Research Progress on Plant Responses to Stress Combinations in the Context of Climate Change
Abstract
:1. Introduction
2. Definition of Stress Combination
3. Current Research Focus
3.1. Simple Stress Combinations
3.1.1. Abiotic Stress Combinations
3.1.2. Abiotic and Biotic Stress Combinations
3.2. Multifactorial Stress Combinations
3.3. Response Mechanisms to Stress Combinations
3.3.1. Reactive Oxygen Species
3.3.2. Plant Hormones
3.3.3. Transcription Factors
4. Research Method
4.1. Composite Gradient Method
4.2. Multi-Omics Approach
4.3. Integration of Laboratory and Field Ecosystems
4.4. Integrated Application of Multidisciplinary Technology
5. Future Research Directions
5.1. Key Scientific Issues
5.2. Research Entry Point
5.2.1. Finding Common Pathways
5.2.2. Identification of Stress Combination Targets
5.2.3. Adaptive Genetic Response
5.2.4. Use of High Technology
6. Closing Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, S.; Yu, B.; Zhang, Y. Global Concurrent Climate Extremes Exacerbated by Anthropogenic Climate Change. Sci. Adv. 2023, 9, eabo1638. [Google Scholar] [CrossRef]
- Liu, Q.; Qiao, F.; Zhu, Y.; Liang, X.; Liu, Y.; Zhang, H.; Wang, R. Evaluation of the Spatio–Temporal Variations of Extreme Temperature Simulations in China Based on the Regional Climate–Weather Research and Forecasting Model. Clim. Environ. Res. 2021, 26, 333–350. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023. [Google Scholar]
- Zandalinas, S.I.; Sengupta, S.; Fritschi, F.B.; Azad, R.K.; Nechushtai, R.; Mittler, R. The Impact of Multifactorial Stress Combination on Plant Growth and Survival. New Phytol. 2021, 230, 1034–1048. [Google Scholar] [CrossRef] [PubMed]
- Rillig, M.C.; Ryo, M.; Lehmann, A.; Aguilar-Trigueros, C.A.; Buchert, S.; Wulf, A.; Iwasaki, A.; Roy, J.; Yang, G. The Role of Multiple Global Change Factors in Driving Soil Functions and Microbial Biodiversity. Science 2019, 366, 886–890. [Google Scholar] [CrossRef] [PubMed]
- Zandalinas, S.I.; Fritschi, F.B.; Mittler, R. Global Warming, Climate Change, and Environmental Pollution: Recipe for a Multifactorial Stress Combination Disaster. Trends Plant Sci. 2021, 26, 588–599. [Google Scholar] [CrossRef] [PubMed]
- Manning, P. Piling on the Pressures to Ecosystems. Science 2019, 366, 801. [Google Scholar] [CrossRef]
- Guo, Q.; Li, X.; Niu, L.; Jameson, P.E.; Zhou, W. Transcription-Associated Metabolomic Adjustments in Maize Occur during Combined Drought and Cold Stress. Plant Physiol. 2021, 186, 677–695. [Google Scholar] [CrossRef]
- Zhang, H.; Sonnewald, U. Differences and Commonalities of Plant Responses to Single and Combined Stresses. Plant J. 2017, 90, 839–855. [Google Scholar] [CrossRef] [PubMed]
- Zandalinas, S.I.; Mittler, R.; Balfagón, D.; Arbona, V.; Gómez-Cadenas, A. Plant Adaptations to the Combination of Drought and High Temperatures. Physiol. Plant 2018, 162, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Mittler, R. Abiotic Stress, the Field Environment and Stress Combination. Trends Plant Sci. 2006, 11, 15–19. [Google Scholar] [CrossRef]
- Choudhury, F.K.; Rivero, R.M.; Blumwald, E.; Mittler, R. Reactive Oxygen Species, Abiotic Stress and Stress Combination. Plant J. 2017, 90, 856–867. [Google Scholar] [CrossRef] [PubMed]
- Rivero, R.M.; Mittler, R.; Blumwald, E.; Zandalinas, S.I. Developing Climate-Resilient Crops: Improving Plant Tolerance to Stress Combination. Plant J. 2022, 109, 373–389. [Google Scholar] [CrossRef] [PubMed]
