Chemical Composition, In Silico Investigations and Evaluation of Antifungal, Antibacterial, Insecticidal and Repellent Activities of Eucalyptus camaldulensis Dehn. Leaf Essential Oil from ALGERIA
Abstract
:1. Introduction
2. Results and Discussion
2.1. Composition of E. camaldulensis Essential Oil
2.2. Antimicrobial Activity
2.2.1. Antibacterial Activity
2.2.2. Antifungal Activity
2.3. Insecticidal Activity
2.3.1. Contact Toxicity
2.3.2. Fumigant Toxicity
2.3.3. Repellency Activity
2.4. In Silico Investigations
3. Conclusions
4. Materials and Methods
4.1. Plant Material and Essential Oil Extraction
4.2. GC-MS Analysis
4.3. Antibacterial Activity Test
4.4. Antifungal Activity Test
4.5. Insecticidal Activity
4.5.1. Test Insect Culture
4.5.2. Contact Toxicity
4.5.3. Fumigant Toxicity
4.5.4. Repellent Activity
4.6. DFT Calculations
4.7. Molecular Docking
4.8. Statistical Analysis
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carpena, M.; Nuñez-Estevez, B.; Soria-Lopez, A.; Garcia-Oliveira, P.; Prieto, M.A. Essential Oils and Their Application on Active Packaging Systems: A Review. Resources 2021, 10, 7. [Google Scholar] [CrossRef]
- Micić, D.; Đurović, S.; Riabov, P.; Tomić, A.; Šovljanski, O.; Filip, S.; Tosti, T.; Dojčinović, B.; Božović, R.; Jovanović, D.; et al. Rosemary Essential Oils as a Promising Source of Bioactive Compounds: Chemical Composition, Thermal Properties, Biological Activity, and Gastronomical Perspectives. Foods 2021, 10, 2734. [Google Scholar] [CrossRef] [PubMed]
- Isman, M.B.; Miresmailli, S.; MacHial, C. Commercial Opportunities for Pesticides Based on Plant Essential Oils in Agriculture, Industry and Consumer Products. Phytochem. Rev. 2011, 10, 197–204. [Google Scholar] [CrossRef]
- Saeed, K.; Pasha, I.; Jahangir Chughtai, M.F.; Ali, Z.; Bukhari, H.; Zuhair, M. Application of Essential Oils in Food Industry: Challenges and Innovation. J. Essent. Oil Res. 2022, 34, 97–110. [Google Scholar] [CrossRef]
- Salanță, L.C.; Cropotova, J. An Update on Effectiveness and Practicability of Plant Essential Oils in the Food Industry. Plants 2022, 11, 2488. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological Effects of Essential Oils—A Review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Yap, P.S.X.; Yiap, B.C.; Ping, H.C.; Lim, S.H.E. Essential Oils, a New Horizon in Combating Bacterial Antibiotic Resistance. Open Microbiol. J. 2014, 8, 6–14. [Google Scholar] [CrossRef]
- Van, L.T.; Hagiu, I.; Popovici, A.; Marinescu, F.; Gheorghe, I.; Curutiu, C.; Ditu, L.M.; Holban, A.M.; Sesan, T.E.; Lazar, V. Antimicrobial Efficiency of Some Essential Oils in Antibiotic-Resistant Pseudomonas aeruginosa Isolates. Plants 2022, 11, 2003. [Google Scholar] [CrossRef]
- Falleh, H.; Ben Jemaa, M.; Saada, M.; Ksouri, R. Essential Oils: A Promising Eco-Friendly Food Preservative. Food Chem. 2020, 330, 127268. [Google Scholar] [CrossRef]
- Chaudhari, A.K.; Singh, V.K.; Kedia, A.; Das, S.; Dubey, N.K. Essential Oils and Their Bioactive Compounds as Eco-Friendly Novel Green Pesticides for Management of Storage Insect Pests: Prospects and Retrospects. Environ. Sci. Pollut. Res. 2021, 28, 18918–18940. [Google Scholar] [CrossRef]
- Das, S.; Singh, V.K.; Dwivedy, A.K.; Chaudhari, A.K.; Dubey, N.K. Insecticidal and Fungicidal Efficacy of Essential Oils and Nanoencapsulation Approaches for the Development of next Generation Ecofriendly Green Preservatives for Management of Stored Food Commodities: An Overview. Int. J. Pest Manag. 2024, 70, 235–266. [Google Scholar] [CrossRef]
- Mieres-Castro, D.; Ahmar, S.; Shabbir, R.; Mora-Poblete, F. Antiviral Activities of Eucalyptus Essential Oils: Their Effectiveness as Therapeutic Targets Against Human Viruses. Pharmaceuticals 2021, 14, 1210. [Google Scholar] [CrossRef]
