Role of Quercetin in Diabetic Cardiomyopathy
Abstract
:1. Introduction
2. Pharmacokinetics of Quercetin: Insights into Bioavailability and Metabolism
3. Effects of Quercetin on Hyperglycemia and Dyslipidemia
4. Effects of Quercetin on Myocardial Oxidative Stress and Inflammation
5. Effects of Quercetin on Heart Fibrosis
6. Effects of Quercetin on Myocardial Apoptosis and Autophagy
7. Effects of Quercetin on Heart Mitochondrial Function and Energy Metabolism
8. Effects of Quercetin on Cardiac Structure
9. Effects of Quercetin on Cardiac Function
10. Effects of Quercetin on Myocardial Calcium Regulation
11. Effects of Quercetin on Endothelial Dysfunction
12. Meta-Analysis of the Clinical Impact of Quercetin on Cardiovascular Health
13. Conclusions and Future Directions for Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Diabetes. Available online: https://www.who.int/health-topics/diabetes#tab=tab_1 (accessed on 4 October 2024).
- Dilworth, L.; Facey, A.; Omoruyi, F. Diabetes mellitus and its metabolic complications: The role of adipose tissues. Int. J. Mol. Sci. 2021, 22, 7644. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, R.H.; Abel, E.D. Basic mechanisms of diabetic heart disease. Circ. Res. 2020, 126, 1501–1525. [Google Scholar] [CrossRef] [PubMed]
- Jia, G.; Hill, M.A.; Sowers, J.R. Diabetic cardiomyopathy: An update of mechanisms contributing to this clinical entity. Circ. Res. 2018, 122, 624–638. [Google Scholar] [CrossRef]
- Dillmann, W.H. Diabetic cardiomyopathy. Circ. Res. 2019, 124, 1160–1162. [Google Scholar] [CrossRef]
- Bungãu, S.G.; Popa, V.C. Between religion and science some aspects concerning illness and healing in antiquity. Transylv. Rev. 2015, 24, 3–18. [Google Scholar]
- Li, D.; Jiang, C.; Mei, G.; Zhao, Y.; Chen, L.; Liu, J.; Tang, Y.; Gao, C.; Yao, P. Quercetin alleviates ferroptosis of pancreatic β cells in type 2 diabetes. Nutrients 2020, 12, 2954. [Google Scholar] [CrossRef]
- Bartosova, L.; Horvath, C.; Galis, P.; Ferenczyova, K.; Kalocayova, B.; Szobi, A.; Duris-Adameova, A.; Bartekova, M.; Rajtik, T. Quercetin alleviates diastolic dysfunction and suppresses adverse pro-hypertrophic signaling in diabetic rats. Front. Endocrinol. 2022, 13, 1029750. [Google Scholar] [CrossRef]
- Chen, Y.F.; Qiu, Q.; Wang, L.; Li, X.R.; Zhou, S.; Wang, H.; Jiang, W.D.; Geng, J.Y.; Qin-Gao; Tang, B.; et al. Quercetin ameliorates myocardial injury in diabetic rats by regulating autophagy and apoptosis through AMPK/mTOR signaling pathway. Am. J. Chin. Med. 2024, 52, 841–864. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Li, D.; Chen, L.; Liu, Y.; Zhao, Y.; Mei, G.; Tang, Y.; Yang, Y.; Yao, P.; Gao, C. Quercetin ameliorated cardiac injury via reducing inflammatory actions and the glycerophospholipid metabolism dysregulation in a diabetic cardiomyopathy mouse model. Food Funct. 2022, 13, 7847–7856. [Google Scholar] [CrossRef]
- Wei, Z.; Jing, Z.; Pinfang, K.; Chao, S.; Shaohuan, Q. Quercetin Inhibits pyroptosis in diabetic cardiomyopathy through the Nrf2 pathway. J. Diabetes Res. 2022, 2022, 9723632. [Google Scholar] [CrossRef]
- Ichwan, M.; Walker, T.L.; Nicola, Z.; Ludwig-Müller, J.; Böttcher, C.; Overall, R.W.; Adusumilli, V.S.; Bulut, M.; Sykes, A.M.; Hübner, N.; et al. Apple peel and flesh contain pro-neurogenic compounds. Stem Cell Rep. 2021, 16, 548–565. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.-Q.; Wang, D.; Gao, Y.-X. Advances in studies on the function and application of Aronia melanocarpa. Food Res. Dev. 2021, 42, 206–213. [Google Scholar]
- Chen, Y.H.; Zhang, Y.H.; Chen, G.S.; Yin, J.F.; Chen, J.X.; Wang, F.; Xu, Y.Q. Effects of phenolic acids and quercetin-3-O-rutinoside on the bitterness and astringency of green tea infusion. npj Sci. Food 2022, 6, 8. [Google Scholar] [CrossRef] [PubMed]
- Kamisah, Y.; Zuhair, J.S.F.; Juliana, A.H.; Jaarin, K. Parkia speciosa empty pod prevents hypertension and cardiac damage in rats given N(G)-nitro-L-arginine methyl ester. Biomed. Pharmacother. 2017, 96, 291–298. [Google Scholar] [CrossRef]
- Gui, J.S.; Mustafa, N.H.; Jalil, J.; Jubri, Z.; Kamisah, Y. Modulation of NOX4 and MAPK signalling pathways by parkia speciosa empty pods in H9c2 cardiomyocytes exposed to H2O2. Indian J. Pharm. Sci. 2019, 81, 1029–1035. [Google Scholar] [CrossRef]
- Mustafa, N.-H.; Ugusman, A.; Jalil, J.; Kamisah, Y. Anti-inflammatory property of Parkia speciosa empty pod extract in human umbilical vein endothelial cells. J. Appl. Pharm. Sci. 2018, 8, 152–158. [Google Scholar]
- Chang, X.; Zhang, T.; Wang, J.; Liu, Y.; Yan, P.; Meng, Q.; Yin, Y.; Wang, S. SIRT5-related desuccinylation modification contributes to quercetin-induced protection against heart failure and high-glucose-prompted cardiomyocytes injured through regulation of mitochondrial quality surveillance. Oxid. Med. Cell. Longev. 2021, 2021, 5876841. [Google Scholar] [CrossRef] [PubMed]
- Graefe, E.U.; Derendorf, H.; Veit, M. Pharmacokinetics and bioavailability of the flavonol quercetin in humans. Int. J. Clin. Pharmacol. Ther. 1999, 37, 219–233. [Google Scholar]
- Hai, Y.; Zhang, Y.; Liang, Y.; Ma, X.; Qi, X.; Xiao, J.; Xue, W.; Luo, Y.; Yue, T. Advance on the absorption, metabolism, and efficacy exertion of quercetin and its important derivatives: Absorption, metabolism and function of quercetin. Food Front. 2020, 1, 420–434. [Google Scholar] [CrossRef]
- Muñoz-Reyes, D.; Morales, A.I.; Prieto, M. Transit and metabolic pathways of quercetin in tubular cells: Involvement of its antioxidant properties in the kidney. Antioxidants 2021, 10, 909. [Google Scholar] [CrossRef] [PubMed]
- Boulton, D.W.; Walle, U.K.; Walle, T. Extensive binding of the bioflavonoid quercetin to human plasma proteins. J. Pharm. Pharmacol. 1998, 50, 243–249. [Google Scholar] [CrossRef] [PubMed]
- de Boer, V.C.; Dihal, A.A.; van der Woude, H.; Arts, I.C.; Wolffram, S.; Alink, G.M.; Rietjens, I.M.; Keijer, J.; Hollman, P.C. Tissue distribution of quercetin in rats and pigs. J. Nutr. 2005, 135, 1718–1725. [Google Scholar] [CrossRef] [PubMed]
