 11 | 286 | V | 6.0 | 6 | 25,849.4 | 33.6 | 99.7 |
CA10g15710 | CATIP1-12 | Scaffold | 283 | V | 6.7 | 6 | 4950.5 | 29.4 | 102.8 |
CA10g15210 | CAPIP2-6 | 10 | 287 | PM | 8.2 | 8 | 30,543.4 | 28.5 | 105.1 |
CA10g07050 | CAPIP2-5 | 10 | 250 | PM | 9.2 | 9 | 33,792.1 | 27.7 | 113.2 |
CA09g02780 | CAPIP2-4 | 9 | 258 | PM | 8.5 | 8 | 29,778.7 | 28.2 | 110.5 |
CA09g02770 | CAPIP2-3 | 9 | 260 | PM | 8.5 | 7 | 29,803.7 | 30.1 | 107.4 |
CA08g19380 | CAPIP2-2 | 8 | 245 | PM | 8.9 | 10 | 30,286.2 | 19.8 | 112.3 |
CA08g18710 | CAPIP1-7 | 8 | 248 | PM | 7.6 | 7 | 35,282.7 | 24.2 | 117.3 |
CA08g15090 | CAPIP1-6 | 8 | 248 | PM | 6.1 | 3 | 16,965.4 | 26.2 | 116.1 |
CA08g07290 | CAPIP1-5 | 8 | 247 | PM | 8.8 | 8 | 30,616.5 | 25.1 | 113.3 |
CA07g03360 | CATIP1-11 | 4 | 256 | PM | 6.0 | 6 | 28,374.8 | 36.3 | 94.2 |
CA06g24330 | CATIP1-10 | 6 | 265 | V | 4.2 | 2 | 13,484.5 | 21.9 | 100.6 |
CA06g24320 | CATIP1-9 | 6 | 265 | V | 9.8 | 3 | 15,630.2 | 21.2 | 102.1 |
CA06g23450 | CATIP1-8 | 6 | 283 | V | 6.0 | 9 | 25,663.8 | 29.5 | 102.0 |
CA06g22180 | CANIP2-2 | 6 | 274 | CM | 9.0 | 8 | 31,634.0 | 26.9 | 100.0 |
CA06g20630 | CATIP3-2 | 6 | 272 | V | 7.1 | 9 | 27,254.7 | 34.2 | 113.3 |
CA06g12470 | CATIP2-4 | 6 | 205 | V | 5.7 | 3 | 25,180.3 | 29.2 | 101.4 |
CA06g08890 | CAPIP2-1 | Scaffold | 272 | PM | 9.5 | 6 | 22,112.8 | 16.8 | 99.4 |
CA05g16220 | CAPIP1-4 | 5 | 251 | PM | 9.1 | 6 | 30,731.9 | 30.5 | 115.1 |
CA04g14660 | CAPIP1-3 | Scaffold | 257 | PM | 7.1 | 7 | 34,863.9 | 21.7 | 97.6 |
CA04g01090 | CANIP1-2 | 4 | 264 | PM | 7.8 | 5 | 30,104.8 | 22.7 | 117.4 |
CA03g34630 | CATIP2-3 | 3 | 267 | V | 6.1 | 8 | 24,908.1 | 32.4 | 106.0 |
CA03g32190 | CANIP6-1 | 3 | 295 | PM | 8.6 | 5 | 31,366.6 | 36.6 | 111.6 |
CA03g23890 | CATIP3-1 | 3 | 247 | V | 8.9 | 7 | 27,687.2 | 26.6 | 100.8 |
CA03g15670 | CATIP5-1 | 3 | 248 | PM, V | 8.9 | 7 | 26,699.1 | 30.1 | 116.6 |
CA03g14380 | CASIP1-1 | 3 | 305 | PM, V | 9.1 | 4 | 25,994.6 | 28.8 | 100.5 |
CA02g24190 | CANIP4-3 | 2 | 221 | PM | 8.9 | 6 | 28,068.2 | 25.2 | 111.2 |
CA02g13230 | CANIP1-1 | 2 | 297 | PM | 9.3 | 4 | 28,950.5 | 32.4 | 96.0 |
CA02g13220 | CANIP2-1 | 2 | 211 | PM, V | 9.2 | 2 | 26,444.2 | 25.6 | 114.6 |
CA02g07620 | CATIP1-7 | 4 | 127 | PM, V | 5.7 | 4 | 20,386.3 | 22.6 | 101.4 |
CA02g06180 | CANIP4-2 | 2 | 326 | PM | 6.7 | 9 | 31,482.8 | 29.1 | 115.4 |