- Chahomchuen, T.; Insuan, O.; Insuan, W. Chemical Profile of Leaf Essential Oils from Four Eucalyptus Species from Thailand and Their Biological Activities. Microchem. J. 2020, 158, 105248. [Google Scholar] [CrossRef]
- Batish, D.R.; Singh, H.P.; Kohli, R.K.; Kaur, S. Eucalyptus Essential Oil as a Natural Pesticide. For. Ecol. Manag. 2008, 256, 2166–2174. [Google Scholar] [CrossRef]
- Amakura, Y.; Umino, Y.; Tsuji, S.; Ito, H.; Hatano, T.; Yoshida, T.; Tonogai, Y. Constituents and Their Antioxidative Effects in Eucalyptus Leaf Extract Used as a Natural Food Additive. Food Chem. 2002, 77, 47–56. [Google Scholar] [CrossRef]
- Métro, A. Les Eucalyptus Dans le Monde Méditerranéen. Revue Forestière Française. 2021, 22, 339–354. [Google Scholar] [CrossRef]
- Boulekbache-Makhlouf, L.; Meudec, E.; Chibane, M.; Mazauric, J.P.; Slimani, S.; Henry, M.; Cheynier, V.; Madani, K. Analysis by High-Performance Liquid Chromatography Diode Array Detection Mass Spectrometry of Phenolic Compounds in Fruit of Eucalyptus globulus Cultivated in Algeria. J. Agric. Food Chem. 2010, 58, 12615–12624. [Google Scholar] [CrossRef]
- Kesharwani, V.; Gupta, S.; Kushwaha, N.; Kesharwani, R.; Patel, D.K. A Review on Therapeutics Application of Eucalyptus Oil. Int. J. Herb. Med. 2018, 6, 110–115. [Google Scholar]
- Chandorkar, N.; Tambe, S.; Amin, P.; Madankar, C. A Systematic and Comprehensive Review on Current Understanding of the Pharmacological Actions, Molecular Mechanisms, and Clinical Implications of the Genus Eucalyptus. Phytomed. Plus 2021, 1, 100089. [Google Scholar] [CrossRef]
- Kheder, D.A.; Al-Habib, O.A.M.; Gilardoni, G.; Vidari, G. Components of Volatile Fractions from Eucalyptus camaldulensis Leaves from Iraqi–Kurdistan and Their Potent Spasmolytic Effects. Molecules 2020, 25, 804. [Google Scholar] [CrossRef]
- Al-Samaraee, S.M.S.; Jumah, A.I. The Therapeutic Role of Medicinal Plants in Treating Corona Epidemic Disease (Eucalyptus as Applied Study). Indian J. Forensic Med. Toxicol. 2021, 15, 3409–3412. [Google Scholar] [CrossRef]
- Etemadi, R.; Moghadam, P.; Yousefi, F. Evaluation of Chemical Composition and Antimicrobial Activities of Eucalyptus camaldulensis Essential Oil on Dental Caries Pathogens. J. Basic Res. Med. Sci. 2020, 7, 43–49. [Google Scholar]
- Dheyab, A.S.; Ibrahim, A.J.K.; Aljumily, E.K.; AlOmar, M.K.; Bakar, M.F.A.; Sabran, S.F. Antimycobacterial Activity and Phytochemical Properties of Eucalyptus camaldulensis (Eucalyptus) Extracted by Deep Eutectic Solvents. Mater. Today Proc. 2022, 65, 2738–2742. [Google Scholar] [CrossRef]
- Ez-Zriouli, R.; ElYacoubi, H.; Imtara, H.; Mesfioui, A.; ElHessni, A.; Al Kamaly, O.; Zuhair Alshawwa, S.; Nasr, F.A.; Benziane Ouaritini, Z.; Rochdi, A. Chemical Composition, Antioxidant and Antibacterial Activities and Acute Toxicity of Cedrus atlantica, Chenopodium ambrosioides and Eucalyptus camaldulensis Essential Oils. Molecules 2023, 28, 2974. [Google Scholar] [CrossRef]
- Benayache, S.; Benayache, F.; Benyahia, S.; Chalchat, J.-C.; Garry, R.-P. Leaf Oils of Some Eucalyptus Species Growing in Algeria. J. Essent. Oil Res. 2001, 13, 210–213. [Google Scholar] [CrossRef]
- Achour, K.N.; Mecherri, M.O.; Nabiev, M. Volatiles Leaf Oil Constituents of Eucalyptus camaldulensis Dehnh from Algeria. Arab. J. Med. Aromat. Plants 2015, 1, 129–136. [Google Scholar] [CrossRef]
- Barra, A.; Coroneo, V.; Dessi, S.; Cabras, P.; Angioni, A. Chemical Variability, Antifungal and Antioxidant Activity of Eucalyptus camaldulensis Essential Oil from Sardinia. Nat. Prod. Commun. 2010, 5, 329–335. [Google Scholar] [CrossRef]