- Katsarou, A.; Gudbjörnsdottir, S.; Rawshani, A.; Dabelea, D.; Bonifacio, E.; Anderson, B.J.; Jacobsen, L.M.; Schatzm, D.A.; Lernmark, Å. Type 1 diabetes mellitus. Nat. Rev. Dis. Primers. 2017, 3, 17016. [Google Scholar] [CrossRef] [PubMed]
- Turina, M.; Christ-Crain, M.; Polk, H.C., Jr. Diabetes and hyperglycemia: Strict glycemic control. Crit. Care Med. 2006, 34, S291–S300. [Google Scholar] [CrossRef]
- Gong, L.; Feng, D.; Wang, T.; Ren, Y.; Liu, Y.; Wang, J. Inhibitors of α-amylase and α-glucosidase: Potential linkage for whole cereal foods on prevention of hyperglycemia. Food Sci. Nutr. 2020, 8, 6320–6337. [Google Scholar] [CrossRef]
- Meng, Y.; Su, A.; Yuan, S.; Zhao, H.; Tan, S.; Hu, C.; Deng, H.; Guo, Y. Evaluation of total flavonoids, myricetin, and quercetin from Hovenia dulcis Thunb. as inhibitors of α-amylase and α-glucosidase. Plant Foods Hum. Nutr. 2016, 71, 444–449. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Wang, J.; Ao, J.; Hou, Y.; Xi, M.; Cai, Y.; Li, M.; Luo, A. Structure-activity relationships and the underlying mechanism of α-amylase inhibition by hyperoside and quercetin: Multi-spectroscopy and molecular docking analyses. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023, 285, 121797. [Google Scholar] [CrossRef]
- Qu, X.; Li, J.; Yan, P.; Wang, G.; Liu, W.; Zeng, Y.; Liu, L. Quercetin of Potentilla bifurca 3-glycosylation substitution impact the inhibitory activity on α-glucosidase. Pharmacogn. Mag. 2022, 18, 458–462. [Google Scholar]
- Singh, A.K.; Patel, P.K.; Choudhary, K.; Joshi, J.; Yadav, D.; Jin, J.O. Quercetin and coumarin inhibit dipeptidyl peptidase-iv and exhibits antioxidant properties: In silico, in vitro, ex vivo. Biomolecules 2020, 10, 207. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wei, X.; Zhang, H.; Wu, Y.; Jing, J.; Huang, R.; Zhou, T.; Hu, J.; Wu, Y.; Li, Y.; et al. Doxorubicin downregulates autophagy to promote apoptosis-induced dilated cardiomyopathy via regulating the AMPK/mTOR pathway. Biomed. Pharmacother. 2023, 162, 114691. [Google Scholar] [CrossRef] [PubMed]
- Ansari, P.; Choudhury, S.T.; Seidel, V.; Rahman, A.B.; Aziz, M.A.; Richi, A.E.; Rahman, A.; Jafrin, U.H.; Hannan, J.M.A.; Abdel-Wahab, Y.H.A. Therapeutic potential of quercetin in the management of type-2 diabetes mellitus. Life 2022, 12, 1146. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Y.; Nie, Y.X.; Dong, B.Z.; Cai, Z.C.; Zeng, X.K.; Du, L.; Zhu, X.; Yin, X.X. Quercetin protects islet beta-cells from oxidation-induced apoptosis via Sirt3 in T2DM. Iran J. Basic Med. Sci. 2021, 24, 629–635. [Google Scholar] [PubMed]
- Javadipour, M.; Rezaei, M.; Keshtzar, E.; Khodayar, M.J. Metformin in contrast to berberine reversed arsenic-induced oxidative stress in mitochondria from rat pancreas probably via Sirt3-dependent pathway. J. Biochem. Mol. Toxicol. 2019, 33, e22368. [Google Scholar] [CrossRef]
- Arkat, S.; Umbarkar, P.; Singh, S.; Sitasawad, S.L. Mitochondrial peroxiredoxin-3 protects against hyperglycemia induced myocardial damage in diabetic cardiomyopathy. Free Radic. Biol. Med. 2016, 97, 489–500. [Google Scholar] [CrossRef] [PubMed]
- Bostancıeri, N.; Elbe, H.; Eşrefoğlu, M.; Vardı, N. Cardioprotective potential of melatonin, quercetin and resveratrol in an experimental model of diabetes. Biotech. Histochem. 2022, 97, 152–157. [Google Scholar] [CrossRef]
- Chellian, J.; Mak, K.K.; Chellappan, D.K.; Krishnappa, P.; Pichika, M.R. Quercetin and metformin synergistically reverse endothelial dysfunction in the isolated aorta of streptozotocin-nicotinamide-induced diabetic rats. Sci. Rep. 2022, 12, 21393. [Google Scholar] [CrossRef] [PubMed]
- Castillo, R.L.; Herrera, E.A.; Gonzalez-Candia, A.; Reyes-Farias, M.; de la Jara, N.; Peña, J.P.; Carrasco-Pozo, C. Quercetin prevents diastolic dysfunction induced by a high-cholesterol diet: Role of oxidative stress and bioenergetics in hyperglycemic rats. Oxid. Med. Cell. Longev. 2018, 2018, 7239123. [Google Scholar] [CrossRef] [PubMed]
- Boťanská, B.; Barteková, M.; Ferenczyová, K.; Fogarassyová, M.; Kindernay, L.; Barančík, M. Matrix metalloproteinases and their role in mechanisms underlying effects of quercetin on heart function in aged Zucker diabetic fatty rats. Int. J. Mol. Sci. 2021, 22, 4457. [Google Scholar] [CrossRef] [PubMed]
- Coldiron, A.D., Jr.; Sanders, R.A.; Watkins, J.B., 3rd. Effects of combined quercetin and coenzyme Q(10) treatment on oxidative stress in normal and diabetic rats. J. Biochem. Mol. Toxicol. 2002, 16, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Ferenczyova, K.; Kalocayova, B.; Kindernay, L.; Jelemensky, M.; Balis, P.; Berenyiova, A.; Zemancikova, A.; Farkasova, V.; Sykora, M.; Tothova, L.; et al. Quercetin exerts age-dependent beneficial effects on blood pressure and vascular function, but is inefficient in preventing myocardial ischemia-reperfusion injury in Zucker diabetic fatty rats. Molecules 2020, 25, 187. [Google Scholar] [CrossRef] [PubMed]
- Gorbenko, N.I.; Borikov, O.Y.; Ivanova, O.V.; Taran, E.V.; Litvinova, T.S.; Kiprych, T.V.; Shalamai, A.S. The effect of quercetin on oxidative stress markers and mitochondrial permeability transition in the heart of rats with type 2 diabetes. Ukr. Biochem. J. 2019, 91, 46–54. [Google Scholar] [CrossRef]
- Gorbenko, N.I.; Borikov, O.Y.; Kiprych, T.V.; Ivanova, O.V.; Taran, K.V.; Litvinova, T.S. Quercetin improves myocardial redox status in rats with type 2 diabetes. Endocr. Regul. 2021, 55, 142–152. [Google Scholar] [CrossRef] [PubMed]
- Hussein, J.; El-Naggar, M.E. Synthesis of an environmentally quercetin nanoemulsion to ameliorate diabetic-induced cardiotoxicity. Biocatal. Agric. Biotechnol. 2021, 33, 101983. [Google Scholar] [CrossRef]
- Ivanova, O.V. The impact of quercetin on the functional state of cardiovascular system and hemostate in rats with type 2 diabetes mellitus. Probl. Endokr. Patol. 2021, 77, 105–110. [Google Scholar]
