Soil–Plant Characterization in Agrosilvopastoral System Established in a Fe-Mn Abandoned Mine After Long-Term Closure
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Site Description
3.2. Sample Collection and Analysis
3.3. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, L.W.; Li, W.; Song, W.P.; Guo, M.X. Remediation techniques for heavy metal contaminated soils: Principles and applicability. Sci. Total Environ. 2018, 633, 206–219. [Google Scholar] [CrossRef] [PubMed]
- Santos, E.S.; Abreu, M.M.; Magalhães, M.C.F. Hazard assessment of soils and spoils from the Portuguese Iberian Pyrite Belt mining areas and their potential reclamation. In Assessement, Restoration and Reclamation of Mining Influenced Soils; Bech, J., Bini, C., Pashkevich, M., Eds.; Elsevier: Philadelphia, PA, USA, 2017; pp. 63–88. [Google Scholar]
- Matos, J.X.; Martins, L.P. Reabilitação Ambiental de áreas mineiras do Sector Português da Faixa Piritosa Ibérica: Estado da Arte e Prespectivas Futuras. Bol. Geol. Min. 2006, 117, 289–304. [Google Scholar]
- Rossini-Oliva, S.; Santos, E.S.; Abreu, M.M. Accumulation of Mn and Fe in aromatic plant species from abandoned Rosalgar mine and their potential human risk. Appl. Geochem. 2019, 104, 42–50. [Google Scholar]
- Santos Oliveira, J.M.; Farinha, J.; Matos, J.X.; Ávila, E.; Rosa, C.; Canto Machado, M.J.; Daniel, E.S.; Martins, L.; Machado Leite, M.R. Diagnóstico ambiental das principais áreas mineiras degradadas do pais. Bol. Minas 2002, 39, 67–85. [Google Scholar]
- Santos, E.S.; Abreu, M.M.; Macías, F.; de Varennes, A. Improvement of chemical and biological properties of gossan mine wastes following application of amendments and growth of Cistus ladanifer L. J. Geochem. Explor. 2014, 147, 173–181. [Google Scholar] [CrossRef]
- Tordoff, G.M.; Baker, A.J.M.; Willis, A.J. Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemosphere 2000, 41, 219–228. [Google Scholar] [CrossRef]
- Weil, R.R.; Brady, N.C. The Nature and Properties of Soils, 15th ed.; Pearson Education Limited: London, UK, 2017. [Google Scholar]
- Venkatesh, G.; Gopinath, K.A.; Ramana, D.B.V.; Kumari, V.; Srinivas, I.; Shanker, A.K.; Rao, K.V.; Prasad, J.V.N.S.; Sammi, K.R.; Sridhar, K.B.; et al. Agrosilvopastoral systems for improved crop and fodder productivity and soil health in the rainfed environments of South India. Agric. Syst. 2024, 214, 103812. [Google Scholar] [CrossRef]
- Moreno, G.; Franca, A.; Pinto Correia, M.T.; Godinho, S. Multifunctionality and dynamics of silvopastoral systems. Options Méditerr. 2014, 109, 421–436. [Google Scholar]
- Schnabel, S.; Dahlgren, R.A.; Moreno-Marcos, G. Soil and water dynamics. In Mediterranean Oak Woodland Working Landscapes; Springer: Dordrecht, The Netherlands, 2013; pp. 91–121. [Google Scholar]
- Abreu, M.M.; Bech, J.; Carvalho, L.C.; Santos, E.S. Potential hazardous elements fluxes from soil to plants and the food chain. In Environment and Human Health: Potentially Harmful Elements in the Environment and the Impact on Human Health; Bini, C., Bech, J., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 309–337. [Google Scholar]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press (Taylor & Francis Group): Boca Raton, FL, USA, 2021. [Google Scholar]
- Dutta, M.; Kushwaha, A.; Kalita, S.; Devi, G.; Bhuyan, M. Assessment of bioaccumulation and detoxification of cadmium in soil-plant insect food chain. Bioresour. Technol. Rep. 2019, 7, 100242. [Google Scholar] [CrossRef]