- Jaradat, N.; Al-Maharik, N.; Hawash, M.; Qadi, M.; Issa, L.; Anaya, R.; Daraghmeh, A.; Hijleh, L.; Daraghmeh, T.; Alyat, A.; et al. Eucalyptus camaldulensis Dehnh Leaf Essential Oil from Palestine Exhibits Antimicrobial and Antioxidant Activity but No Effect on Porcine Pancreatic Lipase and α-Amylase. Plants 2023, 12, 3805. [Google Scholar] [CrossRef]
- Shieh JuiChung, S.J. Yields and chemical components of essential oils in Eucalyptus camaldulensis leaves. Taiwan J. For. Sci. 1996, 11, 149–157. [Google Scholar]
- Kakaraparthi, P.S.; Srinivas, K.V.N.S.; Kumar, J.K.; Kumar, A.N.; Rajput, D.K.; Sarma, V.U.M. Variation in the Essential Oil Content and Composition of Citronella (Cymbopogon winterianus Jowitt.) in Relation to Time of Harvest and Weather Conditions. Ind. Crops Prod. 2014, 61, 240–248. [Google Scholar] [CrossRef]
- Knezevic, P.; Aleksic, V.; Simin, N.; Svircev, E.; Petrovic, A.; Mimica-Dukic, N. Antimicrobial Activity of Eucalyptus camaldulensis Essential Oils and Their Interactions with Conventional Antimicrobial Agents Against Multi-Drug Resistant Acinetobacter baumannii. J. Ethnopharmacol. 2016, 178, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Elgat, W.A.A.A.; Kordy, A.M.; Böhm, M.; Černý, R.; Abdel-Megeed, A.; Salem, M.Z.M. Eucalyptus camaldulensis, Citrus aurantium, and Citrus sinensis Essential Oils as Antifungal Activity Against Aspergillus flavus, Aspergillus niger, Aspergillus terreus, and Fusarium culmorum. Processes 2020, 8, 1003. [Google Scholar] [CrossRef]
- Melito, S.; Petretto, G.L.; Podani, J.; Foddai, M.; Maldini, M.; Chessa, M.; Pintore, G. Altitude and Climate Influence Helichrysum italicum Subsp. microphyllum Essential Oils Composition. Ind. Crops Prod. 2016, 80, 242–250. [Google Scholar] [CrossRef]
- Saxena, S.N.; Kakani, R.K.; Rathore, S.S.; Meena, R.S.; Vishal, M.K.; Sharma, L.K.; Agrawal, D.; John, S.; Panwar, A.; Singh, B. Genetic Variation in Essential Oil Constituents of Fennel (Foeniculum vulgare Mill) Germplasm. J. Essent. Oil Bear. Plants 2016, 19, 989–999. [Google Scholar] [CrossRef]
- Ghasemi Pirbalouti, A.; Mahdad, E.; Craker, L. Effects of Drying Methods on Qualitative and Quantitative Properties of Essential Oil of Two Basil Landraces. Food Chem. 2013, 141, 2440–2449. [Google Scholar] [CrossRef] [PubMed]
- da Silva, W.M.F.; Kringel, D.H.; de Souza, E.J.D.; da Rosa Zavareze, E.; Dias, A.R.G. Basil Essential Oil: Methods of Extraction, Chemical Composition, Biological Activities, and Food Applications. Food Bioprocess Technol. 2022, 15, 1–27. [Google Scholar] [CrossRef]
- Ghaffar, A.; Yameen, M.; Kiran, S.; Kamal, S.; Jalal, F.; Munir, B.; Saleem, S.; Rafiq, N.; Ahmad, A.; Saba, I.; et al. Chemical Composition and In-Vitro Evaluation of the Antimicrobial and Antioxidant Activities of Eucalyptus gillii Oils Extracted from Seven Eucalyptus Species. Molecules 2015, 20, 20487–20498. [Google Scholar] [CrossRef]
- Mehani, M.; Segni, L. Antimicrobial Effect of Essential Oils of the Plant Eucalyptus camaldulensis on Some Pathogenic Bacteria. Int. J. Environ. Sci. Dev. 2012, 3, 86–88. [Google Scholar] [CrossRef]
- Fernandes, F.H.; Guterres, Z.D.R.; Violante, I.M.P.; Lopes, T.F.S.; Garcez, W.S.; Garcez, F.R. Evaluation of Mutagenic and Antimicrobial Properties of Brown Propolis Essential Oil from the Brazilian Cerrado Biome. Toxicol. Rep. 2015, 2, 1482–1488. [Google Scholar] [CrossRef]
- Bougatsos, C.; Ngassapa, O.; Runyoro, D.K.B.; Chinou, I.B. Chemical Composition and In Vitro Antimicrobial Activity of the Essential Oils of Two Helichrysum Species from Tanzania. Z. Fur. Naturforschung-Sect. C J. Biosci. 2004, 59, 368–372. [Google Scholar] [CrossRef]
