Antibacterial and Anti-Quorum Sensing Properties of Silver Nanoparticles Phytosynthesized Using Embelia ruminata
Abstract
1. Introduction
2. Material and Methods
2.1. Collection and Preparation of Plant Material
2.2. Synthesis of Silver Nanoparticles (AgNPs)
2.3. Characterization of Biosynthesized E. ruminata AgNPs
2.3.1. UV-Visible Absorbance Spectroscopy
2.3.2. High-Resolution Transmission-Electron Microscopy (HR-TEM) Analysis
2.3.3. Determination of Zeta Potential
2.3.4. Fourier-Transformed Infrared Analysis (FTIR)
2.4. Antibacterial-Susceptibility Tests
2.5. Qualitative Evaluation of Quorum-Sensing Inhibition
2.6. Quantitative Quorum Sensing Inhibition
2.7. Statistical Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, L.; Li, M.; Yi, G.; Liao, L.; Cheng, Q.; Zhu, J.; Zhang, B.; Wang, Y.; Chen, Y.; Zeng, M. Screening strategies for quorum sensing inhibitors in combating bacterial infections. J. Pharm. Anal. 2022, 12, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Jemilugba, O.T.; Sakho, E.H.M.; Parani, S.; Mavumengwana, V.; Oluwafemi, O.S. Green synthesis of silver nanoparticles using Combretum erythrophyllum leaves and its antibacterial activities. Colloids Interface Sci. Commun. 2019, 31, 100191. [Google Scholar] [CrossRef]
- Ghotekar, S.; Dabhane, H.; Pansambal, S.; Oza, R.; Tambade, P.; Medhane, V. Review on biomimetic synthesis of Ag2O nanoparticles using plant extract, characterization and its recent applications. Adv. J. Chem. B. 2020, 2, 102–111. [Google Scholar] [CrossRef]
- Gul, M.Z.; Bhat, M.Y.; Velpula, S.; Rupula, K.; Beedu, S.R. Phytomedicine and phytonanocomposites—An expanding horizon. In Phytomedicine: A Treasure of Pharmacologically Active Products; Bhat, R.A., Hakeem, K.R., Dervash, M.A., Eds.; Academic Press: London, UK, 2021; pp. 95–147. [Google Scholar]
- Jarzębski, M.; Kościński, M.; Białopiotrowicz, T. Determining the size of nanoparticles in the example of magnetic iron oxide core-shell systems. In Proceedings of the 6th International Conference on Manufacturing Engineering and Process, Lisbon, Portugal, 27–29 May 2017. [Google Scholar]
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Vijayaraghavana, K.; Ashokkumar, T. Plant-mediated biosynthesis of metallic nanoparticles: A review of literature, factors affecting synthesis, characterization techniques and applications. J. Environ. Chem. Eng. 2017, 5, 4866–4883. [Google Scholar] [CrossRef]
- Vanlalveni, C.; Lallianrawna, S.; Biswas, A.; Selvaraj, M.; Changmai, B.; Rokhum, S.L. Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: A review of recent literature. RSC Adv. 2021, 11, 2804–2837. [Google Scholar] [CrossRef]
- Xiao, Y.; Zou, H.; Li, J.; Song, T.; Lv, W.; Wang, W.; Wang, Z.; Tao, S. Impact of quorum sensing signaling molecules in gram-negative bacteria on host cells: Current understanding and future perspectives. Gut Microbes 2022, 14, 2039048. [Google Scholar] [CrossRef]
- Moradi, F.; Hadi, N.; Bazargani, A. Evaluation of quorum-sensing inhibitory effects of extracts of three traditional medicine plants with known antibacterial properties. New Microbes New Infect. 2020, 38, 100769. [Google Scholar] [CrossRef] [PubMed]
- Mion, S.; Carriot, N.; Lopez, J.; Plener, L.; Ortalo-Magne, A.; Chabriere, E.; Culioli, G.; Daude, D. Disrupting quorum sensing alters social interactions in Chromobacterium violaceum. NPJ Biofilms Microbiomes 2021, 7, 40. [Google Scholar] [CrossRef]