- Kovacheva, A.; Vladov, I.; Gabrashanska, M.; Rabadjieva, D.; Tepavitcharova, S.; Nanev, V.; Dassenakis, M.; Karavoltsos, S. Dynamics of trace metals in the system water–soil–plant–wild rats–tapeworms (Hymenolepis diminuta) in Maglizh area, Bulgaria. J. Trace Elem. Med. Biol. 2020, 58, 126440. [Google Scholar] [CrossRef]
- Madejón, P.; Domínguez, M.T.; Murillo, J.M. Evaluation of pastures for horses grazing on soils polluted by trace elements. Ecotoxicology 2009, 18, 417–428. [Google Scholar] [CrossRef] [PubMed]
- Rossini-Oliva, S.; Nuñez, R.L. Potential toxic elements accumulation in several food species grown in urban and rural gardens subjected to different conditions. Agronomy 2021, 11, 2151. [Google Scholar] [CrossRef]
- Rossini-Oliva, S.; Nuñez, R.L. Is it healthy urban agriculture? Human exposure to potentially toxic elements in urban gardens from Andalusia, Spain. Environ. Sci. Pollut. Res. 2024, 31, 36626–36642. [Google Scholar] [CrossRef]
- de Varennes, A. Produtividade dos Solos e Ambiente; Escolar Editora: Lisboa, Portugal, 2003. [Google Scholar]
- Veloso, A.; Sempiterno, C.; Calouro, F.; Rebelo, F.; Pedra, F.; Castro, I.V.; da Conceição Gonçalves, M.; da Encarnação Marcelo, M.; Pereira, P.; Fareleira, P. Manual de Fertilização das Culturas, 3rd ed.; Instituto Nacional de Investigação Agrária e Veterinária: Lisbon, Portugal, 2022. [Google Scholar]
- Abreu, M.M.; Santos, E.S.; Ferreira, M.; Magalhães, M.C.F. Cistus salviifolius a promising species for mine wastes remediation. J. Geochem. Explor. 2012, 113, 86–93. [Google Scholar] [CrossRef]
- Khalil, M.I.; Cordovil, C.M.d.S.; Francaviglia, R.; Henry, B.; Klumpp, K.; Koncz, P.; Llorente, M.; Madari, B.E.; Muñoz-Rojas, M.; Rainer, N. Mediterranean savanna-like agrosilvopastoral grassland system in Spain, Italy and Portugal. In Recarbonising Global Soils—A Technical Manual of Recommended Sustainable Soil Management Volume 4: Cropland, Grassland, Integrated Systems and Farming Approaches—Case Studies; FAO, ITPS, Eds.; FAO: Rome, Italy, 2021; pp. 186–195. [Google Scholar]
- Moreno, G.; Bartolome, J.W.; Gea-Izquierdo, G.; Cañellas, I. Overstory-understory relationships. In Mediterranean Oak Woodland Working Landscapes. Dehesas of Spain and Ranchlands of California; Campos, P., Huntsinger, L., Oviedo, J.L., Starrs, P.F., Diaz, M., Standiford, R.B., Montero, G., Eds.; Landscape Series; Springer: Berlin/Heidelberg, Germany, 2013; Volume 16. [Google Scholar]
- Agência Portuguesa do Ambiente. Solo Contaminados—Guia Técnico: Valores de Referencia Para o Solo; APA: Amadora, Portugal, 2019. [Google Scholar]
- Dick, W.A.; Tabatabai, M.A. Significance and potential uses of soil enzymes. In Soil Microbial Ecology; Metting, B., Ed.; Marcel Dekker: New York, NY, USA, 1993; pp. 95–127. [Google Scholar]
- Wolińska, A.; Stępniewska, Z. Dehydrogenase activity in the soil environment. In Dehydrogenases; Canuto, R.A., Ed.; InTechOpen: London, UK, 2012; pp. 183–210. [Google Scholar]
- Correia, A.D. Bioquímica nos Solos, nas Pastagens e Forragens; Fundação Calouste Gulbenkian: Lisbon, Portugal, 1986. [Google Scholar]