- Agnaniet, H.; Makani, T.; Bikanga, R.; Obame, L.C.; Lebibi, J.; Menut, C. Chemical Composition and Antimicrobial Activity of the Essential Oils of Leaves, Roots and Bark of Glossocalyx staudtii. Nat. Prod. Commun. 2009, 4, 1127–1132. [Google Scholar] [CrossRef] [PubMed]
- Balahbib, A.; El Omari, N.; Hachlafi, N. EL.; Lakhdar, F.; El Menyiy, N.; Salhi, N.; Mrabti, H.N.; Bakrim, S.; Zengin, G.; Bouyahya, A. Health Beneficial and Pharmacological Properties of P-Cymene. Food Chem. Toxicol. 2021, 153, 112259. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, H.A.; Aspatwar, A.; Aljarbooa, A.F.; Qureshi, K.A. Comparative Study of Volatile Oil Constituents, Anti-Microbial Properties, and Antibiofilm Activities in Eucalyptus camaldulensis and Eucalyptus globulus: Insights from Central Saudi Arabia. J. Essent. Oil-Bear. Plants 2024, 27, 341–355. [Google Scholar] [CrossRef]
- Diriye, M.A.; Ali, M.M.; Ishag, O.A.; Mohamed, M.A. Chemical Composition and Antimicrobial Activity of Essential Oils Extracted from Eucalyptus camaldulensis Leaves Grown in Sudan. Red Sea Univ. J. Basic Appl. Sci. 2017, 2, 244. [Google Scholar]
- Cazella, L.N.; Glamoclija, J.; Soković, M.; Gonçalves, J.E.; Linde, G.A.; Colauto, N.B.; Gazim, Z.C. Antimicrobial Activity of Essential Oil of Baccharis dracunculifolia DC (Asteraceae) Aerial Parts at Flowering Period. Front. Plant Sci. 2019, 10, 27. [Google Scholar] [CrossRef]
- Mmbengwa, V.; Samie, A.; Gundidza, M.; Matikiti, V.; Ramalivhana, N.J.; Magwa, M.L. Biological Activity and Phytoconstituents of Essential Oil from Fresh Leaves of Eriosema englerianum. Afr. J. Biotechnol. 2009, 8, 361–364. [Google Scholar]
- Camele, I.; Altieri, L.; de Martino, L.; de Feo, V.; Mancini, E.; Rana, G.L. In Vitro Control of Post-Harvest Fruit Rot Fungi by Some Plant Essential Oil Components. Int. J. Mol. Sci. 2012, 13, 2290–2300. [Google Scholar] [CrossRef]
- Zouirech, O.; Alyousef, A.A.; El Barnossi, A.; El Moussaoui, A.; Bourhia, M.; Salamatullah, A.M.; Ouahmane, L.; Giesy, J.P.; Aboul-Soud, M.A.M.; Lyoussi, B.; et al. Phytochemical Analysis and Antioxidant, Antibacterial, and Antifungal Effects of Essential Oil of Black Caraway (Nigella sativa L.) Seeds against Drug-Resistant Clinically Pathogenic Microorganisms. BioMed Res. Int. 2022, 2022, 5218950. [Google Scholar] [CrossRef]
- Kumar, A.; Shukla, R.; Singh, P.; Prasad, C.S.; Dubey, N.K. Assessment of Thymus Vulgaris L. Essential Oil as a Safe Botanical Preservative Against Post Harvest Fungal Infestation of Food Commodities. Innov. Food Sci. Emerg. Technol. 2008, 9, 575–580. [Google Scholar] [CrossRef]
- Ainane, A.; Khammour; Charaf, S.; Elabboubi, M.; Elkouali, M.; Talbi, M.; Benhima, R.; Cherroud, S.; Ainane, T. Chemical Composition and Insecticidal Activity of Five Essential Oils: Cedrus atlantica, Citrus limonum, Rosmarinus officinalis, Syzygium aromaticum and Eucalyptus globules. Mater. Today Proc. 2019, 13, 474–485. [Google Scholar] [CrossRef]
- Yang, Y.C.; Choi, H.Y.; Choi, W.S.; Clark, J.M.; Ahn, Y.J. Ovicidal and Adulticidal Activity of Eucalyptus globulus Leaf Oil Terpenoids against Pediculus humanus capitis (Anoplura: Pediculidae). J. Agric. Food Chem. 2004, 52, 2507–2511. [Google Scholar] [CrossRef] [PubMed]
- Siramon, P.; Ohtani, Y.; Ichiura, H. Biological Performance of Eucalyptus camaldulensis Leaf Oils from Thailand against the Subterranean Termite Coptotermes formosanus Shiraki. J. Wood Sci. 2009, 55, 41–46. [Google Scholar] [CrossRef]