- Zandalinas, S.I.; Mittler, R. Plant Responses to Multifactorial Stress Combination. New Phytol. 2022, 234, 1161–1167. [Google Scholar] [CrossRef] [PubMed]
- Mittal, D.; Madhyastha, D.A.; Grover, A. Gene Expression Analysis in Response to Low and High Temperature and Oxidative Stresses in Rice: Combination of Stresses Evokes Different Transcriptional Changes as against Stresses Applied Individually. Plant Sci. 2012, 197, 102–113. [Google Scholar] [CrossRef]
- Akhtar, S.; Shoaib, A.; Javiad, I.; Qaisar, U.; Tasadduq, R. Farmyard Manure, a Potential Organic Additive to Reclaim Copper and Macrophomina Phaseolina Stress Responses in Mash Bean Plants. Sci. Rep. 2023, 13, 14383. [Google Scholar] [CrossRef]
- Qi, J.; Song, C.-P.; Wang, B.; Zhou, J.; Kangasjärvi, J.; Zhu, J.-K.; Gong, Z. Reactive Oxygen Species Signaling and Stomatal Movement in Plant Responses to Drought Stress and Pathogen Attack. J. Integr. Plant Biol. 2018, 60, 805–826. [Google Scholar] [CrossRef]
- García-Martí, M.; Piñero, M.C.; García-Sanchez, F.; Mestre, T.C.; López-Delacalle, M.; Martínez, V.; Rivero, R.M. Amelioration of the Oxidative Stress Generated by Simple or Combined Abiotic Stress through the K+ and Ca2+ Supplementation in Tomato Plants. Antioxidants 2019, 8, 81. [Google Scholar] [CrossRef] [PubMed]
- Sinha, R.; Peláez-Vico, M.Á.; Shostak, B.; Nguyen, T.T.; Pascual, L.S.; Ogden, A.M.; Lyu, Z.; Zandalinas, S.I.; Joshi, T.; Fritschi, F.B.; et al. The Effects of Multifactorial Stress Combination on Rice and Maize. Plant Physiol. 2023, kiad557. [Google Scholar] [CrossRef]
- Pascual, L.S.; Segarra-Medina, C.; Gómez-Cadenas, A.; López-Climent, M.F.; Vives-Peris, V.; Zandalinas, S.I. Climate Change-Associated Multifactorial Stress Combination: A Present Challenge for Our Ecosystems. J. Plant Physiol. 2022, 276, 153764. [Google Scholar] [CrossRef]
- Cotrozzi, L.; Pellegrini, E.; Guidi, L.; Landi, M.; Lorenzini, G.; Massai, R.; Remorini, D.; Tonelli, M.; Trivellini, A.; Vernieri, P.; et al. Losing the Warning Signal: Drought Compromises the Cross-Talk of Signaling Molecules in Quercus Ilex Exposed to Ozone. Front. Plant Sci. 2017, 8, 1020. [Google Scholar] [CrossRef]
- Lopez-Delacalle, M.; Camejo, D.M.; García-Martí, M.; Nortes, P.A.; Nieves-Cordones, M.; Martínez, V.; Rubio, F.; Mittler, R.; Rivero, R.M. Using Tomato Recombinant Lines to Improve Plant Tolerance to Stress Combination Through a More Efficient Nitrogen Metabolism. Front. Plant Sci. 2019, 10, 1702. [Google Scholar] [CrossRef] [PubMed]
- Pandey, P.; Ramegowda, V.; Senthil-Kumar, M. Shared and Unique Responses of Plants to Multiple Individual Stresses and Stress Combinations: Physiological and Molecular Mechanisms. Front. Plant Sci. 2015, 6, 723. [Google Scholar] [CrossRef] [PubMed]
- Sinha, R.; Fritschi, F.B.; Zandalinas, S.I.; Mittler, R. The Impact of Stress Combination on Reproductive Processes in Crops. Plant Sci. 2021, 311, 111007. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Yin, Y.; Wang, G.; Amombo, E.; Li, X.; Xue, Y.; Fu, J. Mitigation of Salt Stress on Low Temperature in Bermudagrass: Resistance and Forage Quality. Front. Plant Sci. 2022, 13, 1042855. [Google Scholar] [CrossRef] [PubMed]
- Sinha, R.; Zandalinas, S.I.; Fichman, Y.; Sen, S.; Zeng, S.; Gómez-Cadenas, A.; Joshi, T.; Fritschi, F.B.; Mittler, R. Differential Regulation of Flower Transpiration during Abiotic Stress in Annual Plants. New Phytol. 2022, 235, 611–629. [Google Scholar] [CrossRef] [PubMed]