- Krishna, K.M.; Annapurna, A.; Gopal, G.S.; Chalam, C.R.; Madan, K.; Kumar, V.K.; Prakash, G.J. Partial reversal by rutin and quercetin of impaired cardiac function in streptozotocin-induced diabetic rats. Can. J. Physiol. Pharmacol. 2005, 83, 343–355. [Google Scholar] [CrossRef] [PubMed]
- Kushwah, A.S.; Gupta, G.D. Quercetin ameliorate insulin resistance concomitant early cardiovascular changes in experimental rats. Acta Pol. Pharm. 2018, 75, 977–987. [Google Scholar] [CrossRef] [PubMed]
- Ojo, O.O.; Obaidu, I.M.; Obigade, O.C.; Olorunsogo, O.O. Quercetin and vitamin E ameliorate cardio-apoptotic risks in diabetic rats. Mol. Cell. Biochem. 2022, 477, 793–803. [Google Scholar] [CrossRef]
- Roslan, J.; Giribabu, N.; Karim, K.; Salleh, N. Quercetin ameliorates oxidative stress, inflammation and apoptosis in the heart of streptozotocin-nicotinamide-induced adult male diabetic rats. Biomed. Pharmacother. 2017, 86, 570–582. [Google Scholar] [CrossRef]
- Sanders, R.A.; Rauscher, F.M.; Watkins, J.B., 3rd. Effects of quercetin on antioxidant defense in streptozotocin-induced diabetic rats. J. Biochem. Mol. Toxicol. 2001, 15, 143–149. [Google Scholar] [CrossRef]
- Soman, S.; Rajamanickam, C.; Rauf, A.A.; Madambath, I. Molecular mechanisms of the antiglycative and cardioprotective activities of Psidium guajava leaves in the rat diabetic myocardium. Pharm. Biol. 2016, 54, 3078–3085. [Google Scholar] [CrossRef] [PubMed]
- Stechyshyn, I.; Pavliuk, B.; Demchuk, M.; Chubka, M. Changes in mass measurement indices, cardiointervalogram parameters and duration of swimming in animals with experimental type 2 diabetes mellitus treated with drugs exerting antioxidant properties. Rom. J. Diabetes Nutr. Metab. Dis. 2020, 27, 146–152. [Google Scholar]
- Hendrawati, A.; Akhmad, S.A.; Sadewa, A.H. The effect of combination of quercetin and glibenclamide on myocardial nuclear factor erythroid 2-related factor 2 (Nrf2) expression in type 2 diabetic rat. Bangladesh J. Med. Sci. 2017, 16, 302–306. [Google Scholar] [CrossRef]
- Tyagi, S.; Mishra, B.K.; Sharma, T.; Tawar, N.; Urfi, A.J.; Banerjee, B.D.; Madhu, S.V. Level of organochlorine pesticide in prediabetic and newly diagnosed diabetes mellitus patients with varying degree of glucose intolerance and insulin resistance among north Indian population. Diabetes Metab. J. 2021, 45, 558–568. [Google Scholar] [CrossRef] [PubMed]
- Kolb, H.; Kempf, K.; Röhling, M.; Martin, S. Insulin: Too much of a good thing is bad. BMC Med. 2020, 18, 224. [Google Scholar] [CrossRef] [PubMed]
- Sarma, P.; Kashyap, B.; Gurumayum, S.; Sarma, S.; Baruah, P.; Swargiary, D.; Saikia, A.; Deka, R.C.; Borah, J.C. Antihyperglycemic potential of quercetin-3-glucoside isolated from Leucaena leucocephala seedpods via the SIRT1/AMPK/GLUT4 signaling cascade. ACS Omega 2024, 9, 32429–32443. [Google Scholar] [CrossRef] [PubMed]
- Dhanya, R.; Arya, A.D.; Nisha, P.; Jayamurthy, P. Quercetin, a lead compound against type 2 diabetes ameliorates glucose uptake via AMPK pathway in skeletal muscle cell line. Front. Pharmacol. 2017, 8, 336. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Yamashita, Y.; Nakamura, A.; Croft, K.; Ashida, H. Quercetin and its metabolite isorhamnetin promote glucose uptake through different signalling pathways in myotubes. Sci. Rep. 2019, 9, 2690. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.F.; Bakr, M.A.; Rasmy, A.H. The efficacy of using metformin and/or quercetin for amelioration of gamma-irradiation induced tongue toxicity in diabetic rats. BMC Oral Health 2024, 24, 110. [Google Scholar]
- Chang, W.; Li, W.; Li, P. The anti-diabetic effects of metformin are mediated by regulating long non-coding RNA. Front. Pharmacol. 2023, 14, 1256705. [Google Scholar] [CrossRef] [PubMed]
- Adiels, M.; Olofsson, S.O.; Taskinen, M.R.; Borén, J. Diabetic dyslipidaemia. Curr. Opin. Lipidol. 2006, 17, 238–246. [Google Scholar] [CrossRef]
- Jia, Q.; Cao, H.; Shen, D.; Li, S.; Yan, L.; Chen, C.; Xing, S.; Dou, F. Quercetin protects against atherosclerosis by regulating the expression of PCSK9, CD36, PPARγ, LXRα and ABCA1. Int. J. Mol. Med. 2019, 44, 893–902. [Google Scholar] [CrossRef]
- Nicholls, S.J. PCSK9 inhibitors and reduction in cardiovascular events: Current evidence and future perspectives. Kardiol. Pol. 2023, 81, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Rosenson, R.S.; Brewer, H.B., Jr.; Davidson, W.S.; Fayad, Z.A.; Fuster, V.; Goldstein, J.; Hellerstein, M.; Jiang, X.C.; Phillips, M.C.; Rader, D.J.; et al. Cholesterol efflux and atheroprotection: Advancing the concept of reverse cholesterol transport. Circulation 2012, 125, 1905–1919. [Google Scholar] [CrossRef] [PubMed]
- Maréchal, L.; Laviolette, M.; Rodrigue-Way, A.; Sow, B.; Brochu, M.; Caron, V.; Tremblay, A. The CD36-PPARγ pathway in metabolic disorders. Int. J. Mol. Sci. 2018, 19, 1529. [Google Scholar] [CrossRef]
- Son, N.H.; Park, T.S.; Yamashita, H.; Yokoyama, M.; Huggins, L.A.; Okajima, K.; Homma, S.; Szabolcs, M.J.; Huang, L.S.; Goldberg, I.J. Cardiomyocyte expression of PPARgamma leads to cardiac dysfunction in mice. J. Clin. Investig. 2007, 117, 2791–2801. [Google Scholar] [CrossRef]
- Ye, G.; Gao, H.; Wang, Z.; Lin, Y.; Liao, X.; Zhang, H.; Chi, Y.; Zhu, H.; Dong, S. PPARα and PPARγ activation attenuates total free fatty acid and triglyceride accumulation in macrophages via the inhibition of Fatp1 expression. Cell Death Dis. 2019, 10, 39. [Google Scholar] [CrossRef]
- Stechyshyn, I.; Pavliuk, B. The quercetine containing drugs in pharmacological correction of experimental diabetes with myocardial injury. Romanian J. Diabetes Nutr. Metab. Dis. 2020, 26, 393–399. [Google Scholar] [CrossRef]
- Zahedi, M.; Ghiasvand, R.; Feizi, A.; Asgari, G.; Darvish, L. Does quercetin improve cardiovascular risk factors and inflammatory biomarkers in women with type 2 diabetes: A double-blind randomized controlled clinical trial. Int. J. Prev. Med. 2013, 4, 777–785. [Google Scholar] [PubMed]
- Rizwan, H.; Pal, S.; Sabnam, S.; Pal, A. High glucose augments ROS generation regulates mitochondrial dysfunction and apoptosis via stress signalling cascades in keratinocytes. Life Sci. 2020, 241, 117148. [Google Scholar] [CrossRef] [PubMed]
