Identification of Phenolic Compounds in the Invasive Plants Staghorn Sumac and Himalayan Balsam: Impact of Time and Solvent on the Extraction of Phenolics and Extract Evaluation on Germination Inhibition
Abstract
:1. Introduction
2. Results and Discussion
2.1. Identification of Phenolic Compounds and Extraction Efficiency of Phenolics from Staghorn Sumac
2.2. Identification of Phenolic Compounds and Extraction Efficiency of Phenolics from Himalayan Balsam
2.3. Effect of Aqueous Staghorn Sumac and Himalayan Balsam Extracts on Seed Germination and Plant Growth of Perennial Ryegrass
2.4. Influence of Extraction Time on the Efficiency of Phenolic Compound Extraction from Staghorn Sumac and Himalayan Balsam
3. Materials and Methods
3.1. Plant Material
3.2. Preparation of Aqueous Extracts
3.3. Seed Germination
3.4. Effect of Extraction Time on Phenolic Compounds from Plant Material
3.5. Extraction Efficiency of Phenolic Compound from Plant Material in Different Solvents
3.6. HPLC-DAD Analysis and Identification of Phenolic Compounds
3.7. Reagents
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abgrall, C.; Forey, E.; Mignot, L.; Chauvat, M. Invasion by Fallopia japonica alters soil food webs through secondary metabolites. Soil Biol. Biochem. 2018, 127, 100–109. [Google Scholar] [CrossRef]
- Feng, Q.W.; Wang, B.; Chen, M.; Wu, P.; Lee, X.; Xing, Y. Invasive plants as potential sustainable feedstocks for biochar production and multiple applications: A review. Resour. Conserv. Recycl. 2021, 164, 105204. [Google Scholar] [CrossRef]
- Wang, C.X.; Zhu, M.X.; Chen, X.H.; Qu, B. Review on Allelopathy of Exotic Invasive Plants. In Proceedings of the 2nd SREE Conference on Chemical Engineering (CCE), Macao, China, 17–18 December 2011. [Google Scholar]
- Inderjit; Duke, S.O. Ecophysiological aspects of allelopathy. Planta 2003, 217, 529–539. [Google Scholar] [CrossRef]
- Gniazdowska, A.; Bogatek, R. Allelopathic interactions between plants. Multi site action of allelochemicals. Acta Physiol. Plant. 2005, 27, 395–407. [Google Scholar] [CrossRef]
- Kalisz, S.; Kivlin, S.N.; Bialic-Murphy, L. Allelopathy is pervasive in invasive plants. Biol. Invasions 2021, 23, 367–371. [Google Scholar] [CrossRef]
- Míguez, C.; Cancela, A.; Sánchez, A.; Alvarez, X. Possibilities for Exploitation of Invasive Species, Arundo donax L., as a Source of Phenol Compounds. Waste Biomass Valorization 2022, 13, 4253–4265. [Google Scholar] [CrossRef]
- Lefebvre, T.; Destandau, E.; Lesellier, E. Selective extraction of bioactive compounds from plants using recent extraction techniques: A review. J. Chromatogr. A 2021, 1635, 461770. [Google Scholar] [CrossRef]
- Palma, M.; Piñeiro, Z.; Barroso, C.G. Stability of phenolic compounds during extraction with superheated solvents. J. Chromatogr. A 2001, 921, 169–174. [Google Scholar] [CrossRef]
- Wu, D.; Yang, Z.H.; Li, J.; Huang, H.L.; Xia, Q.L.; Ye, X.Q.; Liu, D.H. Optimizing the Solvent Selection of the Ultrasound-Assisted Extraction of Sea Buckthorn (Hippophae rhamnoides L.) Pomace: Phenolic Profiles and Antioxidant Activity. Foods 2024, 13, 482. [Google Scholar] [CrossRef]