- Ahouandjinou, J.; Adjou, E.S.; Kpatinvo, B.; Dahouenon-ahoussi, E.; Sohounhloue, D.C.K. Biological Properties of Essential Oils from Eucalyptus camaldulensis and Ocimum gratissimum Against Sitophilus spp. Isolated from Stored Traditional Yams Chips. J. Pharmacogn. Phytochem. 2021, 10, 24–27. [Google Scholar]
- Benelli, G.; Pavela, R.; Drenaggi, E.; Desneux, N.; Maggi, F. Phytol, (E)-Nerolidol and Spathulenol from Stevia rebaudiana Leaf Essential Oil as Effective and Eco-Friendly Botanical Insecticides Against Metopolophium dirhodum. Ind. Crops Prod. 2020, 155, 112844. [Google Scholar] [CrossRef]
- Feng, Y.X.; Zhang, X.; Wang, Y.; Chen, Z.Y.; Lu, X.X.; Du, Y.S.; Du, S.S. The Potential Contribution of Cymene Isomers to Insecticidal and Repellent Activities of the Essential Oil from Alpinia zerumbet. Int. Biodeterior. Biodegrad. 2021, 157, 105138. [Google Scholar] [CrossRef]
- Chaghakaboodi, Z.; Nasiri, J.; Farahani, S. Fumigation Toxicity of the Essential Oils of Ferula persica against Tribolium castaneum and Ephestia kuehniella. Mostafa 2022, 2, 123–130. [Google Scholar]
- Oviedo-Sarmiento, J.S.; Bustos Cortes, J.J.; Delgado Ávila, W.A.; Cuca Suárez, L.E.; Herrera Daza, E.; Patiño-Ladino, O.J.; Prieto-Rodríguez, J.A. Fumigant Toxicity and Biochemical Effects of Selected Essential Oils toward the Red Flour Beetle, Tribolium castaneum (Coleoptera: Tenebrionidae). Pestic. Biochem. Physiol. 2021, 179, 104941. [Google Scholar] [CrossRef]
- Tessema, F.B.; Belachew, A.M.; Gonfa, Y.H.; Asfaw, T.B.; Admassie, Z.G.; Bachheti, A.; Bachheti, R.K.; Tadesse, M.G. Efficacy of Fumigant Compounds from Essential Oil of Feverfew (Chrysanthemum parthenium L.) Against Maize Weevil (Sitophilus zeamais Mots.): Fumigant Toxicity Test and in-Silico Study. Bull. Chem. Soc. Ethiop. 2024, 38, 457–472. [Google Scholar] [CrossRef]
- Ben Jemâa, J.M.; Haouel, S.; Bouaziz, M.; Khouja, M.L. Seasonal Variations in Chemical Composition and Fumigant Activity of Five Eucalyptus Essential Oils Against Three Moth Pests of Stored Dates in Tunisia. J. Stored Prod. Res. 2012, 48, 61–67. [Google Scholar] [CrossRef]
- Gad, H.A.; Hamza, A.F.; Abdelgaleil, S.A.M. Chemical Composition and Fumigant Toxicity of Essential Oils from Ten Aromatic Plants Growing in Egypt Against Different Stages of Confused Flour Beetle, Tribolium confusum Jacquelin Du Val. Int. J. Trop. Insect Sci. 2022, 42, 697–706. [Google Scholar] [CrossRef]
- Albouchi, F.; Ghazouani, N.; Souissi, R.; Abderrabba, M.; Boukhris-Bouhachem, S. Aphidicidal Activities of Melaleuca styphelioides Sm. Essential Oils on Three Citrus Aphids: Aphis gossypii Glover; Aphis spiraecola Patch and Myzus persicae (Sulzer). South Afr. J. Bot. 2018, 117, 149–154. [Google Scholar] [CrossRef]
- Attia, M.A.; Wahba, T.F.; Shaarawy, N.; Moustafa, F.I.; Guedes, R.N.C.; Dewer, Y. Stored Grain Pest Prevalence and Insecticide Resistance in Egyptian Populations of the Red Flour Beetle Tribolium castaneum (Herbst) and the Rice Weevil Sitophilus oryzae (L.). J. Stored Prod. Res. 2020, 87, 101611. [Google Scholar] [CrossRef]
- Ebadollahi, A.; Setzer, W.N. Analysis of the Essential Oils of Eucalyptus camaldulensis Dehnh. and E. viminalis Labill. as a Contribution to Fortify Their Insecticidal Application. Nat. Prod. Commun. 2020, 15, 1–10. [Google Scholar] [CrossRef]
- Karimi Karemu, C.; Ndung’U, M.W.; Githua, M. Repellent Effects of Essential Oils from Selected Eucalyptus Species and Their Major Constituents Against Sitophilus zeamais (Coleoptera: Curculionidae). Int. J. Trop. Insect Sci. 2013, 33, 188–194. [Google Scholar] [CrossRef]
- Ali, A.; Tabanca, N.; Amin, E.; Demirci, B.; Khan, I.A. Chemical Composition and Biting Deterrent Activity of Essential Oil of Tagetes patula (Marigold) against Aedes aegypti. Nat. Prod. Commun. 2016, 11, 1535–1538. [Google Scholar] [CrossRef]