- Zinellu, A.; Mangoni, A.A. A Systematic review and meta-analysis of the effect of statins on glutathione peroxidase, superoxide dismutase, and catalase. Antioxidants 2021, 10, 1841. [Google Scholar] [CrossRef] [PubMed]
- Annapurna, A.; Reddy, C.S.; Akondi, R.B.; Rao, S.R. Cardioprotective actions of two bioflavonoids, quercetin and rutin, in experimental myocardial infarction in both normal and streptozotocin-induced type I diabetic rats. J. Pharm. Pharmacol. 2009, 61, 1365–1374. [Google Scholar] [CrossRef] [PubMed]
- Challa, S.R.; Akula, A.; Akondi, R.B. Increased inflammatory response in myocardial ischemia-reperfusion in normal and STZ induced type I diabetic rats and modulation of inflammatory response by quercetin and rutin. Pharmacologyonline 2009, 1, 845–858. [Google Scholar]
- Carpenter, E.L.; Becker, A.L.; Indra, A.K. NRF2 and key transcriptional targets in melanoma redox manipulation. Cancers 2022, 14, 1531. [Google Scholar] [CrossRef] [PubMed]
- de Faria, A.P.; Modolo, R.; Moreno, H. Plasma 8-Isoprostane as a Biomarker and Applications to Cardiovascular Disease. In Biomarkers in Cardiovascular Disease. Biomarkers in Disease: Methods, Discoveries and Applications; Patel, V., Preedy, V., Eds.; Springer: Dordrecht, The Netherlands, 2016; pp. 1–22. [Google Scholar]
- Wang, B.; Wang, Y.; Zhang, J.; Hu, C.; Jiang, J.; Li, Y.; Peng, Z. ROS-induced lipid peroxidation modulates cell death outcome: Mechanisms behind apoptosis, autophagy, and ferroptosis. Arch. Toxicol. 2023, 97, 1439–1451. [Google Scholar] [CrossRef] [PubMed]
- Cadenas, S. Mitochondrial uncoupling, ROS generation and cardioprotection. Biochim. Biophys. Acta Bioenerg. 2018, 1859, 940–950. [Google Scholar] [CrossRef] [PubMed]
- DeCoux, A.; Lindsey, M.L.; Villarreal, F.; Garcia, R.A.; Schulz, R. Myocardial matrix metalloproteinase-2: Inside out and upside down. J. Mol. Cell. Cardiol. 2014, 77, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Tang, C.B.; Kilian, K.A. Matrix mechanics influence fibroblast-myofibroblast transition by directing the localization of histone deacetylase 4. Cell. Mol. Bioeng. 2017, 10, 405–415. [Google Scholar] [CrossRef] [PubMed]
- Zaib, S.; Hayyat, A.; Ali, N.; Gul, A.; Naveed, M.; Khan, I. Role of mitochondrial membrane potential and lactate dehydrogenase a in apoptosis. Anticancer. Agents Med. Chem. 2022, 22, 2048–2062. [Google Scholar] [CrossRef]
- Ren, J.; Bi, Y.; Sowers, J.R.; Hetz, C.; Zhang, Y. Endoplasmic reticulum stress and unfolded protein response in cardiovascular diseases. Nat. Rev. Cardiol. 2021, 18, 499–521. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, S.; Tasset, I.; Arias, E.; Pampliega, O.; Wong, E.; Martinez-Vicente, M.; Cuervo, A.M. Autophagy and the hallmarks of aging. Ageing Res. Rev. 2021, 72, 101468. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.D.; Qin, Z.H. Beclin 1, Bcl-2 and autophagy. Adv. Exp. Med. Biol. 2019, 1206, 109–126. [Google Scholar] [PubMed]
- Rusten, T.E.; Stenmark, H. p62, an autophagy hero or culprit? Nat. Cell Biol. 2010, 12, 207–279. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, Z.; Shu, S.; Cai, J.; Tang, C.; Dong, Z. AMPK/mTOR signaling in autophagy regulation during cisplatin-induced acute kidney injury. Front. Physiol. 2020, 11, 619730. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Pan, M.Y.; Li, T.; Jin, Z.M.; Liu, Z.; Liu, Q.Y.; Liu, Y.; Ding, J.Y.; Jiang, H.; Hou, X. Study on optimal extraction and hypoglycemic effect of quercetin. Evid. Based Complement. Alternat. Med. 2023, 2023, 8886503. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.K.; Garikipati, V.N.S.; Kishore, R. Mitochondrial dysfunction and its impact on diabetic heart. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 1098–1105. [Google Scholar] [CrossRef]
- Lee, T.W.; Bai, K.J.; Lee, T.I.; Chao, T.F.; Kao, Y.H.; Chen, Y.J. PPARs modulate cardiac metabolism and mitochondrial function in diabetes. J. Biomed. Sci. 2017, 24, 5. [Google Scholar] [CrossRef] [PubMed]
- Popov, L.D. Mitochondrial biogenesis: An update. J. Cell. Mol. Med. 2020, 24, 4892–4899. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Q.; Cheng, Z.; Wang, J.; Feng, X.; Hua, W.; Luo, R.; Wang, B.; Liao, Z.; Ma, L.; Li, G.; et al. Allicin attenuated advanced oxidation protein product-induced oxidative stress and mitochondrial apoptosis in human nucleus pulposus cells. Oxid. Med. Cell. Longev. 2020, 2020, 6685043. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Reyes, I.; Cardona, L.R.; Kong, H.; Vasan, K.; McElroy, G.S.; Werner, M.; Kihshen, H.; Reczek, C.R.; Weinberg, S.E.; Gao, P.; et al. Mitochondrial ubiquinol oxidation is necessary for tumour growth. Nature 2020, 585, 288–292. [Google Scholar] [CrossRef] [PubMed]
- Padalko, V.; Posnik, F.; Adamczyk, M. Mitochondrial aconitase and its contribution to the pathogenesis of neurodegenerative diseases. Int. J. Mol. Sci. 2024, 25, 9950. [Google Scholar] [CrossRef]
- Stanzione, R.; Forte, M.; Cotugno, M.; Bianchi, F.; Marchitti, S.; Busceti, C.L.; Fornai, F.; Rubattu, S. Uncoupling protein 2 as a pathogenic determinant and therapeutic target in cardiovascular and metabolic diseases. Curr. Neuropharmacol. 2022, 20, 662–674. [Google Scholar] [CrossRef] [PubMed]
- Challa, S.R.; Akula, A.; Metla, S.; Gopal, P.N. Partial role of nitric oxide in infarct size limiting effect of quercetin and rutin against ischemia-reperfusion injury in normal and diabetic rats. Indian J. Exp. Biol. 2011, 49, 207–210. [Google Scholar] [PubMed]
- Lee, S.W.; Choi, E.Y.; Jung, S.Y.; Choi, S.T.; Lee, S.K.; Park, Y.B. E/E’ ratio is more sensitive than E/A ratio for detection of left ventricular diastolic dysfunction in patients with systemic sclerosis. Clin. Exp. Rheumatol. 2010, 28, S12–S17. [Google Scholar] [PubMed]
- Sattar, Y.; Chhabra, L. Electrocardiogram. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK549803/ (accessed on 3 September 2024).