- Balfagón, D.; Zandalinas, S.I.; Mittler, R.; Gómez-Cadenas, A. High Temperatures Modify Plant Responses to Abiotic Stress Conditions. Physiol. Plant 2020, 170, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, N.; Bassil, E.; Hamilton, J.S.; Inupakutika, M.A.; Zandalinas, S.I.; Tripathy, D.; Luo, Y.; Dion, E.; Fukui, G.; Kumazaki, A.; et al. ABA Is Required for Plant Acclimation to a Combination of Salt and Heat Stress. PLoS ONE 2016, 11, e0147625. [Google Scholar] [CrossRef]
- Rizhsky, L.; Liang, H.; Shuman, J.; Shulaev, V.; Davletova, S.; Mittler, R. When Defense Pathways Collide. The Response of Arabidopsis to a Combination of Drought and Heat Stress. Plant Physiol. 2004, 134, 1683–1696. [Google Scholar] [CrossRef]
- Cohen, I.; Zandalinas, S.I.; Huck, C.; Fritschi, F.B.; Mittler, R. Meta-Analysis of Drought and Heat Stress Combination Impact on Crop Yield and Yield Components. Physiol. Plant 2021, 171, 66–76. [Google Scholar] [CrossRef]
- Ngumbi, E.; Dady, E.; Calla, B. Flooding and Herbivory: The Effect of Concurrent Stress Factors on Plant Volatile Emissions and Gene Expression in Two Heirloom Tomato Varieties. BMC Plant Biol. 2022, 22, 536. [Google Scholar] [CrossRef]
- Peng, P.; Li, R.; Chen, Z.-H.; Wang, Y. Stomata at the Crossroad of Molecular Interaction between Biotic and Abiotic Stress Responses in Plants. Front. Plant Sci. 2022, 13, 1031891. [Google Scholar] [CrossRef]
- Arbona, V.; Ximénez-Embún, M.G.; Echavarri-Muñoz, A.; Martin-Sánchez, M.; Gómez-Cadenas, A.; Ortego, F.; González-Guzmán, M. Early Molecular Responses of Tomato to Combined Moderate Water Stress and Tomato Red Spider Mite Tetranychus Evansi Attack. Plants 2020, 9, 1131. [Google Scholar] [CrossRef]
- Bidzinski, P.; Ballini, E.; Ducasse, A.; Michel, C.; Zuluaga, P.; Genga, A.; Chiozzotto, R.; Morel, J.-B. Transcriptional Basis of Drought-Induced Susceptibility to the Rice Blast Fungus Magnaporthe Oryzae. Front. Plant Sci. 2016, 7, 1558. [Google Scholar] [CrossRef]
- Chávez-Arias, C.C.; Ligarreto-Moreno, G.A.; Ramírez-Godoy, A.; Restrepo-Díaz, H. Maize Responses Challenged by Drought, Elevated Daytime Temperature and Arthropod Herbivory Stresses: A Physiological, Biochemical and Molecular View. Front. Plant Sci. 2021, 12, 702841. [Google Scholar] [CrossRef] [PubMed]
- Martinez, V.; Mestre, T.C.; Rubio, F.; Girones-Vilaplana, A.; Moreno, D.A.; Mittler, R.; Rivero, R.M. Accumulation of Flavonols over Hydroxycinnamic Acids Favors Oxidative Damage Protection under Abiotic Stress. Front. Plant Sci. 2016, 7, 838. [Google Scholar] [CrossRef] [PubMed]
- Katano, K.; Honda, K.; Suzuki, N. Integration between ROS Regulatory Systems and Other Signals in the Regulation of Various Types of Heat Responses in Plants. Int. J. Mol. Sci. 2018, 19, 3370. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Chen, Q.; Liang, T.; Zhou, B.; Huang, S.; Cao, X.; Wang, X.; Ding, Z.; Tu, J. Functionalized Carbon Nano-Enabled Plant ROS Signal Engineering for Growth/Defense Balance. Nano Today 2023, 53, 102045. [Google Scholar] [CrossRef]
- Martinez, V.; Nieves-Cordones, M.; Lopez-Delacalle, M.; Rodenas, R.; Mestre, T.C.; Garcia-Sanchez, F.; Rubio, F.; Nortes, P.A.; Mittler, R.; Rivero, R.M. Tolerance to Stress Combination in Tomato Plants: New Insights in the Protective Role of Melatonin. Molecules 2018, 23, 535. [Google Scholar] [CrossRef] [PubMed]
- Zandalinas, S.I.; Balfagón, D.; Gómez-Cadenas, A.; Mittler, R. Plant Responses to Climate Change: Metabolic Changes under Combined Abiotic Stresses. J. Exp. Bot. 2022, 73, 3339–3354. [Google Scholar] [CrossRef] [PubMed]