- Bargagli, R. Trace Elements in Terrestrial Plants: An Ecophysiological Approach to Biomonitoring and Biorecovery; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Maisto, G.; Baldantoni, D.; De Marco, A.; Alfani, A.; De Santo, A.V. Ranges of nutrient concentrations in Quercus ilex leaves at natural and urban sites. J. Plant Nutr. Soil Sci. 2013, 176, 801–808. [Google Scholar] [CrossRef]
- Ugolini, F.; Tognetti, R.; Raschi, A.; Bacci, L. Quercus ilex L. as bioaccumulator for heavy metals in urban areas: Effectiveness of leaf washing with distilled water and considerations on the trees distance from traffic. Urban For. Urban Green. 2013, 12, 576–584. [Google Scholar] [CrossRef]
- Arenas-Lago, D.; Santos, E.S.; Carvalho, L.C.; Abreu, M.M.; Andrade, M.L. Cistus monspeliensis L. as a potential species for rehabilitation of soils with multielemental contamination under Mediterranean conditions. Environ. Sci. Pollut. Res. 2018, 25, 6443–6455. [Google Scholar] [CrossRef]
- Santos, E.S.; Abreu, M.M.; Saraiva, J.A. Mutielemental concentration and physiological responses of Lavandula pedunculata growing in soils developed on different mine wastes. Environ. Pollut. 2016, 213, 43–52. [Google Scholar] [CrossRef]
- Santos, E.S.; Abreu, M.M.; Nabais, C.; Saraiva, J.A. Trace elements and activity of antioxidative enzymes in Cistus ladanifer L. growing on an abandoned mine area. Ecotoxicology 2009, 18, 860–868. [Google Scholar] [CrossRef]
- Monaci, F.; Ancora, S.; Paoli, L.; Loppi, S.; Franzaring, J. Differential elemental stoichiometry of two Mediterranean evergreen woody plants over a geochemically heterogeneous area. Perspect. Plant Ecol. Evol. Syst. 2022, 55, 125672. [Google Scholar] [CrossRef]
- Koerselman, W.; Meuleman, A.F.M. The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation. J. Appl. Ecol. 1996, 33, 1441. [Google Scholar] [CrossRef]
- National Research Council. Mineral Tolerance of Animals, 2nd ed.; National Academies Press: Washington, DC, USA, 2005. [Google Scholar]
- Weiss, W.P. Mineral Tolerances of Animals. In Proceedings of the Tri-State Dairy Nutrition Conference, Fort Wayne, IN, USA, 22–23 April 2008; pp. 56–64. [Google Scholar]
- Underwood, E.J. Trace Elements in Human and Animal Nutrition; Academic Press: Cambridge, MA, USA, 1977. [Google Scholar]
- Underwood, E.J.; Suttle, N.F. The Mineral Nutrition of Livestock; CABI Publishing: Boston, MA, USA, 1999. [Google Scholar]
- Santos, E.; Arán, D. Linking circular economy and environmental rehabilitation in the designed Technosols for highmountain pastures implementation. In Proceedings of the EGU General Assembly, Vienna, Austria, 19–30 April 2021. EGU21-15508. [Google Scholar]
- Matos, J. Santa Bárbara de Padrões—Geologia. In Santa Bárbara de Padrões—Fragmentos de Memória; Rego, M., Ed.; Junta de Freguesia de Santa Bárbara de Padrões: Castro Verde, Portugal, 2007; pp. 11–24. [Google Scholar]
- Matos, J.; Pereira, Z.; Rego, M. As Minas do Campo Branco, Castro Verde; LNEG ADRAL: Amadora, Portugal, 2013. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences: Vienna, Austria, 2022. [Google Scholar]
- Direção-Geral de Agricultura e Desenvolvimento Rural. Sistema Nacional de Informação de Solos. Cartografia de Solos (Sul) 1:25000. Available online: https://portalgeo.dgadr.pt/portal/apps/webappviewer/index.html?id=7cf1a919b54f4a69827f845f10bbfb8d (accessed on 30 April 2024).
- Instituto Português do Mar e da Atmosfera. Available online: https://www.ipma.pt/bin/file.data/climate-normal/cn_71-00_BEJA.pdf) (accessed on 30 April 2024).