- Wiedmann, F.; Beyersdorf, C.; Zhou, X.; Büscher, A.; Kraft, M.; Nietfeld, J.; Walz, T.P.; Unger, L.A.; Loewe, A.; Schmack, B.; et al. Pharmacologic TWIK-related acid-sensitive K+ channel (TASK-1) potassium channel inhibitor A293 facilitates acute cardioversion of paroxysmal atrial fibrillation in a porcine large animal model. J. Am. Heart Assoc. 2020, 9, e015751. [Google Scholar] [CrossRef] [PubMed]
- Kotel’nikov, V.N.; Osipov, I.O.; Zayats, Y.V.; Gel’tser, B.I. Assessment of cardiac vegetative control during acute graduated exogenous normobaric hypoxia in rats. Bull. Exp. Biol. Med. 2018, 164, 591–595. [Google Scholar] [CrossRef] [PubMed]
- Al Kury, L.T. Calcium homeostasis in ventricular myocytes of diabetic cardiomyopathy. J. Diabetes Res. 2020, 2020, 1942086. [Google Scholar] [CrossRef] [PubMed]
- Hamouda, N.N.; Qureshi, M.A.; Alkaabi, J.M.; Oz, M.; Howarth, F.C. Reduction in the amplitude of shortening and Ca(2+) transient by phlorizin and quercetin-3-O-glucoside in ventricular myocytes from streptozotocin-induced diabetic rats. Physiol. Res. 2016, 65, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Hamaguchi, S.; Abe, K.; Komatsu, M.; Kainuma, J.; Namekata, I.; Tanaka, H. Positive lusitropic effect of quercetin on isolated ventricular myocardia from normal and streptozotocin-induced diabetic mice. Biol. Pharm. Bull. 2021, 44, 1894–1897. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, S.; Terentyev, D. ER stress and calcium-dependent arrhythmias. Front. Physiol. 2022, 13, 1041940. [Google Scholar] [CrossRef]
- Hamada, H.; Tomo, T.; Kim, S.T.; Hanai, T.; Okamoto, M.; Yamashita, A.C. Electrophysiological insights into the relationship between calcium dynamics and cardiomyocyte beating function in chronic hemodialysis treatment. J. Artif. Organs. 2021, 24, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Beckendorf, J.; van den Hoogenhof, M.M.G.; Backs, J. Physiological and unappreciated roles of CaMKII in the heart. Basic Res. Cardiol. 2018, 113, 29. [Google Scholar] [CrossRef] [PubMed]
- Fearnley, C.J.; Roderick, H.L.; Bootman, M.D. Calcium signaling in cardiac myocytes. Cold Spring Harb. Perspect. Biol. 2011, 3, a004242. [Google Scholar] [CrossRef] [PubMed]
- Salvatore, T.; Pafundi, P.C.; Galiero, R.; Albanese, G.; Di Martino, A.; Caturano, A.; Vetrano, E.; Rinaldi, L.; Sasso, F.C. The diabetic cardiomyopathy: The contributing pathophysiological mechanisms. Front. Med. 2021, 8, 695792. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Li, Y.; Li, S.; Lv, J. Endothelial dysfunction and diabetic cardiomyopathy. Front. Endocrinol. 2022, 13, 851941. [Google Scholar] [CrossRef]
- Behbodikhah, J.; Ahmed, S.; Elyasi, A.; Kasselman, L.J.; De Leon, J.; Glass, A.D.; Reiss, A.B. Apolipoprotein B and cardiovascular disease: Biomarker and potential therapeutic target. Metabolites 2021, 11, 690. [Google Scholar] [CrossRef]
- Derakhshanian, H.; Djalali, M.; Djazayery, A.; Javanbakht, M.H.; Zarei, M.; Hekmatdoost, A.; Eslamian, G.; Mirhashemi, S.S.; Dehpour, A.R. Quercetin ameliorates lipid and apolipoprotein profile in high-dose glucocorticoid treated rats. ABC Cardiol. 2020, 115, 102–108. [Google Scholar] [CrossRef]
- Huang, H.; Liao, D.; Dong, Y.; Pu, R. Effect of quercetin supplementation on plasma lipid profiles, blood pressure, and glucose levels: A systematic review and meta-analysis. Nutr. Rev. 2020, 78, 615–626. [Google Scholar] [CrossRef] [PubMed]
- Micek, A.; Godos, J.; Del Rio, D.; Galvano, F.; Grosso, G. Dietary flavonoids and cardiovascular disease: A comprehensive dose-response meta-analysis. Mol. Nutr. Food Res. 2021, 65, e2001019. [Google Scholar] [CrossRef] [PubMed]
- Menezes, R.; Rodriguez-Mateos, A.; Kaltsatou, A.; González-Sarrías, A.; Greyling, A.; Giannaki, C.; Andres-Lacueva, C.; Milenkovic, D.; Gibney, E.R.; Dumont, J.; et al. Impact of flavonols on cardiometabolic biomarkers: A meta-analysis of randomized controlled human trials to explore the role of inter-individual variability. Nutrients 2017, 9, 117. [Google Scholar] [CrossRef]
- Noshadi, N.; Bonyadian, A.; Hojati, A.; Abbasalizad-Farhangi, M.; Heidari, M.; Darzi, M.; Seyedhosseini-Ghaheh, H.; Khajeh, M.; Tabrizi, F.P.F.; Vajdi, M.; et al. The effect of quercetin supplementation on the components of metabolic syndrome in adults: A systematic review and dose–response meta-analysis of randomized controlled trials. J. Funct. Foods 2024, 116, 106175. [Google Scholar] [CrossRef]
- Llanaj, E.; Ahanchi, N.S.; Dizdari, H.; Taneri, P.E.; Niehot, C.D.; Wehrli, F.; Khatami, F.; Raeisi-Dehkordi, H.; Kastrati, L.; Bano, A.; et al. Buckwheat and cardiometabolic health: A systematic review and meta-analysis. J. Pers. Med. 2022, 12, 1940. [Google Scholar] [CrossRef]
- Tamtaji, O.R.; Milajerdi, A.; Dadgostar, E.; Kolahdooz, F.; Chamani, M.; Amirani, E.; Mirzaei, H.; Asemi, Z. The Effects of quercetin supplementation on blood pressures and endothelial function among patients with metabolic syndrome and related disorders: A systematic review and meta-analysis of randomized controlled trials. Curr. Pharm. Des. 2019, 25, 1372–1384. [Google Scholar] [CrossRef]
Model | Dose of Quercetin | Findings | Reference |
---|---|---|---|
STZ-induced diabetic mice fed high-caloric diet | 50 mg/kg/d, i.g., for 4 weeks | ↓ blood glucose | [9] |
STZ-induced diabetic rats | 50 mg/kg, p.o., for 2 months | ↔ blood glucose ↔ serum insulin | [35] |