- Miller, G.; Schlauch, K.; Tam, R.; Cortes, D.; Torres, M.A.; Shulaev, V.; Dangl, J.L.; Mittler, R. The Plant NADPH Oxidase RBOHD Mediates Rapid Systemic Signaling in Response to Diverse Stimuli. Sci. Signal. 2009, 2, ra45. [Google Scholar] [CrossRef]
- Lecourieux, D.; Mazars, C.; Pauly, N.; Ranjeva, R.; Pugin, A. Analysis and Effects of Cytosolic Free Calcium Increases in Response to Elicitors in Nicotiana plumbaginifolia Cells. Plant Cell 2002, 14, 2627–2641. [Google Scholar] [CrossRef] [PubMed]
- Fichman, Y.; Mittler, R. Rapid Systemic Signaling during Abiotic and Biotic Stresses: Is the ROS Wave Master of All Trades? Plant J. 2020, 102, 887–896. [Google Scholar] [CrossRef] [PubMed]
- Fichman, Y.; Rowland, L.; Oliver, M.J.; Mittler, R. ROS Are Evolutionary Conserved Cell-to-Cell Stress Signals. Proc. Natl. Acad. Sci. USA 2023, 120, e2305496120. [Google Scholar] [CrossRef] [PubMed]
- Zandalinas, S.I.; Fichman, Y.; Devireddy, A.R.; Sengupta, S.; Azad, R.K.; Mittler, R. Systemic Signaling during Abiotic Stress Combination in Plants. Proc. Natl. Acad. Sci. USA 2020, 117, 13810–13820. [Google Scholar] [CrossRef] [PubMed]
- Zandalinas, S.I.; Mittler, R. Vascular and Nonvascular Transmission of Systemic Reactive Oxygen Signals during Wounding and Heat Stress. Plant Physiol. 2021, 186, 1721–1733. [Google Scholar] [CrossRef] [PubMed]
- Raza, A.; Salehi, H.; Rahman, M.A.; Zahid, Z.; Madadkar Haghjou, M.; Najafi-Kakavand, S.; Charagh, S.; Osman, H.S.; Albaqami, M.; Zhuang, Y.; et al. Plant Hormones and Neurotransmitter Interactions Mediate Antioxidant Defenses under Induced Oxidative Stress in Plants. Front. Plant Sci. 2022, 13, 961872. [Google Scholar] [CrossRef]
- Suzuki, N. Hormone Signaling Pathways under Stress Combinations. Plant Signal. Behav. 2016, 11, e1247139. [Google Scholar] [CrossRef]
- Segarra-Medina, C.; Alseekh, S.; Fernie, A.R.; Rambla, J.L.; Pérez-Clemente, R.M.; Gómez-Cádenas, A.; Zandalinas, S.I. Abscisic Acid Promotes Plant Acclimation to the Combination of Salinity and High Light Stress. Plant Physiol. Biochem. 2023, 203, 108008. [Google Scholar] [CrossRef]
- Kumazaki, A.; Suzuki, N. Enhanced Tolerance to a Combination of Heat Stress and Drought in Arabidopsis Plants Deficient in ICS1 Is Associated with Modulation of Photosynthetic Reaction Center Proteins. Physiol. Plant 2019, 165, 232–246. [Google Scholar] [CrossRef]
- Danquah, A.; de Zelicourt, A.; Colcombet, J.; Hirt, H. The Role of ABA and MAPK Signaling Pathways in Plant Abiotic Stress Responses. Biotechnol. Adv. 2014, 32, 40–52. [Google Scholar] [CrossRef]
- Zandalinas, S.I.; Rivero, R.M.; Martínez, V.; Gómez-Cadenas, A.; Arbona, V. Tolerance of Citrus Plants to the Combination of High Temperatures and Drought Is Associated to the Increase in Transpiration Modulated by a Reduction in Abscisic Acid Levels. BMC Plant Biol. 2016, 16, 105. [Google Scholar] [CrossRef] [PubMed]
- Balfagón, D.; Sengupta, S.; Gómez-Cadenas, A.; Fritschi, F.B.; Azad, R.K.; Mittler, R.; Zandalinas, S.I. Jasmonic Acid Is Required for Plant Acclimation to a Combination of High Light and Heat Stress. Plant Physiol. 2019, 181, 1668–1682. [Google Scholar] [CrossRef] [PubMed]
- Torun, H. Time-Course Analysis of Salicylic Acid Effects on ROS Regulation and Antioxidant Defense in Roots of Hulled and Hulless Barley under Combined Stress of Drought, Heat and Salinity. Physiol. Plant 2019, 165, 169–182. [Google Scholar] [CrossRef] [PubMed]