- Munir, M.T.; Kheirkhah, H.; Baroutian, S.; Quek, S.Y.; Young, B.R. Subcritical water extraction of bioactive compounds from waste onion skin. J. Clean. Prod. 2018, 183, 487–494. [Google Scholar] [CrossRef]
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I. Extraction of phenolic compounds: A review. Curr. Res. Food Sci. 2021, 4, 200–214. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Li, Z.Q.; Li, R.Y.; Cui, Y.; Zhao, Y.L.; Yu, Z.G. Composition analysis and antioxidant activities of the Rhus typhina L. stem. J. Pharm. Anal. 2019, 9, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Olchowik, E.; Lotkowski, K.; Mavlyanov, S.; Abdullajanova, N.; Ionov, M.; Bryszewska, M.; Zamaraeva, M. Stabilization of erythrocytes against oxidative and hypotonic stress by tannins isolated from sumac leaves (Rhus typhina L.) and grape seeds (Vitis vinifera L.). Cell. Mol. Biol. Lett. 2012, 17, 333–348. [Google Scholar] [CrossRef]
- Katiki, L.M.; Ferreira, J.F.S.; Gonzalez, J.M.; Zajac, A.M.; Lindsay, D.S.; Chagas, A.C.S.; Amarante, A.F.T. Anthelmintic effect of plant extracts containing condensed and hydrolyzable tannins on Caenorhabditis elegans, and their antioxidant capacity. Vet. Parasitol. 2013, 192, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Wong, P.Y.Y.; Kitts, D.D. Studies on the dual antioxidant and antibacterial properties of parsley (Petroselinum crispum) and cilantro (Coriandrum sativum) extracts. Food Chem. 2006, 97, 505–515. [Google Scholar] [CrossRef]
- Fernández-Agulló, A.; Pereira, E.; Freire, M.S.; Valentao, P.; Andrade, P.B.; González-Alvarez, J.; Pereira, J.A. Influence of solvent on the antioxidant and antimicrobial properties of walnut (Juglans regia L.) green husk extracts. Ind. Crops Prod. 2013, 42, 126–132. [Google Scholar] [CrossRef]
- Vuong, Q.V.; Hirun, S.; Roach, P.D.; Bowyer, M.C.; Phillips, P.A.; Scarlett, C.J. Effect of extraction conditions on total phenolic compounds and antioxidant activities of Carica papaya leaf aqueous extracts. J. Herb. Med. 2013, 3, 104–111. [Google Scholar] [CrossRef]
- Martin, A.C.; Pawlus, A.D.; Jewett, E.M.; Wyse, D.L.; Angerhofer, C.K.; Hegeman, A.D. Evaluating solvent extraction systems using metabolomics approaches. Rsc. Adv. 2014, 4, 26325–26334. [Google Scholar] [CrossRef]
- Vieira, M.N.; Winterhalter, P.; Jerz, G. Flavonoids from the flowers of Impatiens glandulifera Royle isolated by high performance countercurrent chromatography. Phytochem. Anal. 2016, 27, 116–125. [Google Scholar] [CrossRef]
- Szewczyk, K.; Olech, M. Optimization of extraction method for LC-MS based determination of phenolic acid profiles in different Impatiens species. Phytochem. Lett. 2017, 20, 322–330. [Google Scholar] [CrossRef]
- Al-Muwaly, K.Y.; Al-Flayeh, K.A.; Ali, A.A. Antioxidant and free radical scavenging effects of Iraqi sumac (Rhus coriaria L). Baghdad Sci. J. 2013, 10, 921–932. [Google Scholar] [CrossRef]
- Lindroth, R.L.; Pajutee, M.S. Chemical-Analysis of Phenolic Glycosides—Art, Facts, and Artifacts. Oecologia 1987, 74, 144–148. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.H.; Wang, Q.A.; Ruan, X.A.; Pan, C.D.; Jiang, D.A. Phenolics and Plant Allelopathy. Molecules 2010, 15, 8933–8952. [Google Scholar] [CrossRef] [PubMed]