STZ-induced diabetic rats | 25 mg/kg, i.p., for 30 days | ↓ blood glucose | [36] |
STZ-nicotinamide-induced diabetic rats | 10 mg/kg/d, p.o., for 30 days | ↓ blood glucose | [37] |
High-cholesterol diet-induced diabetic rats | 0.5% w/w diet (5 g/kg diet) for 4 weeks | ↓ blood glucose | [38] |
Zucker diabetic rats | 20 mg/kg/day, in biscuits for 6 weeks | ↔ blood glucose | [39] |
STZ-induced diabetic rats | 10 mg/kg/day, i.p., for 14 days | ↔ blood glucose | [40] |
I/R-induced heart injury in Zucker diabetic fatty rats (6 and 12 months old) | 20 mg/kg/day, in biscuits for 6 weeks | ↔ blood glucose | [41] |
STZ-induced diabetic rats fed high-caloric diet | 50 mg/kg/d, i.g., for 8 weeks | ↔ blood glucose ↓ IPITT | [42] |
STZ-induced diabetic rats fed high-caloric diet | 10 and 50 mg/kg/d, i.g., for 8 weeks | ↔ blood glucose ↓ IPITT | [43] |
STZ-induced diabetic rats | 15 mg/kg typical and nanoemulsion quercetin, i.p., for 8 weeks | ↓ blood glucose | [44] |
STZ-induced diabetic rats fed high-caloric diet | 10 and 50 mg/kg/d, p.o., for 8 weeks | ↔ blood glucose | [45] |
STZ-induced diabetic rats | 100 and 300 mg/kg, p.o., for 12 weeks | ↔ blood glucose ↓ fructose | [46] |
Fructose-induced insulin resistance rats | 50 mg/kg, p.o., for 36 days | ↓ blood glucose ↓ blood insulin ↓ HOMA, ↓ OGTT AUC | [47] |
STZ-induced diabetic rats | 10 and 30 mg/kg, p.o., for 28 days | ↓ blood glucose | [48] |
Nicotinamide + STZ-induced diabetic rats | 10, 25, and 50 mg/kg, p.o., for 28 days | ↓ blood glucose ↑ serum insulin | [49] |
STZ-induced diabetic rats | 10 mg/kg, i.p., for 14 days | ↔ blood glucose | [50] |
STZ-induced diabetic rats | 50 mg/kg, i.g., for 60 days | ↓ blood glucose ↔ serum insulin, ↓ HbA1c ↓ serum fructosamine ↓ heart AGEs protein ↓ heart RAGE gene, ↓ heart RAGE protein | [51] |
STZ-induced diabetic rats | Water soluble quercetin and liposomal quercetin, 10 mg/kg, i.p., for 14 days | ↓ blood glucose ↓ HbA1c | [52] |
Nicotinamide + STZ-induced diabetic rats | 5, 20, and 80 mg/kg, p.o., for 4 weeks | ↓ blood glucose ↑ serum insulin | [53] |
Model | Dose of Quercetin | Findings | Reference |
---|---|---|---|
STZ-induced diabetic mice fed high-caloric diet | 100 mg/kg/d, p.o., for 4 months | ↓ plasma TC, ↔ plasma TG | [10] |
STZ-nicotinamide-induced diabetic rats | 10 mg/kg/d, p.o., for 30 days | ↓ Plasma TC, ↓ Plasma LDL ↑ Plasma HDL | [37] |
High-cholesterol diet-induced diabetic rats | 0.5% w/w diet (5 g/kg diet) for 4 weeks | ↓ plasma TC, ↓ plasma TG ↓ plasma LDL, ↓ plasma VLDL ↑ plasma HDL, ↓ heart cholesterol ↓ PPARγ | [38] |
Zucker diabetic rats | 20 mg/kg/day, in biscuits for 6 weeks | ↔ plasma TG, ↔ plasma TC ↔ plasma HDL, ↔ plasma LDL | [39] |
I/R-induced heart injury in Zucker diabetic fatty rats (6- and 12-month-old) | 20 mg/kg/day, in biscuits for 6 weeks | 6-month-old ↔ plasma TG, TC, HDL ↔ plasma LDL 12 months old ↔ plasma TG, TC, HDL ↓ plasma LDL | [41] |
STZ-induced diabetic rats | 15 mg/kg typical and nanoemulsion quercetin, i.p., for 8 weeks | ↓ atherogenic index ↓ cardiac risk ratio ↓ atherogenic coefficient | [44] |
STZ-induced diabetic rats | 100 and 300 mg/kg, p.o., for 12 weeks | 300 mg/kg: ↓ plasma TG, ↓ plasma TC | [46] |
Fructose-induced insulin resistance rats | 50 mg.kg, p.o., for 36 days (concurrent treatment) | ↓ plasma TG, ↓ plasma TC ↑ plasma HDL | [47] |
STZ-induced diabetic rats | 10 and 30 mg/kg, p.o., for 28 days | ↓ plasma TG, ↓ plasma TC | [48] |
STZ-induced diabetic rats | Water soluble quercetin and liposomal quercetin, 10 mg/kg, i.p., for 14 days | ↓ serum TC, ↓ serum TG ↓ serum LDL, ↑ serum HDL | [68] |
Women with type 2 diabetes mellitus (35−55 years old), n = 72 | 500 mg/day for 10 weeks | ↔ plasma TG, ↔ plasma TC ↔ plasma HDL, ↔ plasma LDL | [69] |
Model | Dose of Quercetin | Findings | Reference |
---|---|---|---|
H9c2 cells incubated in high glucose | 50 μM for 48 h | ↓ ROS | [9] |
STZ-induced diabetic mice fed high-caloric diet | 100 mg/kg/d, p.o., for 4 months | ↓ ROS, ↓ NLPR3 protein ↓ IL-1β protein, ↔ IL-18 protein | [10] |
STZ-induced diabetic mice fed high-caloric diet | 160 mg/kg, p.o., for 6 months | ↓ NLRP3 protein ↓ IL-1β protein, ↓ IL-18 protein ↑ SOD protein, ↑ nuc Nrf2 protein ↑ HO-1 protein, ↑ GCLC protein | [11] |
H9c2 cells incubated in high glucose | 12 µM | ↓ NLRP3 protein, ↑ GCLC protein ↓ IL-18 protein, ↓ IL-1β protein ↑ SOD protein, ↓ ROS ↑ nuc Nrf2 protein, ↑ HO-1 protein | [11] |
HL-1 cells incubated in high glucose | 150 mg/L | ↓ ROS, ↓ MDA, ↓ NLRP3 ↑ SOD, ↑ GSH, ↑ TrxR | [18] |
STZ-induced diabetic rats | 50 mg/kg, p.o., for 2 months | ↑ Prx-3 protein, ↔ Prx-5 protein ↑ TrxR2 activity, ↑ Trx-2 protein ↑ Nrf1 protein, ↑ Nrf2 protein ↓ 4-HNE, ↔ GPx activity ↑ SOD activity, ↑ catalase activity | [35] |
H9c2 cells exposed to high glucose | 1 and 10 μM for 30 min (pretreatment) | ↑ Prx-3 protein ↑ nuclei Nrf2 protein | [35] |
STZ-induced diabetic rats | 25 mg/kg, i.p., for 30 days | ↓ inflammatory cells | [36] |
High-cholesterol diet-induced diabetic rats | 0.5% w/w diet (5 g/kg diet) for 4 weeks | ↑ GSH/GSSG content ↑ nuclear Nrf2, ↑ HO-1 gene ↑ SOD activity, ↑ GPx activity ↑ catalase activity ↓ 8-Isoprostane, ↓ TBARSs | [38] |
Zucker diabetic rats | 20 mg/kg/day, in biscuits for 6 weeks | ↓ SOD, ↔ SOD-1 protein ↑ SOD-2 protein | [39] |
STZ-induced diabetic rats | 10 mg/kg/day, i.p., for 14 days | ↓ SOD, ↓ catalase ↔ GRx, ↔ GPx, ↓ GSH, ↔ GSSG | [40] |