- Liu, L.; Zeng, X.; Zheng, J.; Zou, Y.; Qiu, S.; Dai, Y. AHL-mediated quorum sensing to regulate bacterial substance and energy metabolism: A review. Microbiol Res. 2022, 262, 127102. [Google Scholar] [CrossRef]
- Fleitas Martinez, O.; Cardoso, M.H.; Ribeiro, S.M.; Franco, O.L. Recent advances in anti-virulence therapeutic strategies with a focus on dismantling bacterial membrane microdomains, toxin neutralization, quorum-sensing interference and biofilm inhibition. Front. Cell. Infect. Microbiol. 2019, 9, 74. [Google Scholar] [CrossRef] [PubMed]
- Mulat, M.; Pandita, A.; Khan, F. Medicinal plant compounds for combating the multi-drug resistant pathogenic bacteria: A review. Curr. Pharm. Biotechnol. 2019, 20, 183–196. [Google Scholar] [CrossRef] [PubMed]
- Al-Shabib, N.A.; Husain, F.M.; Ahmed, F.; Khan, R.A.; Ahmad, I.; Alsharaeh, E.; Khan, M.S.; Hussain, A.; Rehman, M.T.; Yusuf, M.; et al. Biogenic synthesis of zinc oxide nanostructures from Nigella sativa seed: Prospective role as food packaging material inhibiting broad-spectrum quorum sensing and biofilm. Sci. Rep. 2016, 6, 36761. [Google Scholar] [CrossRef] [PubMed]
- Borges, A.; Simoes, M. Quorum sensing inhibition by marine bacteria. Mar. Drugs 2019, 17, 427. [Google Scholar] [CrossRef] [PubMed]
- Qais, F.A.; Shafiq, A.; Ahmad, I.; Husain, F.M.; Khan, R.A.; Hassan, I. Green synthesis of silver nanoparticles using Carum copticum: Assessment of its quorum sensing and biofilm inhibitory potential against gram negative bacterial pathogens. Microb. Pathog. 2020, 144, 104172. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.; Gaikwad, S.; Nagar, S.; Kulshrestha, S.; Vaidya, V.; Nawani, N.; Pawar, S. Biofilm inhibition and anti-quorum sensing activity of phytosynthesized silver nanoparticles against the nosocomial pathogen Pseudomonas aeruginosa. Biofouling 2019, 35, 34–49. [Google Scholar] [CrossRef] [PubMed]
- Dyer, R.A. Flora of Southern Africa: The Republic of South Africa, Basutoland, Swaziland and South West Africa; Department of Agriculture Technical Services: Pretoria, South Africa, 1966.
- Vijayan, K.P.R.; Raghu, A.V. Embelin: An HPTLC method for quantitative estimation in five species of genus Embelia Burm. f. Future J. Pharm. Sci. 2021, 7, 55. [Google Scholar] [CrossRef]
- Sivasankar, C.; Gayathri, S.; Bhaskar, J.P.; Krishnan, V.; Pandian, S.K. Evaluation of selected Indian medicinal plants for antagonistic potential against Malassezia spp. and the synergistic effect of embelin in combination with ketoconazole. Microb. Pathog. 2017, 110, 66–72. [Google Scholar] [CrossRef]
- Ko, J.H.; Lee, S.G.; Yang, W.M.; Um, J.Y.; Sethi, G.; Mishra, S.; Shanmugam, M.K.; Ahn, K.S. The application of embelin for cancer prevention and therapy. Molecules 2018, 23, 621. [Google Scholar] [CrossRef]
- Nuthakki, V.K.; Sharma, A.; Kumar, A.; Bharate, S.B. Identification of embelin, a 3-undecyl-1,4-benzoquinone from Embelia ribes as a multitargeted anti-Alzheimer agent. Drug Dev. Res. 2019, 80, 655–665. [Google Scholar] [CrossRef]
- Bansal, P.; Bhandari, U.; Ahmad, S. Embelin from Embelia ribes f. ameliorates oxidative stress and inflammation in high-fat diet-fed obese C57BL/6 mice. Pharmacogn. Mag. 2020, 16, 443–449. [Google Scholar] [CrossRef]