- Vrchotová, N.; Será, B.; Krejcová, J. Allelopathic activity of extracts from Impatiens species. Plant Soil Environ. 2011, 57, 57–60. [Google Scholar] [CrossRef]
- Baležentienė, L. Phytotoxicity and allelopathic impact of Impatiens glandulifera. Biologija 2018, 64, 153–159. [Google Scholar] [CrossRef]
- Wang, C.; Zhou, J.; Jiang, K.; Liu, J. Differences in leaf functional traits and allelopathic effects on seed germination and growth of Lactuca sativa between red and green leaves of Rhus typhina. S. Afr. J. Bot. 2017, 111, 17–22. [Google Scholar] [CrossRef]
- Zhong, S.S.; Xu, Z.L.; Cheng, H.Y.; Wang, Y.Y.; Yu, Y.L.; Du, D.L.; Wang, C.Y. Does drought stress intensify the allelopathy of invasive woody species Rhus typhina L.? Trees Struct. Funct. 2023, 37, 811–819. [Google Scholar] [CrossRef]
- Kim, Y.O.; Johnson, J.D.; Lee, E.J. Phytotoxicity of Phytolacca americana leaf extracts on the growth, and physiological response of Cassia mimosoides. J. Chem. Ecol. 2005, 31, 2963–2974. [Google Scholar] [CrossRef]
- Vrchotová, N.; Será, B. Allelopathic properties of knotweed rhizome extracts. Plant Soil Environ. 2008, 54, 301–303. [Google Scholar] [CrossRef]
- Reidel, R.V.B.; Cioni, P.L.; Majo, L.; Pistelli, L. Evolution of Volatile Emission in Rhus coriaria Organs During Different Stages of Growth and Evaluation of the Essential Oil Composition. Chem. Biodivers. 2017, 14, e1700270. [Google Scholar] [CrossRef]
- Regazzoni, L.; Arlandini, E.; Garzon, D.; Santagati, N.A.; Beretta, G.; Facino, R.M. A rapid profiling of gallotannins and flavonoids of the aqueous extract of Rhus coriaria L. by flow injection analysis with high-resolution mass spectrometry assisted with database searching. J. Pharm. Biomed. Anal. 2013, 72, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.M.; Shao, X.F.; Wei, Y.Z.; Li, Y.H.; Xu, F.; Wang, H.F. Solidago canadensis L. Essential Oil Vapor Effectively Inhibits Botrytis cinerea Growth and Preserves Postharvest Quality of Strawberry as a Food Model System. Front. Microbiol. 2016, 7, 1179. [Google Scholar] [CrossRef] [PubMed]
- Ganiee, S.A.; Rashid, N.; Shah, M.A.; Ganai, B.A. Comparative allelopathic potential and phytochemical profiling of invasive and non-invasive alien species of Amaranthus. Chem. Pap. 2024, 78, 7453–7476. [Google Scholar] [CrossRef]
- Ladhari, A.; Gaaliche, B.; Zarrelli, A.; Ghannem, M.; Ben Mimoun, M. Allelopathic potential and phenolic allelochemicals discrepancies in Ficus carica L. cultivars. S. Afr. J. Bot. 2020, 130, 30–44. [Google Scholar] [CrossRef]
- Macel, M.; de Vos, R.C.H.; Jansen, J.J.; van der Putten, W.H.; van Dam, N.M. Novel chemistry of invasive plants: Exotic species have more unique metabolomic profiles than native congeners. Ecol. Evol. 2014, 4, 2777–2786. [Google Scholar] [CrossRef]
- Cañadas, R.; González-Miquel, M.; González, E.J.; Díaz, I.; Rodríguez, M. Evaluation of bio-based solvents for phenolic acids extraction from aqueous matrices. J. Mol. Liq. 2021, 338, 116930. [Google Scholar] [CrossRef]
- Shi, S.Y.; Guo, J.F.; You, Q.P.; Chen, X.Q.; Zhang, Y.P. Selective and simultaneous extraction and determination of hydroxybenzoic acids in aqueous solution by magnetic molecularly imprinted polymers. Chem. Eng. J. 2014, 243, 485–493. [Google Scholar] [CrossRef]