- You, C.X.; Guo, S.S.; Zhang, W.J.; Yang, K.; Wang, C.F.; Geng, Z.F.; Du, S.S.; Deng, Z.W.; Wang, Y.Y. Chemical Constituents and Activity of Murraya microphylla Essential Oil Against Lasioderma serricorne. Nat. Prod. Commun. 2015, 10, 1635–1638. [Google Scholar] [CrossRef]
- Cantrell, C.L.; Klun, J.A.; Bryson, C.T.; Kobaisy, M.; Duke, S.O. Isolation and Identification of Mosquito Bite Deterrent Terpenoids from Leaves of American (Callicarpa americana) and Japanese (Callicarpa japonica) Beautyberry. J. Agric. Food Chem. 2005, 53, 5948–5953. [Google Scholar] [CrossRef]
- Boulebd, H. Comparative Study of the Radical Scavenging Behavior of Ascorbic Acid, BHT, BHA and Trolox: Experimental and Theoretical Study. J. Mol. Struct. 2020, 1201, 127210. [Google Scholar] [CrossRef]
- Boulebd, H. Is Cannabidiolic Acid an Overlooked Natural Antioxidant? Insights from Quantum Chemistry Calculations. New J. Chem. 2022, 46, 162–168. [Google Scholar] [CrossRef]
- Boulebd, H. Insights on the Antiradical Capacity and Mechanism of Phytocannabinoids: H-Abstraction and Electron Transfer Processes in Physiological Media and the Influence of the Acid-Base Equilibrium. Phytochemistry 2023, 208, 113608. [Google Scholar] [CrossRef]
- Ngo, T.C.Q.; Tran, T.H.; Le, X.T. The Effects of Influencing Parameters on the Eucalyptus globulus Leaves Essential Oil Extraction by Hydrodistillation Method. IOP Conf. Ser. Mater. Sci. Eng. 2020, 991, 012126. [Google Scholar] [CrossRef]
- Visakh, N.U.; Pathrose, B.; Chellappan, M.; Ranjith, M.T.; Sindhu, P.V.; Mathew, D. Chemical Characterisation, Insecticidal and Antioxidant Activities of Essential Oils from Four Citrus spp. Fruit Peel Waste. Food Biosci. 2022, 50, 102163. [Google Scholar] [CrossRef]
- Vega Chaparro, S.C.; Valencia Salguero, J.T.; Martínez Baquero, D.A.; Rosas Pérez, J.E. Effect of Polyvalence on the Antibacterial Activity of a Synthetic Peptide Derived from Bovine Lactoferricin against Healthcare-Associated Infectious Pathogens. BioMed Res. Int. 2018, 2018, 5252891. [Google Scholar] [CrossRef] [PubMed]
- Bramki, A.; Frahtia, M.; Jaouani, A.; Dahimat, L.; Kacem Chaouche, N. Extraction and Preliminary Study of Antibacterial Compounds of Three Species of Aspergillus Genus. Asia-Pac. J. Mol. Biol. Biotechnol. 2019, 27, 26–34. [Google Scholar] [CrossRef]
- Boughachiche, F.; Boulahrouf, A. Étude de Molécules Antibiotiques Secrétées par des Souches Appartenant au Genre Streptomyces, Isolées de Sebkha. Doctoral Dissertation, Université Frères Mentouri-Constantine 1, Constantine, Algeria, 2012. [Google Scholar]
- Hossain, M.A.; Biva, I.J.; Kidd, S.E.; Whittle, J.D.; Griesser, H.J.; Coad, B.R. Antifungal Activity in Compounds from the Australian Desert Plant Eremophila alternifolia with Potency Against Cryptococcus spp. Antibiotics 2019, 8, 34. [Google Scholar] [CrossRef]
- Sytykiewicz, H.; Chrzanowski, G.; Czerniewicz, P.; Leszczyński, B.; Sprawka, I.; Krzyżanowski, R.; Matok, H. Antifungal Activity of Juglans regia (L.) Leaf Extracts Against Candida albicans Isolates. Pol. J. Environ. Stud. 2015, 24, 1339–1348. [Google Scholar] [CrossRef]
- Sales, M.D.C.; Costa, H.B.; Fernandes, P.M.B.; Ventura, J.A.; Meira, D.D. Antifungal Activity of Plant Extracts with Potential to Control Plant Pathogens in Pineapple. Asian Pac. J. Trop. Biomed. 2016, 6, 26–31. [Google Scholar] [CrossRef]
- Jung, J.-M.; Byeon, D.; Kim, S.-H.; Jung, S.; Lee, W.-H. Estimating Economic Damage to Cocoa Bean Production with Changes in the Spatial Distribution of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) in Response to Climate Change. J. Stored Prod. Res. 2020, 89, 101681. [Google Scholar] [CrossRef]