- Caruso, F.; Rossi, M.; Kaur, S.; Garcia-Villar, E.; Molasky, N.; Belli, S.; Sitek, J.D.; Gionfra, F.; Pedersen, J.Z.; Incerpi, S. Antioxidant properties of embelin in cell culture, electrochemistry and theoretical mechanism of scavenging, potential scavenging of superoxide radical through the cell membrane. Antioxidants 2020, 9, 382. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Gao, M.; Jian, R.; Hong, W.D.; Tang, X.; Li, Y.; Zhao, D.; Zhang, K.; Chen, W.; Zheng, X.; et al. Design, synthesis and alpha-glucosidase inhibition study of novel embelin derivatives. J. Enzyme Inhib. Med. Chem. 2020, 35, 565–573. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.P.; Sharma, N.; Kalivendi, S.V. Embelin averts MPTP-induced dysfunction in mitochondrial bioenergetics and biogenesis via activation of SIRT1. Biochim. Biophys. Acta Bioenerg. 2020, 1861, 148157. [Google Scholar] [CrossRef] [PubMed]
- Elias, T.; Lee, L.H.; Rossi, M.; Caruso, F.; Adams, S.D. In vitro analysis of the antioxidant and antiviral activity of embelin against Herpes simplex virus-1. Microorganisms 2021, 9, 434. [Google Scholar] [CrossRef] [PubMed]
- Sachu, A.; Antony, S.; Mathew, P.; Sunny, S.; Koshy, J.; Kumar, V.; Mathew, R. Chromobacterium violaceum causing deadly sepsis. Iran J. Microbiol. 2020, 12, 364–367. [Google Scholar] [CrossRef] [PubMed]
- Aliyu, A.B.; Ibrahim, M.A.; Mohammed, A.; Isah, M.B.; Gangas, P.; Oyewale, A.O. Quorum sensing inhibition in Chromobacterium violaceum, antibacterial activity and GC-MS analysis of Centaurea praecox (Oliv. & Hiern) extracts. Lett. Appl. NanoBioSci. 2020, 9, 1569–1577. [Google Scholar] [CrossRef]
- Chernin, L.S.; Winson, M.K.; Thompson, J.M.; Haran, S.; Bycroft, B.W.; Chet, I.; Williams, P.; Stewart, G.S. Chitinolytic activity in Chromobacterium violaceum: Substrate analysis and regulation by quorum sensing. J. Bacteriol. 1998, 180, 4435–4441. [Google Scholar] [CrossRef]
- Morohoshi, T.; Kato, M.; Fukamachi, K.; Kato, N.; Ikeda, T. N-acylhomoserine lactone regulates violacein production in Chromobacterium violaceum type strain ATCC 12472. FEMS Microbiol. Lett. 2008, 279, 124–130. [Google Scholar] [CrossRef]
- Qais, F.A.; Khan, M.S.; Ahmad, I. Broad-spectrum quorum sensing and biofilm inhibition by green tea against gram-negative pathogenic bacteria: Deciphering the role of phytocompounds through molecular modelling. Microb. Pathog. 2019, 126, 379–392. [Google Scholar] [CrossRef]
- Rambaran, N.; Naidoo, Y.; Mohamed, F.; Chenia, H.Y.; Baijnath, H. Antibacterial and anti-quorum sensing activities of the different solvent extracts of Embelia ruminata. S. Afr. J. Bot. 2022, 151, 996–1007. [Google Scholar] [CrossRef]
- Singh, K.; Naidoo, Y.; Mocktar, C.; Baijnath, H. Biosynthesis of silver nanoparticles using Plumbago auriculata leaf and calyx extracts and evaluation of their antimicrobial activities. Adv. Nat. Sci. Nanosci. Nanotechnol. 2018, 9, 035004. [Google Scholar] [CrossRef]
- Verma, A.; Tyagi, S.; Verma, A.; Singh, J.; Joshi, P. Optimization of different reaction conditions for the bio-inspired synthesis of silver nanoparticles using aqueous extract of Solanum nigrum leaves. J. Nanomater. Mol. Nanotechnol. 2017, 6, 2–8. [Google Scholar] [CrossRef]