- Vergara-Salinas, J.R.; Pérez-Jiménez, J.; Torres, J.L.; Agosin, E.; Pérez-Correa, J.R. Effects of Temperature and Time on Polyphenolic Content and Antioxidant Activity in the Pressurized Hot Water Extraction of Deodorized Thyme (Thymus vulgaris). J. Agric. Food Chem. 2012, 60, 10920–10929. [Google Scholar] [CrossRef]
- Komes, D.; Belscak-Cvitanovic, A.; Horzic, D.; Rusak, G.; Likic, S.; Berendika, M. Phenolic Composition and Antioxidant Properties of Some Traditionally Used Medicinal Plants Affected by the Extraction Time and Hydrolysis. Phytochem. Anal. 2011, 22, 172–180. [Google Scholar] [CrossRef]
- Ko, M.J.; Cheigh, C.I.; Chung, M.S. Optimization of Subcritical Water Extraction of Flavanols from Green Tea Leaves. J. Agric. Food Chem. 2014, 62, 6828–6833. [Google Scholar] [CrossRef]
- Cheigh, C.I.; Yoo, S.Y.; Ko, M.J.; Chang, P.S.; Chung, M.S. Extraction characteristics of subcritical water depending on the number of hydroxyl group in flavonols. Food Chem. 2015, 168, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Kossah, R.; Nsabimana, C.; Zhang, H.; Chen, W. Optimization of extraction of polyphenols from Syrian sumac (Rhus coriaria L.) and Chinese sumac (Rhus typhina L.) fruits. Res. J. Phytochem. 2010, 4, 146–153. [Google Scholar] [CrossRef]
- Kuźma, P.; Drużyńska, B.; Obiedziński, M. Optimization of extraction conditions of some polyphenolic compounds from parsley leaves (Petroselinum crispum). Acta Sci. Pol. Technol. Aliment. 2014, 13, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Chigayo, K.; Mojapelo, P.E.L.; Mnyakeni-Moleele, S.; Misihairabgwi, J.M. Phytochemical and antioxidant properties of different solvent extracts of Kirkia wilmsii tubers. Asian Pac. J. Trop. Biomed. 2016, 6, 1037–1043. [Google Scholar] [CrossRef]
- Hapsari, S.; Yohed, I.; Kristianita, R.A.; Jadid, N.; Aparamarta, H.W.; Gunawan, S. Phenolic and flavonoid compounds extraction from Calophyllum inophyllum leaves. Arab. J. Chem. 2022, 15, 103666. [Google Scholar] [CrossRef]
- Mikulic-Petkovsek, M.; Koron, D.; Rusjan, D. The impact of food processing on the phenolic content in products made from juneberry (Amelanchier lamarckii) fruits. J. Food Sci. 2020, 85, 386–393. [Google Scholar] [CrossRef]
Phenolic Compound | Alcoholic Extract | Water Extract |
---|---|---|
Digalloyl hexoside | 14.94 ± 1.83 a | 6.49 ± 2.69 b |
Gallic acid | 1007.49 ± 88.53 b | 5532.30 ± 411.82 a |
Gallic acid hexose derivative | 54.85 ± 2.53 | 89.64 ± 18.01 |
Galloyl hexose 1 | 22.51 ± 3.92 | 19.12 ± 9.81 |
Galloyl hexose 2 | 440.13 ± 53.20 | 382.46 ± 39.80 |
Galloylquinic acid 1 | 76.18 ± 3.50 | 124.50 ± 25.01 |
Methyl gallate | 344.25 ± 9.77 b | 531.59 ± 57.03 a |
Protocatechuic acid hexoside | 166.01 ± 20.32 a | 72.11 ± 29.90 b |
Syringic acid hexoside | 243.52 ± 26.27 | 320.53 ± 49.08 |
Total hydroxybenzoic acid derivatives | 2369.88 ± 170.11 b | 7078.75 ± 565.29 a |
3-p-coumaroylquinic acid | 48.86 ± 2.81 | 58.68 ± 5.16 |
3-feruloylquinic acid | 74.85 ± 1.34 b | 51.40 ± 5.69 a |
3-caffeoylquinic acid | 150.06 ± 6.86 b | 376.47 ± 15.32 a |
4-p-coumaroylquinic acid | 29.52 ± 4.56 | 14.32 ± 5.09 |