- Feng, M.; Shan, X.; Zhang, S.; Wen, B. A comparison of rhizosphere-based method with DTPA, EDTA, CaCl2 and NaNO3 extraction methods for prediction of bioavailability of metals in soil to barley. Environ. Pollut. 2005, 137, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Tabatabai, M.A. Soil enzymes. In Methods of Soil Analysis; Part 2; Mickelson, S.H., Bigham, J.M., Eds.; Soil Science Society of America, Inc.: Madison, WI, USA, 1994; pp. 775–833. [Google Scholar]
Holm Oak 0–10 cm | Holm Oak 10–20 cm | Herbaceous Pasture 0–20 cm | |
---|---|---|---|
pHH2O | 6.4–7.2 6.8 ± 0.3 | 6.2–6.9 6.6 ± 0.3 | 5.7–6.8 6.4 ± 0.4 |
pHKCl | 5.3–6.8 5.9 ± 0.5 * | 4.5–5.7 5.1 ± 0.5 * | 4.7–6.0 5.5 ± 0.4 |
EC 1 (µS/cm) | 109–360 211 ± 76 * | 40.1–174 83.8 ± 45 * | 114–221 152 ± 38 |
Organic C (g/kg) | 28.2–89.1 45.1 ± 20.1 * | 4.4–28.2 12.9 ± 7.5 * | 20.4–87.9 42.4 ± 23.0 |
Total N (g/kg) | 2.2–4.8 3.0 ± 0.9 * | 0.3–2.7 1.2 ± 0.7 * | 1.4–5.0 2.9 ± 1.2 |
Extractable K (mg/kg) | 120–523 354 ± 122 * | 41.5–147 101 ± 38 * | 4.2–498 297 ± 195 |
Extractable P (mg/kg) | 8.3–69.9 34.3 ± 17.4 | 1.2–91.7 37.0 ± 29.9 | 13.2–101 50.9 ± 42.6 |
CEC2 and exchangeable cations (cmolc/kg) | |||
CEC 2 | 17.5–49.0 29.2 ± 9.4 | 8.9–25.4 18.3 ± 6.2 | 14.6–30.2 24.0 ± 5.7 |
Ca | 10.9–44.1 21.2 ± 10.5 * | 3.2–15.6 10.3 ± 5.1 * | 12.8–20.4 17.2 ± 3.2 |
Mg | 3.7–8.6 6.8 ± 1.8 | 4.2–9.1 7.1 ± 1.9 | 0.3–9.5 5.7 ± 3.1 |
Na | 0.4–0.7 0.5 ± 0.1 | 0.3–0.8 0.6 ± 0.2 | 0.2–0.7 0.4 ± 0.2 |
K | 0.3–0.9 0.6 ± 0.2 * | 0.1–0.3 0.2 ± 0.1 * | 0.3–0.9 0.6 ± 0.2 |
Total acidity | 0.1–0.2 0.1 ± 0.1 | 0.1–0.2 0.1 ± 0.1 | 0.1–0.3 0.2 ± 0.1 |
Elements | Holm Oak 0–10 cm | Holm Oak 10–20 cm | Herbaceous Pasture 0–20 cm | |
---|---|---|---|---|
g/kg | Ca | 4.2–14.3 7.1 ± 3.2 * | 0.8–5.9 3.9 ± 1.8 * | 3.2–7.1 5.7 ± 1.4 |
K | 2.0–3.8 3.0 ± 0.6 * | 1.1–2.6 2.1 ± 0.5 * | 1.9–3.8 3.0 ± 0.7 | |
Mg | 4.1–6.1 5.1 ± 0.8 | 3.8–7.2 5.3 ± 1.4 | 3.5–9.2 5.2 ± 1.9 | |
P | 0.5–1.2 0.7 ± 0.2 | 0.3–1.2 0.6 ± 0.3 | 0.5–1.3 0.8 ± 0.3 | |
S | 0.6–0.8 0.7 ± 0.1 * | 0.1–0.6 0.4 ± 0.2 * | 0.6–0.8 0.7 ± 0.1 | |
Fe | 35.0–82.9 48.5 ± 16.5 | 35.0–93.2 56.9 ± 20.1 | 34.5–80.1 47.6 ± 16.9 | |
Mn | 27.9–115 88.4 ± 28.4 | 15.2–110 68.8 ± 31.3 | 36.7–124 86.1 ± 29.2 | |
mg/kg | B | 66.4–149 91.6 ± 28.9 | 59.1–157 101 ± 32.6 | 59.5–141 88.7 ± 29.4 |
Cu | 121–462 302 ± 106 | 124–572 315 ± 179 | 106–446 246 ± 116 | |
Mo | 35.7–126 92.9 ± 27.3 | 8.2–127 73.3 ± 40.9 | 21.9–177 87.4 ± 47.7 | |
Na | 364–1730 1207 ± 443 | 294–1421 861 ± 374 | 372–2093 1132 ± 576 | |
Zn | 162–734 433 ± 168 | 189–941 497 ± 276 | 157–982 409 ± 266 |
Elements | mg/kg | ||
---|---|---|---|