- Guilger-Casagrande, M.; Germano-Costa, T.; Pasquoto-Stigliani, T.; Fraceto, L.F.; Lima, R. Biosynthesis of silver nanoparticles employing Trichoderma harzianum with enzymatic stimulation for the control of Sclerotinia sclerotiorum. Sci. Rep. 2019, 9, 14351. [Google Scholar] [CrossRef]
- Ahmad, S.; Munir, S.; Zeb, N.; Ullah, A.; Khan, B.; Ali, J.; Bilal, M.; Omer, M.; Alamzeb, M.; Salman, S.M.; et al. Green nanotechnology: A review on green synthesis of silver nanoparticles—An ecofriendly approach. Int. J. Nanomed. 2019, 14, 5087–5107. [Google Scholar] [CrossRef] [PubMed]
- Chenia, H.Y. Anti-quorum sensing potential of crude Kigelia africana fruit extracts. Sensors 2013, 13, 2802–2817. [Google Scholar] [CrossRef] [PubMed]
- Truchado, P.; Gimenez-Bastida, J.A.; Larrosa, M.; Castro-Ibanez, I.; Espin, J.C.; Tomas-Barberan, F.A.; Garcia-Conesa, M.T.; Allende, A. Inhibition of quorum sensing (QS) in Yersinia enterocolitica by an orange extract rich in glycosylated flavanones. J. Agric. Food Chem. 2012, 60, 8885–8894. [Google Scholar] [CrossRef] [PubMed]
- Packiavathy, I.S.V.; Agilandeswari, P.; Babu, R.R.; Karutha, P.S.; Ravi, A.V. Antiquorum sensing and antibiofilm potential of Capparis spinosa. Arch. Med. Res. 2011, 42, 658–668. [Google Scholar] [CrossRef]
- Pirtarighat, S.; Ghannadnia, M.; Baghshahi, S. Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. J. Nanostruct. Chem. 2018, 9, 1–9. [Google Scholar] [CrossRef]
- Rao, B.; Tang, R.C. Green synthesis of silver nanoparticles with antibacterial activities using aqueous Eriobotrya japonica leaf extract. Adv. Nat. Sci. Nanosci. Nanotechnol. 2017, 8, 015014. [Google Scholar] [CrossRef]
- Velgosová, O.; Mražíková, A. Limitations and possibilities of green synthesis and long-term stability of colloidal Ag nanoparticles. In Proceedings of the Recent Advances on Environment, Chemical Engineering and Materials, Brasov, Romania, 27–29 June 2017. [Google Scholar]
- Osibe, D.A.; Chiejina, N.V.; Ogawa, K.; Aoyagi, H. Stable antibacterial silver nanoparticles produced with seed-derived callus extract of Catharanthus roseus. Artif. Cells Nanomed. Biotechnol. 2018, 46, 1266–1273. [Google Scholar] [CrossRef] [PubMed]
- Elemike, E.E.; Onwudiwe, D.C.; Arijeh, O.; Nwankwo, H.U. Plant-mediated biosynthesis of silver nanoparticles by leaf extracts of Lasienthra africanum and a study of the influence of kinetic parameters. Bull. Mater. Sci. 2017, 40, 129–137. [Google Scholar] [CrossRef]
- Varghese, A.K.; Tamil Pavai, P.; Rugmini, R.; Shiva Prasad, M.; Kamakshi, K.; Sekhar, K.C. Green synthesized Ag nanoparticles for bio-sensing and photocatalytic applications. ACS Omega 2020, 5, 13123–13129. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhang, H.; Wang, J.; Wei, J. Effect of temperature on the size of biosynthesized silver nanoparticle: Deep insight into microscopic kinetics analysis. Arab. J. Chem. 2020, 13, 1011–1019. [Google Scholar] [CrossRef]
- Majeed, M.; Hakeem, K.R.; Rehman, R.U. Synergistic effect of plant extract coupled silver nanoparticles in various therapeutic applications-present insights and bottlenecks. Chemosphere 2022, 288, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Anbu, P.; Gopinath, S.C.B.; Yun, H.S.; Lee, C.G. Temperature-dependent green biosynthesis and characterization of silver nanoparticles using balloon flower plants and their antibacterial potential. J. Mol. Struct. 2019, 1177, 302–309. [Google Scholar] [CrossRef]