- Pardo-Hernández, M.; López-Delacalle, M.; Rivero, R.M. ROS and NO Regulation by Melatonin Under Abiotic Stress in Plants. Antioxidants 2020, 9, 1078. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, P.; Zhao, G.; Li, L.; Shen, W. Phytomelatonin and Gasotransmitters: A Crucial Combination for Plant Physiological Functions. J. Exp. Bot. 2022, 73, 5851–5862. [Google Scholar] [CrossRef]
- Yan, Z.; Li, K.; Li, Y.; Wang, W.; Leng, B.; Yao, G.; Zhang, F.; Mu, C.; Liu, X. The ZmbHLH32-ZmIAA9-ZmARF1 Module Regulates Salt Tolerance in Maize. Int. J. Biol. Macromol. 2023, 253, 126978. [Google Scholar] [CrossRef]
- Fang, L.; Wang, Z.; Su, L.; Gong, L.; Xin, H. Vitis Myb14 Confer Cold and Drought Tolerance by Activating Lipid Transfer Protein Genes Expression and Reactive Oxygen Species Scavenge. Gene 2024, 890, 147792. [Google Scholar] [CrossRef]
- Shen, L.; Xia, X.; Zhang, L.; Yang, S.; Yang, X. SmWRKY11 Acts as a Positive Regulator in Eggplant Response to Salt Stress. Plant Physiol. Biochem. 2023, 205, 108209. [Google Scholar] [CrossRef]
- Sinha, R.; Induri, S.P.; Peláez-Vico, M.; Tukuli, A.; Shostak, B.; Zandalinas, S.I.; Joshi, T.; Fritschi, F.B.; Mittler, R. The Transcriptome of Soybean Reproductive Tissues Subjected to Water Deficit, Heat Stress, and a Combination of Water Deficit and Heat Stress. Plant J. 2023, 116, 1064–1080. [Google Scholar] [CrossRef]
- Hewezi, T.; Léger, M.; Gentzbittel, L. A Comprehensive Analysis of the Combined Effects of High Light and High Temperature Stresses on Gene Expression in Sunflower. Ann. Bot. 2008, 102, 127–140. [Google Scholar] [CrossRef]
- Liu, Z.; Xin, M.; Qin, J.; Peng, H.; Ni, Z.; Yao, Y.; Sun, Q. Temporal Transcriptome Profiling Reveals Expression Partitioning of Homeologous Genes Contributing to Heat and Drought Acclimation in Wheat (Triticum aestivum L.). BMC Plant Biol. 2015, 15, 152. [Google Scholar] [CrossRef]
- Zandalinas, S.I.; Fritschi, F.B.; Mittler, R. Signal Transduction Networks during Stress Combination. J. Exp. Bot. 2020, 71, 1734–1741. [Google Scholar] [CrossRef] [PubMed]
- Anfoka, G.; Moshe, A.; Fridman, L.; Amrani, L.; Rotem, O.; Kolot, M.; Zeidan, M.; Czosnek, H.; Gorovits, R. Corrigendum: Tomato Yellow Leaf Curl Virus Infection Mitigates the Heat Stress Response of Plants Grown at High Temperatures. Sci. Rep. 2016, 6, 25284. [Google Scholar] [CrossRef] [PubMed]
- Jacob, P.; Hirt, H.; Bendahmane, A. The Heat-Shock Protein/Chaperone Network and Multiple Stress Resistance. Plant Biotechnol. J. 2017, 15, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Pascual, L.S.; López-Climent, M.F.; Segarra-Medina, C.; Gómez-Cadenas, A.; Zandalinas, S.I. Exogenous Spermine Alleviates the Negative Effects of Combined Salinity and Paraquat in Tomato Plants by Decreasing Stress-Induced Oxidative Damage. Front. Plant Sci. 2023, 14, 1193207. [Google Scholar] [CrossRef] [PubMed]
- Balfagón, D.; Terán, F.; de Oliveira, T.D.R.; Santa-Catarina, C.; Gómez-Cadenas, A. Citrus Rootstocks Modify Scion Antioxidant System under Drought and Heat Stress Combination. Plant Cell Rep. 2022, 41, 593–602. [Google Scholar] [CrossRef] [PubMed]
- Medina, E.; Kim, S.-H.; Yun, M.; Choi, W.-G. Recapitulation of the Function and Role of ROS Generated in Response to Heat Stress in Plants. Plants 2021, 10, 371. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Freund, D.M.; Hegeman, A.D.; Cohen, J.D. Metabolic Signatures of Arabidopsis Thaliana Abiotic Stress Responses Elucidate Patterns in Stress Priming, Acclimation, and Recovery. Stress. Biol. 2022, 2, 11. [Google Scholar] [CrossRef]