STZ-induced diabetic rats fed high-caloric diet | 10 and 50 mg/kg/d, i.g., for 8 weeks | ↓ ROS, ↓ mt AOPPs, ↓ mt Mn-SOD ↓ mt GPx, ↓ mt GRx ↓ mt NOX, ↓ mt XO | [43] |
Fructose-induced insulin resistance rats | 50 mg.kg, p.o., for 36 days (concurrent treatment) | ↓ LPO, ↑ SOD ↑ catalase, ↑ GPx | [47] |
STZ-induced diabetic rats | 10 and 30 mg/kg, p.o., for 28 days | ↓ lipid peroxides | [48] |
Nicotinamide + STZ-induced diabetic rats | 10, 25, and 50 mg/kg, p.o., for 28 days | ↓ lipid peroxides ↑ catalase activity and protein ↑ SOD activity and protein ↑ GPx activity and protein ↓ NF-κB p65, ↓ IKK-β protein ↓ TNF-α level and protein ↓ IL-1β, ↓ IL-6 | [49] |
STZ-induced diabetic rats | 10 mg/kg, i.p., for 14 days | ↔ lipid peroxidation, ↔ SOD, ↑ catalase ↔ GRx, ↔ GPx, ↔ GSH, ↔ GSSG | [50] |
STZ-induced diabetic rats | 50 mg/kg, i.g., for 60 days | ↑ cyt NF-κB protein ↓ nuc NF-κB protein | [51] |
STZ-induced diabetic rats | 20 and 80 mg/kg, p.o., for 4 weeks | ↑ Nrf2 expression | [53] |
STZ-induced diabetic rats | Water soluble quercetin and liposomal quercetin, 10 mg/kg, i.p., for 14 days | ↓ lipid peroxides, ↓ TBA-active products ↓ diene conjugates ↓ SOD, ↓ catalase, ↑ GSH | [68] |
I/R-induced myocardial injury in STZ-induced diabetic rats | 5 and 10 mg/kg, i.p., 10 min before reperfusion | Both doses: ↓ MDA, ↑ SOD, ↑ catalase | [72] |
I/R-induced myocardial injury in STZ-induced diabetic rats | 5 and 10 mg/kg, i.p., 10 min before reperfusion | ↓ MPO, ↓ IL-12 | [73] |
Model | Dose of Quercetin | Findings | Reference |
---|---|---|---|
Zucker diabetic fatty rats (fa/fa) | 20 mg/kg/day, p.o., for 6 weeks | ↓ LV collagen content ↓ MEF2 protein, ↓ HDAC4 protein ↓ pSer246-HDAC4 protein | [8] |
STZ-induced diabetic mice fed high-caloric diet | 100 mg/kg/d, p.o., for 4 months | ↓ collagen 1 gene ↓ CTGF gene | [10] |
STZ-induced diabetic mice fed high-caloric diet | 160 mg/kg, p.o., for 6 months | ↓ Masson-stained area | [11] |
Zucker diabetic rats | 20 mg/kg/day, in biscuits for 6 weeks | ↔ collagen 1 protein, ↔ MMP-2 ↔ 72 kDa MMP-2 protein ↓ 63 kDa MMP-2 protein ↔ MMP-9, ↔ TIMP-2, ↔ MMP-28 | [39] |
STZ-induced diabetic rats | 50 mg/kg, i.g., for 60 days | ↔ TGFβ1 gene, ↓ CTGF gene | [51] |
Model | Dose of Quercetin | Findings | Reference |
---|---|---|---|
STZ-induced diabetic mice fed high-caloric diet | 50 mg/kg/d, i.g., for 4 weeks | ↓ TUNEL ↓ Bax protein, ↑ Bcl-2 protein ↓ Bax/Bcl-2 protein, ↓ caspase-3 protein | [9] |
H9c2 cells incubated in high glucose | 50 μM for 48 h | ↓ Bax protein, ↑ Bcl-2 protein ↓ Bax/Bcl-2 protein ↓ caspase-3 protein, ↓ apoptosis rate | [9] |
STZ-induced diabetic mice fed high-caloric diet | 100 mg/kg/d, p.o., for 4 months | ↓ caspase-1 protein | [10] |
STZ-induced diabetic mice fed high-caloric diet | 160 mg/kg, p.o., for 6 months | ↓ caspase-1 protein | [11] |
H9c2 cells incubated in high glucose | 12 µM | ↓ caspase-1 protein | [11] |
HL-1 cells incubated in high glucose | 150 mg/L | ↓ total apoptosis | [18] |
STZ-induced diabetic rats | 50 mg/kg, p.o., for 2 months | ↑ Bcl2/Bax protein, ↓ cyt c protein ↓ TUNEL +ve nuclei ↓ caspase-3 activity, ↓ caspase-9 activity | [35] |
STZ-induced diabetic rats | 25 mg/kg, i.p., for 30 days | ↓ caspase-3 | [36] |
STZ-induced diabetic rats | 10 and 30 mg/kg, p.o., for 28 days | ↓ mt cyt c release, ↓ caspase 3, ↓ caspase 9 | [48] |
Nicotinamide + STZ-induced diabetic rats | 10, 25, and 50 mg/kg, p.o., for 28 days | ↓ caspase 3 activity and protein ↓ caspase 9 activity, ↑ Bcl-2 protein ↓ Bax protein | [49] |
Model | Dose of Quercetin | Findings | Reference |
---|---|---|---|
STZ-induced diabetic mice fed high-caloric diet | 50 mg/kg/d, i.g., for 4 weeks | ↑ LC3II/I protein, ↑ Beclin-1 protein ↓ p62 protein, ↑ p-AMPK, ↓ p-mTOR | [9] |
H9c2 cells incubated in high glucose | 50 μM for 48 h | ↑ LC3II/I protein, ↑ Beclin-1 protein ↓ p62 protein, ↑ GFP-LC3 ↓ MTOR, ↑ p-AMPK, ↓ p-mTOR | [9] |
Model | Dose of Quercetin | Findings | Reference |
---|---|---|---|
HL-1 cells incubated in high glucose | 150 mg/L | ↑ SIRT5 gene, ↑ IDH2 gene ↓ IDH2 succinylation, ↑ respiratory complex I ↑ respiratory complex III, ↑ respiratory complex IV ↓ mPTP opening rate, ↑ ATP level ↑ basal respiration, ↑ max respiration ↑ reserve respiration ↓ Drp1 gene, ↓ Fis1 gene, ↑ Mfn1 gene ↑ Mfn2 gene, ↑ PGC1α gene, ↑ Tfam gene | [18] |
STZ-induced diabetic rats | 50 mg/kg, p.o., for 2 months | ↓ UCP-3 protein | [35] |
High-cholesterol diet-induced diabetic rats | 0.5% w/w diet (5 g/kg diet) for 4 weeks | ↑ ATP, ↑ PGC1α gene, ↓ UCP-2 gene | [38] |
STZ-induced diabetic rats fed high-caloric diet | 50 mg/kg/d, i.g., for 8 weeks | ↑ Thioredoxin reductase, ↓ AOPPs ↑ aconitase, ↑ succinate dehydrogenase ↓ mitochondrial swelling rate | [42] |
Model | Dose of Quercetin | Findings | Reference |
---|---|---|---|
Zucker diabetic fatty rats (fa/fa) | 20 mg/kg/day, p.o., for 6 weeks | ↓ IVSd, ↓ LVPWd, ↓ RWT ↑ LVIDd, ↔ proBNP ↓ GATA4 protein, ↓ SRF protein ↔ total Erk1/2 protein ↔ pErk1/2 protein, ↓ Erk5 protein ↔ PPP1CB, ↔ PPA2C, ↔ pan-Akt | [8] |
STZ-induced diabetic mice fed high-caloric diet | 50 mg/kg/d, i.g., for 4 weeks | ↓ LVEDD, ↓ LVESD ↓ LVW. ↓ LVW/BW | [9] |
STZ-induced diabetic mice fed high-caloric diet | 100 mg/kg/d, p.o., for 4 months | ↓ CK-MB | [10] |
STZ-induced diabetic mice fed high-caloric diet | 160 mg/kg, p.o., for 6 months | ↓ BNP | [11] |
STZ-induced diabetic rats | 50 mg/kg, p.o., for 2 months | ↓ LVSP, ↔ HW/BW, ↓ cTnI protein | [35] |