- Ebrahiminezhad, A.; Zare-Hoseinabadi, A.; Sarmah, A.K.; Taghizadeh, S.; Ghasemi, Y.; Berenjian, A. Plant-mediated synthesis and applications of iron nanoparticles. Mol. Biotechnol. 2018, 60, 154–168. [Google Scholar] [CrossRef]
- Hemlata, M.P.R.; Singh, A.P.; Tejavath, K.K. Biosynthesis of silver nanoparticles using Cucumis prophetarum aqueous leaf extract and their antibacterial and antiproliferative activity against cancer cell lines. ACS Omega 2020, 5, 5520–5528. [Google Scholar] [CrossRef]
- Singh, V.; Shrivastava, A.; Wahi, N. Biosynthesis of silver nanoparticles by plants crude extracts and their characterization using UV, XRD, TEM and EDX. Afr. J. Biotechnol. 2015, 14, 2554–2567. [Google Scholar] [CrossRef]
- Theivasanthi, T.; Alagar, M. Electrolytic synthesis and characterizations of silver nanopowder. Nano Biomed. Eng. 2012, 4, 58–65. [Google Scholar] [CrossRef]
- Siakavella, I.K.; Lamari, F.; Papoulis, D.; Orkoula, M.; Gkolfi, P.; Lykouras, M.; Avgoustakis, K.; Hatziantoniou, S. Effect of plant extracts on the characteristics of silver nanoparticles for topical application. Pharmaceutics 2020, 12, 1244. [Google Scholar] [CrossRef] [PubMed]
- Manikandan, D.; Gnana Prakash, D.; Arun, J.; Nagendra Gandhi, N.; Mani, U.; Kathirvan, K. Antibacterial and anticancer activities of silver nanoparticles biosynthesized using Embelia ribes Burm.f. berries extract. Indian J. Exp. Biol. 2019, 57, 175–180. [Google Scholar]
- Raval, N.; Maheshwari, R.; Kalyane, D.; Youngren-Ortiz, S.R.; Chougule, M.B.; Tekade, R.K. Importance of physicochemical characterization of nanoparticles in pharmaceutical product development. In Basic Fundamentals of Drug Delivery; Tekade, R.K., Ed.; Academic Press: Londonn, UK, 2019; pp. 369–400. [Google Scholar]
- Joseph, E.; Singhvi, G. Multifunctional nanocrystals for cancer therapy: A potential nanocarrier. In Nanomaterials for Drug Delivery and Therapy; Grumezescu, A.M., Ed.; William Andrew Publishing: Amsterdam, The Netherlands, 2019; pp. 91–116. [Google Scholar]
- Zhu, G.; Yang, W.; Lv, W.; He, J.; Wen, K.; Huo, W.; Hu, J.; Waqas, M.; Dickerson, J.H.; He, W. Facile electrophoretic deposition of functionalized Bi2O3 nanoparticles. Mater. Des. 2017, 116, 359–364. [Google Scholar] [CrossRef]
- Samimi, S.; Maghsoudnia, N.; Eftekhari, R.B.; Dorkoosh, F. Lipid-based nanoparticles for drug delivery systems. In Characterization and Biology of Nanomaterials for Drug Delivery; Mohapatra, S.S., Ranjan, S., Dasgupta, N., Mishra, R.K., Thomas, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 47–76. [Google Scholar]
- Stuart, B. Infrared Spectroscopy Fundamentals and Applications; John Wiley & Sons Ltd.: Chichester, UK, 2004. [Google Scholar]
- Hamouda, R.A.; Hussein, M.H.; Abo-Elmagd, R.A.; Bawazir, S.S. Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica. Sci. Rep. 2019, 9, 13071. [Google Scholar] [CrossRef] [PubMed]
- Talari, A.C.S.; Martinez, M.A.G.; Movasaghi, Z.; Rehman, S.; Rehman, I.U. Advances in Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl. Spectrosc. Rev. 2016, 52, 456–506. [Google Scholar] [CrossRef]
- Nouri, A.; Tavakkoli Yaraki, M.; Lajevardi, A.; Rezaei, Z.; Ghorbanpour, M.; Tanzifi, M. Ultrasonic-assisted green synthesis of silver nanoparticles using Mentha aquatica leaf extract for enhanced antibacterial properties and catalytic activity. Colloids Interface Sci. Commun. 2020, 35, 100252. [Google Scholar] [CrossRef]