- Rasmussen, S.; Barah, P.; Suarez-Rodriguez, M.C.; Bressendorff, S.; Friis, P.; Costantino, P.; Bones, A.M.; Nielsen, H.B.; Mundy, J. Transcriptome Responses to Combinations of Stresses in Arabidopsis. Plant Physiol. 2013, 161, 1783–1794. [Google Scholar] [CrossRef]
- Fondi, M.; Liò, P. Multi -Omics and Metabolic Modelling Pipelines: Challenges and Tools for Systems Microbiology. Microbiol. Res. 2015, 171, 52–64. [Google Scholar] [CrossRef]
- Katam, R.; Lin, C.; Grant, K.; Katam, C.S.; Chen, S. Advances in Plant Metabolomics and Its Applications in Stress and Single-Cell Biology. Int. J. Mol. Sci. 2022, 23, 6985. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wieloch, T.; Kaste, J.A.M.; Shachar-Hill, Y.; Sharkey, T.D. Reimport of Carbon from Cytosolic and Vacuolar Sugar Pools into the Calvin–Benson Cycle Explains Photosynthesis Labeling Anomalies. Proc. Natl. Acad. Sci. USA 2022, 119, e2121531119. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Fu, X.; Sharkey, T.D.; Shachar-Hill, Y.; Walker, A.B.J. The Metabolic Origins of Non-Photorespiratory CO2 Release during Photosynthesis: A Metabolic Flux Analysis. Plant Physiol. 2021, 186, 297–314. [Google Scholar] [CrossRef] [PubMed]
- Koussevitzky, S.; Suzuki, N.; Huntington, S.; Armijo, L.; Sha, W.; Cortes, D.; Shulaev, V.; Mittler, R. Ascorbate Peroxidase 1 Plays a Key Role in the Response of Arabidopsis Thaliana to Stress Combination. J. Biol. Chem. 2008, 283, 34197–34203. [Google Scholar] [CrossRef] [PubMed]
- Cohen, I.; Zandalinas, S.I.; Fritschi, F.B.; Sengupta, S.; Fichman, Y.; Azad, R.K.; Mittler, R. The Impact of Water Deficit and Heat Stress Combination on the Molecular Response, Physiology, and Seed Production of Soybean. Physiol. Plant 2021, 172, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Mittler, R.; Blumwald, E. Genetic Engineering for Modern Agriculture: Challenges and Perspectives. Annu. Rev. Plant Biol. 2010, 61, 443–462. [Google Scholar] [CrossRef] [PubMed]
- Reguera, M.; Peleg, Z.; Blumwald, E. Targeting Metabolic Pathways for Genetic Engineering Abiotic Stress-Tolerance in Crops. Biochim. Biophys. Acta 2012, 1819, 186–194. [Google Scholar] [CrossRef]
- Suzuki, N.; Rivero, R.M.; Shulaev, V.; Blumwald, E.; Mittler, R. Abiotic and Biotic Stress Combinations. New Phytol. 2014, 203, 32–43. [Google Scholar] [CrossRef]
- Konate, L.; Badu-Apraku, B.; Coulibaly, M.; Menkir, A.; Laouali, M.N.; Meseka, S.; Mengesha, W. Agronomic Performance and Yield Stability of Extra-Early Maturing Maize Hybrids in Multiple Environments in the Sahel. Heliyon 2023, 9, e21659. [Google Scholar] [CrossRef]
- Liu, J.; Li, G.; Chen, L.; Gu, J.; Wu, H.; Li, Z. Cerium Oxide Nanoparticles Improve Cotton Salt Tolerance by Enabling Better Ability to Maintain Cytosolic K+/Na+ Ratio. J. Nanobiotechnol. 2021, 19, 153. [Google Scholar] [CrossRef]
- Chen, S.; Pan, Z.; Zhao, W.; Zhou, Y.; Rui, Y.; Jiang, C.; Wang, Y.; White, J.C.; Zhao, L. Engineering Climate-Resilient Rice Using a Nanobiostimulant-Based “Stress Training” Strategy. ACS Nano 2023, 17, 10760–10773. [Google Scholar] [CrossRef]
- Liang, Y.; Liu, H.; Fu, Y.; Li, P.; Li, S.; Gao, Y. Regulatory Effects of Silicon Nanoparticles on the Growth and Photosynthesis of Cotton Seedlings under Salt and Low-Temperature Dual Stress. BMC Plant Biol. 2023, 23, 504. [Google Scholar] [CrossRef]