CA01g34840 | CANIP5-1 | Scaffold | 329 | PM | 8.9 | 7 | 30,914.9 | 40.6 | 118.0 |
CA01g34180 | CAPIP1-2 | 1 | 153 | PM | 8.3 | 6 | 30,766.7 | 29.4 | 107.3 |
CA01g24170 | CATIP1-6 | 10 | 179 | PM, V | 6.3 | 7 | 26,368.8 | 30.6 | 112.8 |
CA01g24160 | CATIP1-5 | 10 | 170 | PM, V | 7.9 | 2 | 19,540.2 | 29.8 | 108.0 |
CA01g24010 | CANIP3-1 | 1 | 125 | PM, V | 9.3 | 7 | 21,990.9 | 30.8 | 105.4 |
CA01g07110 | CATIP1-4 | 1 | 119 | PM, V | 5.7 | 6 | 27,566.0 | 30.5 | 102.5 |
CA01g07100 | CATIP1-3 | 1 | 190 | V | 5.5 | 5 | 28,142.7 | 23.5 | 90.9 |
CA01g07090 | CATIP1-2 | 1 | 114 | PM, V | 5.7 | 5 | 28,126.7 | 15.6 | 140.2 |
CA01g05540 | CATIP2-2 | Scaffold | 242 | V | 6.4 | 4 | 17,422.3 | 32.2 | 109.6 |
CA01g02480 | CAPIP1-1 | 1 | 159 | PM | 7.7 | 7 | 30,633.6 | 31.7 | 95.0 |
CA00g62940 | CATIP1-1 | 1 | 124 | V | 6.3 | 7 | 26,388.5 | 31.6 | 92.8 |
CA00g57100 | CANIP4-1 | Scaffold | 121 | PM | 8.4 | 7 | 29,060.1 | 24.8 | 82.2 |
CA00g46880 | CATIP2-1 | 6 | 107 | V | 6.0 | 6 | 25,060.2 | 29.8 | 93.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azam, S.M.; Huang, K.; Yuan, J.; Bai, Y.; Chen, Q.; Dang, P.; Alwathnani, H.; Bin Zayid, H.F.; Feng, R.; Rensing, C. Genomic Survey of Genes Encoding Major Intrinsic Proteins (MIPs) and Their Response to Arsenite Stress in Pepper (Capsicum annum). Plants 2025, 14, 1475. https://doi.org/10.3390/plants14101475
Azam SM, Huang K, Yuan J, Bai Y, Chen Q, Dang P, Alwathnani H, Bin Zayid HF, Feng R, Rensing C. Genomic Survey of Genes Encoding Major Intrinsic Proteins (MIPs) and Their Response to Arsenite Stress in Pepper (Capsicum annum). Plants. 2025; 14(10):1475. https://doi.org/10.3390/plants14101475
Chicago/Turabian StyleAzam, Syed Muhammad, Kaixuan Huang, Jiaxin Yuan, Yanqing Bai, Qiaolin Chen, Panpan Dang, Hend Alwathnani, Hajar Fahad Bin Zayid, Renwei Feng, and Christopher Rensing. 2025. "Genomic Survey of Genes Encoding Major Intrinsic Proteins (MIPs) and Their Response to Arsenite Stress in Pepper (Capsicum annum)" Plants 14, no. 10: 1475. https://doi.org/10.3390/plants14101475
APA StyleAzam, S. M., Huang, K., Yuan, J., Bai, Y., Chen, Q., Dang, P., Alwathnani, H., Bin Zayid, H. F., Feng, R., & Rensing, C. (2025). Genomic Survey of Genes Encoding Major Intrinsic Proteins (MIPs) and Their Response to Arsenite Stress in Pepper (Capsicum annum). Plants, 14(10), 1475. https://doi.org/10.3390/plants14101475