- Swamy, K.H.M.; Krishna, V.; Shankarmurthy, K.; Abdul Rahiman, B.; Mankani, K.L.; Mahadevan, K.M.; Harish, B.G.; Raja, H.N. Wound healing activity of embelin isolated from the ethanol extract of leaves of Embelia ribes Burm.f. J. Ethnopharmacol. 2007, 109, 529–534. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.C.; Yelne, M.B.; Dennis, T.J.; Sharma, P.C.; Yelne, M.B.; Dennis, T.J.; Joshi, A.; Billore, K.V. Database on Medicinal Plants Used in Ayurveda; Central Council for Research in Ayurveda and Siddha: New Delhi, India, 2002. [Google Scholar]
- Stefanović, O.D. Synergistic activity of antibiotics and bioactive plant extracts: A study against Gram-positive and Gram-negative bacteria. In Bacterial Pathogenesis and Antibacterial Control; Kırmusaoğlu, S., Ed.; IntechOpen: London, UK, 2018. [Google Scholar]
- Bouarab-Chibane, L.; Forquet, V.; Lanteri, P.; Clement, Y.; Leonard-Akkari, L.; Oulahal, N.; Degraeve, P.; Bordes, C. Antibacterial properties of polyphenols: Characterization and QSAR (Quantitative Structure-Activity Relationship) models. Front. Microbiol. 2019, 10, 829. [Google Scholar] [CrossRef]
- Rajkumari, J.; Meena, H.; Gangatharan, M.; Busi, S. Green synthesis of anisotropic gold nanoparticles using hordenine and their antibiofilm efficacy against Pseudomonas aeruginosa. IET Nanobiotechnol. 2017, 11, 987–994. [Google Scholar] [CrossRef]
- Lu, L.; Hu, W.; Tian, Z.; Yuan, D.; Yi, G.; Zhou, Y.; Cheng, Q.; Zhu, J.; Li, M. Developing natural products as potential anti-biofilm agents. Chin. Med. 2019, 14, 11. [Google Scholar] [CrossRef]
- Zaid, O.I.; Majid, R.A.; Hasidah, M.S.; Sabariah, M.N.; Al-Zihiry, K.; Rahi, S.; Basir, R. Anti-plasmodial and chloroquine resistance suppressive effects of embelin. Pharmacogn. Mag. 2017, 13, S48–S55. [Google Scholar] [CrossRef] [PubMed]
- Kundap, U.P.; Choo, B.K.M.; Kumari, Y.; Ahmed, N.; Othman, I.B.; Shaikh, M.F. Embelin protects against acute pentylenetetrazole-induced seizures and positively modulates cognitive function in adult zebrafish. Front. Pharmacol. 2019, 10, 1249. [Google Scholar] [CrossRef] [PubMed]
- Dandekar, S.S.; George, I.A. An accurate embelin extraction method for limited biomass of Embelia species. Biosci. Biotechnol. Res. Commun. 2022, 15, 200–207. [Google Scholar] [CrossRef]
- Dwivedi, D.; Singh, V. Effects of the natural compounds embelin and piperine on the biofilm-producing property of Streptococcus mutans. J. Tradit. Complement. Med. 2016, 6, 57–61. [Google Scholar] [CrossRef]
- Leema, M.; Sreekumar, G.; Sivan, A.; Pillai, Z.S. Synthesis of silver nanoparticles from a bioactive precursor. Mater. Today Proc. 2019, 18, 4724–4728. [Google Scholar] [CrossRef]
Samples | HR-TEM | NTA | |
---|---|---|---|
Nanoparticle Size (nm) ± SD | Nanoparticle Size (nm) ± SD | ζ-Potential (mV) ± SD | |
Leaf Rt | 21.06 ± 11.38 | 46.9 ± 1.4 | −0.2 ± 0.2 |
80 °C | 21.25 ± 8.14 | 102.0 ± 4.7 | 1.8 ± 0.7 |
Stem-Rt | 32.15 ± 8.27 | 58.3 ± 16.1 | −12.8 ± 1.4 |
80 °C | 28.56 ± 13.69 | 65.9 ± 9.4 | 7.3 ± 0.2 |
Fruit Rt | 29.75 ± 8.51 | 160 ± 19.5 | −8.4 ± 1.0 |
80 °C | 25.20 ± 11.13 | 198 ± 12.9 | −0.2 ± 1.7 |