5-p-coumaroylquinic acid 1 | 11.08 ± 2.03 | 13.15 ± 4.36 |
5-p-coumaroylquinic acid 2 | 21.12 ± 4.05 | 11.57 ± 2.86 |
5-caffeoylquinic acid | 8.70 ± 1.05 | 7.56 ± 0.79 |
Caffeic acid | 50.37 ± 7.64 | 29.86 ± 8.08 |
Caffeic acid hexoside 1 | 14.91 ± 0.68 b | 37.42 ± 1.52 a |
Caffeic acid hexoside 2 | 38.10 ± 2.92 a | 19.85 ± 2.18 b |
p-coumaric acid hexoside 1 | 35.46 ± 1.62 b | 88.97 ± 3.62 a |
p-coumaric acid hexoside 2 | 20.12 ± 1.54 a | 10.48 ± 1.15 b |
Total hydroxycinnamic acid derivatives | 503.14 ± 21.25 b | 719.72 ± 44.61 a |
Catechin | 965.42 ± 55.62 | 1159.52 ± 101.91 |
Procyanidin derivative | 1215.37 ± 152.92 a | 1162.43 ± 266.49 a |
Procyanidin dimer 1 | 295.69 ± 51.47 | 322.74 ± 102.84 |
Procyanidin dimer 2 | 1691.20 ± 129.65 a | 880.81 ± 96.59 b |
Procyanidin dimer 3 | 173.75 ± 26.85 | 84.26 ± 29.96 |
Procyanidin dimer 4 | 621.31 ± 119.16 | 340.50 ± 84.22 |
Procyanidin trimer 1 | 233.35 ± 13.44 | 280.26 ± 24.63 |
Procyanidin trimer 2 | 1450.09 ± 200.49 | 856.08 ± 176.39 |
Procyanidin trimer 3 | 260.79 ± 47.71 | 309.62 ± 102.57 |
Total flavanols | 6906.97 ± 522.96 | 5396.22 ± 954.83 |
Isorhamnetin hexoside | 91.16 ± 4.66 | 94.19 ± 2.25 |
Kaempferol hexoside | 297.83 ± 6.48 | 283.21 ± 7.50 |
Kaempferol hydroxyhexoside | 275.39 ± 17.97 | 345.00 ± 28.83 |
Kaempferol pentoside 1 | 158.39 ± 4.17 a | 139.67 ± 2.21 b |
Kaempferol pentoside 2 | 160.19 ± 4.13 a | 120.08 ± 5.41 b |
Laricitrin hexoside | 361.42 ± 8.93 a | 318.37 ± 5.94 b |
Myricetin hexoside 1 | 473.23 ± 16.23 b | 700.24 ± 8.39 a |
Myricetin hexoside 2 | 706.75 ± 17.59 b | 985.94 ± 9.31 a |
Myricetin pentoside 1 | 208.40 ± 6.46 a | 218.30 ± 3.90 a |
Myricetin pentoside 2 | 119.39 ± 3.07 a | 107.16 ± 3.08 b |
Myricetin ramnoside | 6520.14 ± 181.92 b | 9817.58 ± 92.46 a |
Quercetin-3-arabinofuranoside | 729.92 ± 17.60 b | 1049.67 ± 27.07 a |
Quercetin-3-arabinopyranoside | 303.45 ± 6.60 | 288.55 ± 7.65 |
Quercetin-3-galactoside | 1163.80 ± 173.60 | 1465.73 ± 14.99 |
Quercetin-3-glucoside | 1412.93 ± 157.19 b | 2458.04 ± 78.27 a |
Quercetin-3-ramnoside | 3587.43 ± 44.54 b | 3994.97 ± 105.66 a |
Quercetin-3-rutinoside | 3.52 ± 0.09 a | 3.16 ± 0.09 b |
Quercetin-3-xyloside | 268.73 ± 4.21 a | 228.98 ± 3.84 b |
Total flavonols | 16,842.03 ± 341.31 b | 22,628.20 ± 264.48 a |
Phenolic Group | Alcoholic Extract | Water Extract |
---|---|---|
Cyanidin-coumaroylhexoside | 114.67 ± 10.58 | / |
Cyanidin-malonylhexoside | 27.52 ± 2.54 | / |
Delphinidin-coumaroylhexoside | 86.16 ± 7.49 | / |
Delphinidin-malonylhexoside | 53.42 ± 4.65 | / |
Malvidin-malonylhexoside | 13.58 ± 3.51 | / |
Malvidin-coumaroylhexoside | 15.61 ± 4.04 | / |
Total anthocyanins | 310.96 ± 27.86 | 0.00 ± 0.00 |
Protocatechuic acid | 1056.92 ± 10.82 a | 252.21 ± 18.45 b |
Vanillic acid | 150.99 ± 1.55 a | 36.03 ± 2.64 b |
Total hydroxybenzoic acid derivatives | 1207.90 ± 12.37 a | 288.24 ± 21.08 b |
Ferulic acid 1 | 121 ± 7.74 a | 43.3 ± 3.12 b |
Ferulic acid 2 | 51.1 ± 1.90 a | 2.59 ± 0.49 b |
p-Coumaric acid hexoside | 122 ± 2.73 a | 11.8 ± 2.63 b |
Caffeic acid 1 | 535 ± 51.0 a | 134 ± 9.06 b |
Caffeic acid 2 | 337 ± 21.4 a | 119 ± 8.63 b |
p-Coumaric acid 1 | 145 ± 9.22 a | 51.6 ± 3.72 b |