- Wakil, W.; Kavallieratos, N.G.; Usman, M.; Gulzar, S.; El-Shafie, H.A.F. Detection of Phosphine Resistance in Field Populations of Four Key Stored-Grain Insect Pests in Pakistan. Insects 2021, 12, 288. [Google Scholar] [CrossRef]
- Pinto, Z.T.; Sánchez, F.F.; dos Santos, A.R.; Amaral, A.C.F.; Ferreira, J.L.P.; Escalona-Arranz, J.C.; Queiroz, M.M. de C. Composição Química e Atividade Inseticida do Óleo Essencial de Cymbopogon Citratus de Brasil e Cuba Contra Mosca Doméstica. Rev. Bras. Parasitol. Vet. 2015, 24, 36–44. [Google Scholar] [CrossRef]
- Saada, I.; Mahdi, K.; Boubekka, N.; Benzitoune, N.; Salhi, O. Variability of Insecticidal Activity of Cupressus sempervirens L., Juniperus phoenicea L., Mentha rotundifolia (L.) Huds, and Asphodelus microcarpus Salzm. & Viv. Extracts According to Solvents and Extraction Systems. Biochem. Syst. Ecol. 2022, 105, 104502. [Google Scholar]
- Abbott, W.S. A Method of Computing the Effectiveness of an Insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Germinara, G.S.; Di Stefano, M.G.; De Acutis, L.; Pati, S.; Delfine, S.; De Cristofaro, A.; Rotundo, G. Bioactivities of Lavandula Angustifolia Essential Oil against the Stored Grain Pest Sitophilus granarius. Bull. Insectol. 2017, 70, 129–138. [Google Scholar]
- McDonald, L.L.; Guy, R.H.; Speirs, R.D. Preliminary Evaluation of New Candidate Materials as Toxicants, Repellents, and Attractants Against Stored-Product Insects; Agricultural Research Service, United States Department of Agriculture: Washington, DC, USA, 1970. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision B.01; Gaussian Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Humphrey, W.; Dalke, A.; Schulten, K. Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
No. | Compounds | MF | RIexp | RINIST20 | %ΔRI | Peak Area (%) |
---|---|---|---|---|---|---|
1 | o-Cymene | 839 | 1022 | 1027 | −0.49 | 15.53 |
2 | Eucalyptol | 923 | 1034 | 1032 | 0.19 | 1.22 |
3 | Cryptone | 904 | 1226 | 1192 | 2.85 | 17.22 |
4 | Cumic aldehyde | 941 | 1273 | 1279 | −0.47 | 2.92 |
5 | Phellandral | 865 | 1304 | 1281 | 1.80 | 3.63 |
6 | Carvacrol | 908 | 1323 | 1328 | −0.38 | 0.81 |
7 | Aromandendrene | 920 | 1486 | 1455 | 2.13 | 0.44 |
8 | Spathulenol | 931 | 1616 | 1620 | −0.25 | 58.24 |
Diameter of Inhibition Zone in mm | ||||||
---|---|---|---|---|---|---|
S. aureus | B. subtilis | E. coli | P. aeruginosa | S. typhimurium | K. pneumoniae | |
EO | 14.5 ± 0.50 c | 11 ± 1.00 d | 10 ± 0.41 d | - | 14 ± 1.00 c | 8 ± 0.30 e |
Gentamicin | 18 ± 0.51 ab | 19 ± 0.61 a | 11 ± 0.32 d | 17 ± 0.25 b | 15 ± 0.37 c | 10 ± 0.55 d |
Diameter of Inhibition Zone in mm | ||||
---|---|---|---|---|
A. niger | A. fumigatus | Penicillium sp. | C. albicans | |
EO | 7.0 ± 0.50 g | 9.8 ± 0.27 f | 11.5 ± 0.49 e | 11.2 ± 0.29 e |
Nystatin | 18.8 ± 0.28 b | 25.5 ± 0.52 d | 28.5 ± 0.51 a | 21.5 ± 0.48 c |
Concentration (μL/Insect) | Mortality (%) | ||||
---|---|---|---|---|---|
24 h | 48 h | 72 h | 96 h | ||
0.010 | 30 ± 10.0 c | 33.33 ± 8.82 c | 33.33 ± 8.82 b | 36.67 ± 8.22 c | |
0.015 | 63.33 ± 6.66 b | 63.33 ± 6.66 b | 66.67 ± 8.82 a | 70.0 ± 10.0 b | |
0.200 | 66.67 ± 3.33 b | 66.67 ± 3.03 b | 73.33 ± 6.67 a | 80.0 ± 2.0 ab | |
0.250 | 76.67 ± 3.33 ab | 76.66 ± 3.31 ab | 83.33 ± 6.67 a | 86.67 ± 3.33 ab | |
0.300 | 96.67 ± 3.32 a | 96.67 ± 3.32 a | 100.0 a | 100.0 a | |
One-Way-Anova | F value | 16.56 | 16.64 | 12.65 | 16.82 |
p value | <0.005 | <0.005 | <0.005 | <0.005 |
Exposure Time (h) | LC50 a (μL/Insect) | LC90 a (μL/Insect) | Slope ± SEM b | Chi-Square (χ2) | df |
---|---|---|---|---|---|
24 | 0.014 (0.008–0.017) | 0.03 (0.023–0.086) | 6.96 ± 2.16 | 1.3 | 3 |