STZ-induced diabetic rats | 25 mg/kg, i.p., for 30 days | ↓ necrosis, ↓ vacuolization ↓ congestion, ↓ myofibril loss | [36] |
High-cholesterol diet-induced diabetic rats | 0.5% w/w diet (5 g/kg diet) for 4 weeks | ↓ HW/BW, ↔ AWT ↔ FS, ↔ HR, ↔ LVEDC, ↔ LVESC ↔ RVEDC, ↔ RVESC ↔ RV thickness, ↓ LV thickness ↔ septum thickness ↔ RV luminal area, ↑ LV luminal area ↓ RV myocyte density ↓ septal myocyte density ↔ LV myocyte density | [38] |
I/R-induced heart injury in Zucker diabetic fatty rats (6 and 12 months old) | 20 mg/kg/day, in biscuits for 6 weeks | ↔ LV necrosis | [41] |
STZ-induced diabetic rats | 15 mg/kg typical and nanoemulsion quercetin, i.p., for 8 weeks | ↓ troponin I, ↓ CK-MB | [43] |
Fructose-induced insulin resistance rats | 50 mg.kg, p.o., for 36 days (concurrent treatment) | ↓ CK-MB | [47] |
Nicotinamide + STZ-induced diabetic rats | 10, 25, and 50 mg/kg, p.o., for 28 days | ↑ HW/BW, ↓ troponin C ↓ CK-MB, ↓ LDH | [49] |
STZ-induced diabetic rats | 50 mg/kg, i.g., for 60 days | ↓ BNP gene | [51] |
STZ-induced diabetic rats | Water soluble quercetin and liposomal quercetin, 10 mg/kg, i.p., for 14 days | ↓ HW/BW | [52] |
I/R-induced myocardial injury in STZ-induced diabetic rats | 5 and 10 mg/kg, i.p., 10 min before perfusion | Both doses: ↓ LV necrosis | [72] |
I/R-induced myocardial injury + L-NAME in STZ-induced diabetic rats | 5 and 10 mg/kg, i.p., 10 min before perfusion | Both doses: ↓ LV necrosis | [94] |
Model | Dose of Quercetin | Findings | Reference |
---|---|---|---|
Zucker diabetic fatty rats (fa/fa) | 20 mg/kg/day, p.o., for 6 weeks | ↓ E/A, ↓ FS, ↓ EDV, ↓ ESV | [8] |
STZ-induced diabetic mice fed high-caloric diet | 50 mg/kg/d, i.g., for 4 weeks | ↓ arterial pressure, ↑ EF, ↑ FS ↑ current density, ↓ APD50, ↓ APD90 | [9] |
STZ-induced diabetic mice fed high-caloric diet | 100 mg/kg/d, p.o., for 4 months | ↑ EF, ↑ FS, ↔ LVSV, ↔ LVDV | [10] |
STZ-induced diabetic rats | 50 mg/kg, p.o., for 2 months | ↔ HR, ↔ QRS interval ↓ QT interval, ↓ QTc ↓ T peak T end interval ↓ MABP, ↓ LVSP ↑ LV −dp/dtmin,↑ LV −dp/dtmin/LVSP ↑ contractility index | [35] |
High-cholesterol diet-induced diabetic rats | 0.5% w/w diet (5 g/kg diet) for 4 weeks | ↓ A wave, ↑ E/A, ↔ EF ↔ FS, ↔ HR, ↔ Vmax ↔ Vmean, ↔ IVRT | [38] |
Zucker diabetic rats | 20 mg/kg/day, in biscuits for 6 weeks | ↔ ± dp/dtmax, ↔ LVDP ↔ RPP, ↔ CF, ↔ HR | [39] |
I/R-induced heart injury in Zucker diabetic fatty rats (12 months old) | 20 mg/kg/day, in biscuits for 6 weeks | ↔ systolic BP (pre-I/R): ↓ LVDP, ↓ +dp/dtmax, ↓ −(dp/dt)max ↑ HR, ↓ CF (post-I/R): ↓ LVDP, ↔ infarct size | [41] |
STZ-induced diabetic rats fed high-caloric diet | 10 and 50 mg/kg/d, p.o., for 8 weeks | 10 mg/kg: ↑ T-P interval, ↓ T-wave duration 50 mg/kg: ↑ R-R interval, ↓ HR ↑ T-P interval, ↓ T-wave duration | [45] |
STZ-induced diabetic rats | 100 and 300 mg/kg, p.o., for 12 weeks | ↑ E/A, ↑ EF, ↑ FS | [46] |
Nicotinamide + STZ-induced diabetic rats | 25, and 50 mg/kg, p.o., for 28 days | ↑ SBP, ↑ DBP, ↑ HR, ↑ MAP | [49] |
STZ-induced diabetic rats | Water soluble quercetin and liposomal quercetin, 10 mg/kg, i.p., for 14 days | ↑ HR, ↓ R-R interval ↑ amplitude of R-R interval ↑ VEI, ↑ VRI, ↑ RPAI | [52] |
Women with type 2 diabetes mellitus (35−55 years old) | 500 mg/day for 10 weeks | ↓ SBP, ↔ DBP | [69] |
Model | Dose of Quercetin | Findings | Reference |
---|---|---|---|
Zucker diabetic fatty rats (fa/fa) | 20 mg/kg/day, p.o., for 6 weeks | ↓ calcineurin A protein ↓ NFAT3 protein ↔ CaMKII protein ↔ pThr286 CaMKII protein | [8] |
Isolated hearts from STZ-induced diabetic rats | 1 µM in perfusion | ↔ TPK Ca2+ transient ↓ THALF Ca2+ transient ↓ amplitude of Ca2+ transient ↓ myofilament sensitivity to Ca2+ ↔ SR Ca2+ release ↔ resting cell length ↓ TPK shortening ↔ THALF shortening ↓ amplitude of shortening | [100] |
STZ-induced diabetic mice | 10 and 30 µM perfusion for 30 min in isolated hearts | Both doses: ↑ relaxation time, ↔ contractile force 30 µM: ↓ contraction time | [101] |
Design | Findings | Reference |
---|---|---|
17 trials; 896 subjects with metabolic syndrome | Pooled data analysis: ↔ blood lipids, ↔ blood glucose Subgroup analysis in subjects taking quercetin > 8 weeks: ↑ HDL, ↓ TG | [110] |
39 trials; 1,501,645 subjects with cardiovascular disease | ↓ CHD and CVD risk | [111] |
18 trials; 530 subjects (16–1200 mg) with metabolic syndrome | ↓ blood lipids, ↓ blood glucose ↓ global risk of CVD | [112] |
20 trials; 1164 subjects with metabolic syndrome | ↓ blood glucose, ↔ TG, ↔ HDL | [113] |
16 trials; 831 subjects with mild metabolic disturbances (quercetin present in buckwheat) | ↔ TC, ↔ blood glucose | [114] |
8 trials on subjects with metabolic syndrome | ↔ VCAM-1, ↔ ICAM-1 | [115] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mustafa, N.H.; Siti, H.N.; Kamisah, Y. Role of Quercetin in Diabetic Cardiomyopathy. Plants 2025, 14, 25. https://doi.org/10.3390/plants14010025
Mustafa NH, Siti HN, Kamisah Y. Role of Quercetin in Diabetic Cardiomyopathy. Plants. 2025; 14(1):25. https://doi.org/10.3390/plants14010025
Chicago/Turabian StyleMustafa, Nor Hidayah, Hawa Nordin Siti, and Yusof Kamisah. 2025. "Role of Quercetin in Diabetic Cardiomyopathy" Plants 14, no. 1: 25. https://doi.org/10.3390/plants14010025
APA StyleMustafa, N. H., Siti, H. N., & Kamisah, Y. (2025). Role of Quercetin in Diabetic Cardiomyopathy. Plants, 14(1), 25. https://doi.org/10.3390/plants14010025