Gram-Negative Pacteria | Gram-Positive Bacteria | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample | E. coli ATCC 25922 | E. coli ATCC 35218 | K. pneumoniae ATCC 700603 | P. aeruginosa ATCC 27853 | E. faecalis ATCC 29212 | E. faecalis ATCC 51299 | S. aureus ATCC 29213 | S. aureus ATCC 33591 | S. aureus ATCC 43300 | S. aureus ATCC 700698 | S. epidermidis ATCC 12228 | |||||||||||
Concentration (µg) | 100 | 200 | 100 | 200 | 100 | 200 | 100 | 200 | 100 | 200 | 100 | 200 | 100 | 200 | 100 | 200 | 100 | 200 | 100 | 200 | 100 | 200 |
NPs | ||||||||||||||||||||||
Leaf Rt | 0 | 9 | 0 | 8 | 0 | 7 | 0 | 8 | 7 | 9 | 7 | 10 | 7 | 9 | 7 | 8 | 7 | 9 | 7 | 7 | 10 | 12 |
Leaf 80 °C | 0 | 0 | 0 | 8 | 7 | 7 | 0 | 8 | 7 | 9 | 7 | 10 | 7 | 7 | 8 | 8 | 7 | 7 | 8 | 10 | 0 | 9 |
Stem-bark Rt | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 0 | 0 | 0 | 8 | 8 | 0 | 0 | 0 | 0 |
Stem-bark 80 °C | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 9 |
Fruit Rt | 9 | 12 | 8 | 10 | 0 | 8 | 9 | 11 | 7 | 8 | 7 | 8 | 8 | 9 | 8 | 9 | 8 | 9 | 7 | 9 | 11 | 13 |
Fruit 80 °C | 0 | 0 | 0 | 10 | 0 | 8 | 8 | 10 | 8 | 9 | 7 | 9 | 8 | 9 | 10 | 12 | 8 | 8 | 9 | 12 | 13 | 13 |
Controls | ||||||||||||||||||||||
Ciprofloxacin (CIP5) | 30 | 37 | 26 | 32 | 33 | 38 | 23 | 22 | 23 | 6 | 28 | |||||||||||
Gentamicin (GN10) | 19 | 20 | 17 | 19 | 18 | 0 | 19 | 16 | 9 | 11 | 20 |
C. subtsugae CV017 | C. violaceum ATCC 12472 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
100 μg | 200 μg | 100 μg | 200 μg | |||||||||
Extracts | Total Zone Diameter (mm) | Clear Zone Diameter (mm) | QSI Halo (mm) | Total Zone Diameter (mm) | Clear Zone Diameter (mm) | QSI Halo (mm) | Total Zone Diameter (mm) | Clear Zone Diameter (mm) | QSI Halo (mm) | Total Zone Diameter (mm) | Clear Zone Diameter (mm) | QSI Halo (mm) |
Leaf RT | 11 | 11 | 0 | 12 | 10 | 2 | 16 | 10 | 6 | 18 | 10 | 8 |
Leaf 80 °C | 13 | 13 | 0 | 9 | 9 | 0 | 17 | 10 | 7 | 18 | 12 | 6 |
Stem-bark RT | 14 | 9 | 5 | 16 | 9 | 7 | 12 | 8 | 4 | 13 | 8 | 5 |
Stem-bark 80 °C | 0 | 0 | 0 | 8 | 0 | 8 | 13 | 8 | 5 | 13 | 9 | 4 |
Fruit RT | 13 | 10 | 3 | 12 | 10 | 2 | 13 | 10 | 3 | 13 | 9 | 4 |
Fruit 80 °C | 13 | 11 | 2 | 13 | 11 | 2 | 12 | 9 | 3 | 13 | 11 | 2 |
Control | ||||||||||||
Vanillin | 11 | 0 | 11 | 11 | 0 | 11 | 9 | 0 | 9 | 9 | 0 | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rambaran, N.; Naidoo, Y.; Mohamed, F.; Chenia, H.Y.; Baijnath, H. Antibacterial and Anti-Quorum Sensing Properties of Silver Nanoparticles Phytosynthesized Using Embelia ruminata. Plants 2024, 13, 168. https://doi.org/10.3390/plants13020168
Rambaran N, Naidoo Y, Mohamed F, Chenia HY, Baijnath H. Antibacterial and Anti-Quorum Sensing Properties of Silver Nanoparticles Phytosynthesized Using Embelia ruminata. Plants. 2024; 13(2):168. https://doi.org/10.3390/plants13020168
Chicago/Turabian StyleRambaran, Neervana, Yougasphree Naidoo, Farzana Mohamed, Hafizah Y. Chenia, and Himansu Baijnath. 2024. "Antibacterial and Anti-Quorum Sensing Properties of Silver Nanoparticles Phytosynthesized Using Embelia ruminata" Plants 13, no. 2: 168. https://doi.org/10.3390/plants13020168
APA StyleRambaran, N., Naidoo, Y., Mohamed, F., Chenia, H. Y., & Baijnath, H. (2024). Antibacterial and Anti-Quorum Sensing Properties of Silver Nanoparticles Phytosynthesized Using Embelia ruminata. Plants, 13(2), 168. https://doi.org/10.3390/plants13020168