Holm Oak 0–10 cm | Holm Oak 10–20 cm | Herbaceous Pasture 0–20 cm | |
Ca | 455–2025 1031 ± 445 * | 266–903 602 ± 256 * | 730–960 840 ± 83.1 |
K | 15.8–54.9 34.0 ± 12.8 * | 8.9–46.9 18.4 ± 13.09 * | 8.4–73.2 44.0 ± 22.7 |
Mg | 268–430 370 ± 65.5 | 266–431 352 ± 66.5 | 204–478 326 ± 86.8 |
P | 3.5–8.1 5.6 ± 1.5 | 2.2–14.1 5.3 ± 4.4 | 1.0–18.8 7.5 ± 7.2 |
S | 12.1–19.3 16.1 ± 2.4 * | 6.3–15.0 10.1 ± 3.0 * | 10.1–16.7 12.4 ± 2.1 |
Fe | 6.7–37.2 17.2 ± 11.4 | 7.5–136 41.6 ± 44.2 | 3.6–57.2 18.0 ± 18.8 |
Mn | 25.9–554 398 ± 169 * | 493–791 619 ± 103 * | 297–573 442 ± 93.5 |
B | 0.5–1.4 1.1 ± 0.3 * | 0.2–1.1 0.6 ± 0.3 * | 0.2–0.5 0.4 ± 0.1 |
Cu | 0.1–0.7 0.4 ± 0.2 * | 0.1–3.6 1.3 ± 1.2 * | 0.1–0.6 0.3 ± 0.2 |
Na | 64.4–142 92.6 ± 23.6 | 43.1–140 101 ± 34.6 | 30.5–150 66.8 ± 40.5 |
Zn | 0.2–3.6 1.9 ± 1.0 | 0.8–5.1 3.0 ± 1.4 | 0.9–4.4 2.0 ± 1.3 |
µg TPF. g .16 h−1 | ||
---|---|---|
Holm Oak 0–10 cm | Holm Oak 10–20 cm | Herbaceous Pasture 0–20 cm |
29.2–172 93.8 ± 51.0 * | 0.2–85.6 22.6 ± 28.7 * | 36.1–216 90.4 ± 71.5 |
Elements | Holm Oak Leaves | Herbaceous Pasture | |
---|---|---|---|
g/kg | Ca | 3.9–5.9 4.7 ± 0.6 * | 3.8–9.8 6.7 ± 1.9 * |
K | 4.2–6.8 5.3 ± 0.9 * | 13.5–24.0 20.0 ± 0.4 * | |
Mg | 1.4–1.9 1.6 ± 0.2 * | 2.4–4.0 3.3 ± 0.5 * | |
N | 14.9–19.6 17.1 ± 1.7 * | 19.9–28.4 23.4 ± 2.7 * | |
P | 1.0–1.5 1.3 ± 0.2 * | 2.5–4.0 3.4 ± 0.6 * | |
mg/kg | Fe | 149–251 183 ± 33 * | 154–767 384 ± 222 * |
Mn | 197–2273 1429 ± 677 * | 197–755 469 ± 197 * | |
Cu | 8.2–20.5 11.7 ± 4.4 | 7.6–14.0 10.6 ± 2.2 | |
Na | 78.9–272 189 ± 67.6 * | 1611–7732 3892 ± 1939 * | |
Zn | 24.6–33.4 28.0 ± 2.8 * | 35.6–55.8 43.1 ± 7.6 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, E.S.; Abreu, M.M.; Rossini-Oliva, S. Soil–Plant Characterization in Agrosilvopastoral System Established in a Fe-Mn Abandoned Mine After Long-Term Closure. Plants 2025, 14, 60. https://doi.org/10.3390/plants14010060
Santos ES, Abreu MM, Rossini-Oliva S. Soil–Plant Characterization in Agrosilvopastoral System Established in a Fe-Mn Abandoned Mine After Long-Term Closure. Plants. 2025; 14(1):60. https://doi.org/10.3390/plants14010060
Chicago/Turabian StyleSantos, Erika S., Maria Manuela Abreu, and Sabina Rossini-Oliva. 2025. "Soil–Plant Characterization in Agrosilvopastoral System Established in a Fe-Mn Abandoned Mine After Long-Term Closure" Plants 14, no. 1: 60. https://doi.org/10.3390/plants14010060
APA StyleSantos, E. S., Abreu, M. M., & Rossini-Oliva, S. (2025). Soil–Plant Characterization in Agrosilvopastoral System Established in a Fe-Mn Abandoned Mine After Long-Term Closure. Plants, 14(1), 60. https://doi.org/10.3390/plants14010060