48 | 0.013 (0.007–0.017) | 0.031 (0.023–0.104) | 6.64 (2.14) | 1.28 | 3 |
72 | 0.013 (0.006–0.016) | 0.026 (0.020–0.055) | 7.93 (2.31) | 1.29 | 3 |
96 | 0.011 (0.006–0.015) | 0.024 (0.019–0.047) | 8.27 (2.40) | 0.9 | 3 |
Concentration | 24 h | 48 h | 72 h | |
---|---|---|---|---|
166.67 μL/L Air | 10 ± 1.10 c | 40.0 ± 6.67 c | 65 ± 2.88 b | |
333.33 μL/L Air | 50 ± 10.0 b | 76.66 ± 6.66 b | 85.0 ± 2.89 a | |
500 μL/L Air | 85 ± 2.88 a | 8.05 ± 2.74 ab | 90 ±5.77 a | |
666.67 μL/L Air | 100.0 a | 100.0 a | 100.0 a | |
One-Way-Anova | F value | 59.31 | 20.75 | 17.33 |
p value | <0.005 | <0.005 | <0.005 |
Exposure Time (h) | LC50 a (µL/Liter Air) | LC90 a (µL/Liter Air) | Slope ± SEM b | Chi-Square (χ2) | df |
---|---|---|---|---|---|
24 | 294.02 (405.07–600.27) | 724.60 (597.37–1370.24) | −20.75 ± 6.44 | 0.021 | 2 |
48 | 203.15 (82.01–282.24) | 485.206 (345.95–1369.53) | −7.82 ± 2.80 | 0.822 | 2 |
72 | 122.294 (0.003–212.25) | 395.73 (239.24–27,233.56) | −2.25 ± 2.93 | 0.605 | 2 |
Concentration | Repellence Per Cent of Treatments After | Mean Repellence | Repellent | |||||
---|---|---|---|---|---|---|---|---|
30 min | 1 h | 2 h | 4 h | 6 h | Class | |||
0.2% (0.06 mg/cm2) | 40.0 ± 0.58 c | 40.0 ± 0.58 c | 53.34 ± 1.86 d | 60 ± 1.0 d | 80 ± 0.58 d | 54.67 ± 7.42 c | III | |
0.4% (0.12 mg/cm2) | 73.33 ± 0.33 b | 80.0 ± 0.58 a | 73.34 ± 0.33 c | 66.67 ± 0.66 c | 86.66 ± 0.33 c | 76.0 ± 3.40 b | IV | |
0.6% (0.18 mg/cm2) | 73.34 ± 0.33 b | 66.66 ± 0.88 b | 100 b | 86.67 ± 0.33 a | 100 a | 85.33 ± 6.80 b | V | |
0.8% (0.26 mg/cm2) | 80.0 ± 0.58 a | 80 ± 0.41 a | 93.33 ± 0.33 a | 75.33 ± 0.67 b | 100 a | 85.73 ± 4.66 a | V | |
One-Way-Anova | F value | 280.01 | 922.07 | 286.33 | 110.76 | 638.95 | ||
p value | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 |
Compound | Docking Binding Energy in kcal/mol | ||
---|---|---|---|
DNA Gyrase | DHFR | TyrRS | |
o-Cymene | −3.07 | −1.93 | −3.30 |
Eucalyptol | −2.04 | −1.96 | −2.50 |
Cryptone | −3.39 | −2.07 | −3.21 |
Cumic aldehyde | −3.22 | −2.40 | −3.75 |
Phellandral | −2.66 | −2.52 | −3.28 |
Spathulenol | −3.13 | −2.43 | −3.53 |
Native ligand | −5.98 | −7.35 | −5.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barboucha, G.; Rahim, N.; Boulebd, H.; Bramki, A.; Andolfi, A.; Salvatore, M.M.; Masi, M. Chemical Composition, In Silico Investigations and Evaluation of Antifungal, Antibacterial, Insecticidal and Repellent Activities of Eucalyptus camaldulensis Dehn. Leaf Essential Oil from ALGERIA. Plants 2024, 13, 3229. https://doi.org/10.3390/plants13223229
Barboucha G, Rahim N, Boulebd H, Bramki A, Andolfi A, Salvatore MM, Masi M. Chemical Composition, In Silico Investigations and Evaluation of Antifungal, Antibacterial, Insecticidal and Repellent Activities of Eucalyptus camaldulensis Dehn. Leaf Essential Oil from ALGERIA. Plants. 2024; 13(22):3229. https://doi.org/10.3390/plants13223229
Chicago/Turabian StyleBarboucha, Ghozlane, Noureddine Rahim, Houssem Boulebd, Amina Bramki, Anna Andolfi, Maria Michela Salvatore, and Marco Masi. 2024. "Chemical Composition, In Silico Investigations and Evaluation of Antifungal, Antibacterial, Insecticidal and Repellent Activities of Eucalyptus camaldulensis Dehn. Leaf Essential Oil from ALGERIA" Plants 13, no. 22: 3229. https://doi.org/10.3390/plants13223229
APA StyleBarboucha, G., Rahim, N., Boulebd, H., Bramki, A., Andolfi, A., Salvatore, M. M., & Masi, M. (2024). Chemical Composition, In Silico Investigations and Evaluation of Antifungal, Antibacterial, Insecticidal and Repellent Activities of Eucalyptus camaldulensis Dehn. Leaf Essential Oil from ALGERIA. Plants, 13(22), 3229. https://doi.org/10.3390/plants13223229