p-Coumaric acid 2 | 86.0 ± 1.94 a | 11.6 ± 4.20 b |
Total hydroxycinnamic acid derivatives | 1399.08 ± 90.70 a | 374.91 ± 29.95 b |
Epicatechin | 1854.47 ± 117.76 a | 658.77 ± 47.48 b |
Catechin | 667.68 ± 63.59 a | 167.43 ± 11.30 b |
Procyanidin dimer 1 | 524.02 ± 11.69 a | 50.65 ± 11.24 b |
Procyanidin dimer 2 | 1007.95 ± 109.74 a | 406.99 ± 82.98 b |
Total flavanols | 4054.12 ± 271.01 a | 1283.83 ± 123.44 b |
Eriodictyol hexoside 1 | 3685.05 ± 136.97 a | 187.06 ± 35.33 b |
Eriodictyol hexoside 2 | 194.44 ± 14.17 | 186.74 ± 40.39 |
Naringenin hexoside | 73.45 ± 3.12 a | 36.51 ± 5.16 b |
Total flavanones | 3952.94 ± 151.20 a | 410.31 ± 39.32 b |
Isorhamnetin-3-rutinoside | 3685.05 ± 136.97 a | 187.06 ± 35.33 b |
Kaempferol-3-rutinoside | 194.44 ± 14.17 | 186.74 ± 40.39 |
Kaempferol acetyl hexoside | 73.45 ± 3.12 a | 36.51 ± 5.16 b |
Kaempferol hexoside 1 | 87.50 ± 16.89 | 55.35 ± 11.62 |
Kaempferol hexoside 2 | 1772.39 ± 279.59 a | 23.14 ± 5.42 b |
Kaempferol rhamnosyl dihexoside | 44.58 ± 2.50 a | 2.86 ± 0.76 b |
Quercetin-3-galactoside | 607.83 ± 34.10 a | 39.04 ± 10.37 b |
Quercetin malonyl hexoside | 975.49 ± 167.96 a | 42.38 ± 10.36 b |
Quercetin-3-glucoside | 87.50 ± 16.89 | 55.35 ± 11.62 |
Quercetin-3- rutinoside | 1772.39 ± 279.59 a | 23.14 ± 5.42 b |
Myricetin-3-glucuronide | 18.92 ± 2.45 | / |
Total flavonols | 6040.57 ± 760.72 a | 695.88 ± 109.12 b |
Concentration (g/mL) | Label | Germination (%) | Shoot Length (mm) | Root Length (mm) | |
---|---|---|---|---|---|
Control | 97.50 ± 1.71 a | 28.03 ± 1.09 a | 20.57 ± 0.88 b | ||
Staghorn sumac | 0.16 | 1 | 18.75 ± 5.54 d | 11.20 ± 0.96 c | 1.33 ± 0.16 c |
0.08 | 2 | 17.50 ± 4.33 d | 12.86 ± 1.54 c | 2.07 ± 0.50 c | |
Himalayan balsam | 0.25 | 3 | 42.50 ± 4.79 c | 13.38 ± 1.50 c | 19.18 ± 1.61 b |
0.125 | 4 | 71.25 ± 8.75 b | 20.29 ± 1.41 b | 26.26 ± 1.30 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikulic-Petkovsek, M.; Ravnjak, E.; Rusjan, D. Identification of Phenolic Compounds in the Invasive Plants Staghorn Sumac and Himalayan Balsam: Impact of Time and Solvent on the Extraction of Phenolics and Extract Evaluation on Germination Inhibition. Plants 2024, 13, 3339. https://doi.org/10.3390/plants13233339
Mikulic-Petkovsek M, Ravnjak E, Rusjan D. Identification of Phenolic Compounds in the Invasive Plants Staghorn Sumac and Himalayan Balsam: Impact of Time and Solvent on the Extraction of Phenolics and Extract Evaluation on Germination Inhibition. Plants. 2024; 13(23):3339. https://doi.org/10.3390/plants13233339
Chicago/Turabian StyleMikulic-Petkovsek, Maja, Eva Ravnjak, and Denis Rusjan. 2024. "Identification of Phenolic Compounds in the Invasive Plants Staghorn Sumac and Himalayan Balsam: Impact of Time and Solvent on the Extraction of Phenolics and Extract Evaluation on Germination Inhibition" Plants 13, no. 23: 3339. https://doi.org/10.3390/plants13233339
APA StyleMikulic-Petkovsek, M., Ravnjak, E., & Rusjan, D. (2024). Identification of Phenolic Compounds in the Invasive Plants Staghorn Sumac and Himalayan Balsam: Impact of Time and Solvent on the Extraction of Phenolics and Extract Evaluation on Germination Inhibition. Plants, 13(23), 3339. https://doi.org/10.3390/plants13233339