- Nawaz, M.; Sun, J.; Shabbir, S.; Khattak, W.A.; Ren, G.; Nie, X.; Bo, Y.; Javed, Q.; Du, D.; Sonne, C. A Review of Plants Strategies to Resist Biotic and Abiotic Environmental Stressors. Sci. Total Environ. 2023, 900, 165832. [Google Scholar] [CrossRef] [PubMed]
- Bhat, M.A.; Mir, R.A.; Kumar, V.; Shah, A.A.; Zargar, S.M.; Rahman, S.; Jan, A.T. Mechanistic Insights of CRISPR/Cas-Mediated Genome Editing towards Enhancing Abiotic Stress Tolerance in Plants. Physiol. Plant. 2021, 172, 1255–1268. [Google Scholar] [CrossRef] [PubMed]
- Ahmar, S.; Hensel, G.; Gruszka, D. CRISPR/Cas9-Mediated Genome Editing Techniques and New Breeding Strategies in Cereals—Current Status, Improvements, and Perspectives. Biotechnol. Adv. 2023, 69, 108248. [Google Scholar] [CrossRef]
- Martín-Valmaseda, M.; Devin, S.R.; Ortuño-Hernández, G.; Pérez-Caselles, C.; Mahdavi, S.M.E.; Bujdoso, G.; Salazar, J.A.; Martínez-Gómez, P.; Alburquerque, N. CRISPR/Cas as a Genome-Editing Technique in Fruit Tree Breeding. Int. J. Mol. Sci. 2023, 24, 16656. [Google Scholar] [CrossRef] [PubMed]
- Komal, J.; Desai, H.R.; Samal, I.; Mastinu, A.; Patel, R.D.; Kumar, P.V.D.; Majhi, P.K.; Mahanta, D.K.; Bhoi, T.K. Unveiling the Genetic Symphony: Harnessing CRISPR-Cas Genome Editing for Effective Insect Pest Management. Plants 2023, 12, 3961. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Tyagi, A.; Mir, R.A.; Rather, I.A.; Anwar, Y.; Mahmoudi, H. Plant Beneficial Microbiome a Boon for Improving Multiple Stress Tolerance in Plants. Front. Plant Sci. 2023, 14, 1266182. [Google Scholar] [CrossRef] [PubMed]
- Slade, D.; Radman, M. Oxidative Stress Resistance in Deinococcus Radiodurans. Microbiol. Mol. Biol. Rev. 2011, 75, 133–191. [Google Scholar] [CrossRef]
- Renziehausen, T.; Frings, S.; Schmidt-Schippers, R. “Against All Floods”: Plant Adaptation to Flooding Stress and Combined Abiotic Stresses. Plant J. 2024. [Google Scholar] [CrossRef] [PubMed]
- Kissoudis, C.; van de Wiel, C.; Visser, R.G.F.; van der Linden, G. Enhancing Crop Resilience to Combined Abiotic and Biotic Stress through the Dissection of Physiological and Molecular Crosstalk. Front. Plant Sci. 2014, 5, 207. [Google Scholar] [CrossRef]
- Salse, J.; Barnard, R.L.; Veneault-Fourrey, C.; Rouached, H. Strategies for Breeding Crops for Future Environments. Trends Plant Sci. 2023. [Google Scholar] [CrossRef] [PubMed]
- Romero-Puertas, M.C.; Terrón-Camero, L.C.; Peláez-Vico, M.Á.; Molina-Moya, E.; Sandalio, L.M. An Update on Redox Signals in Plant Responses to Biotic and Abiotic Stress Crosstalk: Insights from Cadmium and Fungal Pathogen Interactions. J. Exp. Bot. 2021, 72, 5857–5875. [Google Scholar] [CrossRef]
- Xu, Y.; Fu, X. Reprogramming of Plant Central Metabolism in Response to Abiotic Stresses: A Metabolomics View. Int. J. Mol. Sci. 2022, 23, 5716. [Google Scholar] [CrossRef] [PubMed]
- Nieves-Cordones, M.; Ródenas, R.; Lara, A.; Martínez, V.; Rubio, F. The Combination of K+ Deficiency with Other Environmental Stresses: What Is the Outcome? Physiol. Plant 2019, 165, 264–276. [Google Scholar] [CrossRef]
- Wellpott, K.; Jozefowicz, A.M.; Meise, P.; Schum, A.; Seddig, S.; Mock, H.-P.; Winkelmann, T.; Bündig, C. Combined Nitrogen and Drought Stress Leads to Overlapping and Unique Proteomic Responses in Potato. Planta 2023, 257, 58. [Google Scholar] [CrossRef]
- Zenda, T.; Wang, N.; Dong, A.; Zhou, Y.; Duan, H. Reproductive-Stage Heat Stress in Cereals: Impact, Plant Responses and Strategies for Tolerance Improvement. Int. J. Mol. Sci. 2022, 23, 6929. [Google Scholar] [CrossRef] [PubMed]
- Sen, S.; Woodhouse, M.R.; Portwood, J.L.; Andorf, C.M. Maize Feature Store: A Centralized Resource to Manage and Analyze Curated Maize Multi-Omics Features for Machine Learning Applications. Database 2023, 2023, baad078. [Google Scholar] [CrossRef]
- Gao, S.; Chen, S.; Yang, M.; Wu, J.; Chen, S.; Li, H. Mining Salt Stress-Related Genes in Spartina Alterniflora via Analyzing Co-Evolution Signal across 365 Plant Species Using Phylogenetic Profiling. aBIOTECH 2023, 4, 291–302. [Google Scholar] [CrossRef]
- Julian, R.; Patrick, R.M.; Li, Y. Organ-Specific Characteristics Govern the Relationship between Histone Code Dynamics and Transcriptional Reprogramming during Nitrogen Response in Tomato. Commun. Biol. 2023, 6, 1225. [Google Scholar] [CrossRef]
- Kreuze, J.F.; Ramírez, D.A.; Fuentes, S.; Loayza, H.; Ninanya, J.; Rinza, J.; David, M.; Gamboa, S.; De Boeck, B.; Diaz, F.; et al. High-Throughput Characterization and Phenotyping of Resistance and Tolerance to Virus Infection in Sweetpotato. Virus Res. 2024, 339, 199276. [Google Scholar] [CrossRef]
- Lee, S.; Yun, C.M. A Deep Learning Model for Predicting Risks of Crop Pests and Diseases from Sequential Environmental Data. Plant Methods 2023, 19, 145. [Google Scholar] [CrossRef]
- Zhang, B.; Ou, Y.; Yu, S.; Liu, Y.; Liu, Y.; Qiu, W. Gray Mold and Anthracnose Disease Detection on Strawberry Leaves Using Hyperspectral Imaging. Plant Methods 2023, 19, 148. [Google Scholar] [CrossRef]
- Chen, H.; Han, Y.; Liu, Y.; Liu, D.; Jiang, L.; Huang, K.; Wang, H.; Guo, L.; Wang, X.; Wang, J.; et al. Classification Models for Tobacco Mosaic Virus and Potato Virus Y Using Hyperspectral and Machine Learning Techniques. Front. Plant Sci. 2023, 14, 1211617. [Google Scholar] [CrossRef] [PubMed]
- Darbyshire, M.; Salazar-Gomez, A.; Gao, J.; Sklar, E.I.; Parsons, S. Towards Practical Object Detection for Weed Spraying in Precision Agriculture. Front. Plant Sci. 2023, 14, 1183277. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Meng, R.; Chen, G.; Liang, L.; Lv, Z.; Zhou, L.; Sun, R.; Zhao, F.; Yang, W. Improved Weed Mapping in Corn Fields by Combining UAV-Based Spectral, Textural, Structural, and Thermal Measurements. Pest. Manag. Sci. 2023, 79, 2591–2602. [Google Scholar] [CrossRef] [PubMed]
- Okyere, F.G.; Cudjoe, D.; Sadeghi-Tehran, P.; Virlet, N.; Riche, A.B.; Castle, M.; Greche, L.; Simms, D.; Mhada, M.; Mohareb, F.; et al. Modeling the Spatial-Spectral Characteristics of Plants for Nutrient Status Identification Using Hyperspectral Data and Deep Learning Methods. Front. Plant Sci. 2023, 14, 1209500. [Google Scholar] [CrossRef] [PubMed]
- Moon, T.; Kim, D.; Kwon, S.; Ahn, T.I.; Son, J.E. Non-Destructive Monitoring of Crop Fresh Weight and Leaf Area with a Simple Formula and a Convolutional Neural Network. Sensors 2022, 22, 7728. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jing, Z.; Liu, N.; Zhang, Z.; Hou, X. Research Progress on Plant Responses to Stress Combinations in the Context of Climate Change. Plants 2024, 13, 469. https://doi.org/10.3390/plants13040469
Jing Z, Liu N, Zhang Z, Hou X. Research Progress on Plant Responses to Stress Combinations in the Context of Climate Change. Plants. 2024; 13(4):469. https://doi.org/10.3390/plants13040469
Chicago/Turabian StyleJing, Zeyao, Na Liu, Zongxian Zhang, and Xiangyang Hou. 2024. "Research Progress on Plant Responses to Stress Combinations in the Context of Climate Change" Plants 13, no. 4: 469. https://doi.org/10.3390/plants13040469