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Abstract: The rise in antibiotic resistance (AR) poses an imminent threat to human health. Nanotech-
nology, together with mechanisms such as quorum sensing (QS), which relies on communication
between bacterial cells, may decrease the selective pressure for AR. Thus, this study aimed to investi-
gate the effectiveness of silver nanoparticles (AgNPs) synthesized at room temperature (Rt) and 80 ◦C
using Embelia ruminata leaf, stem-bark, and fruit extracts as antibacterial and anti-QS agents. The
phytosynthesized AgNPs solutions were subjected to various characterization assays and assessed for
their antibacterial activities. Quantitative QS assays were performed using Chromobacterium subtsugae
CV017 and Chromobacterium violaceum ATCC 12472. Synthesized AgNPs were spherical-to-near-
spherical in shape, poly-dispersed, and crystalline, with a size range of 21.06–32.15 nm. Fruit AgNPs
showed stronger antibacterial activity than AgNPs from other plant organs against selected bacterial
strains. In the QS assays, fruit 80 ◦C AgNPs demonstrated the most significant violacein inhibition
in an assay performed using the short-chain acyl homoserine lactone CV017 biosensor, while the
leaf and fruit Rt AgNPs demonstrated the most violacein inhibition in an assay performed using the
long-chain acyl homoserine lactone ATCC 12472 biosensor. The investigations carried out in this
study lay the groundwork for future innovative research into antibacterial and anti-QS strategies
using E. ruminata.

Keywords: Embelia ruminata; silver nanoparticles; green synthesis; antibacterial; quorum sensing

1. Introduction

Antibiotic resistance (AR) constitutes a major global healthcare concern and poses
a significant challenge [1]. The employment of nanotechnology as a novel therapeutic
strategy to overcome AR is proving to be particularly effective. Furthermore, the green
synthesis of silver metal nanoparticles (AgNPs) using plant extracts is gaining popularity
due to their biocompatibility and eco-friendly properties [2]. These nano-phytocomposites
are considered a rich source of phytochemicals that can act as reducing and stabilizing
agents during synthesis [3,4]. The size, shape, structure, and dispersity of the resultant
nanostructures play a crucial role in the physicochemical and biological attributes of the
nanoparticles (NPs) [5,6]. Congruently, reaction parameters such as temperature and time
can play key roles in controlling the growth, shape, and size of NPs [7]. Furthermore,
the small size and relatively large surface area of AgNPs enable a more pronounced
antibacterial effect, as the particles can not only interact with the surface of the bacterial
membrane, but also penetrate the bacteria, causing cell death [8].

As an adjunct to finding novel strategies to combat antibiotic resistance, the focus
of some work has shifted to targeting anti-virulence processes such as quorum-sensing
inhibition (QSI). Bacterial quorum sensing (QS) is a form of cell-to-cell communication by
which bacteria exchange intracellular and intercellular information, coordinate population
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behavior and regulate gene expression [9]. The QS process is mediated by small, diffusible
signal molecules (autoinducers) that are generated by the bacteria and released into the
extracellular environment [10]. In Gram-negative bacteria, QS signalling occurs via N-acyl
homoserine lactones (AHL) produced by AHL synthase (LuxI proteins) [11]. The structure
of AHLs includes two parts, a homoserine lactone ring and a variable acyl side chain. The
length of the side chain determines whether the molecules are short-chain AHLs (C4–C8)
or long-chain AHLs (C10–C18) [12]. The AHLs diffuse out of the cell into the extracellular
environment. When a threshold is reached, they return to the cell and bind with the receptor
LuxR to form a LuxR/AHL complex and activate expression of downstream target genes,
including the genes that code for virulence factors [12].

QS inhibitors, especially natural products such as phytochemicals, are of particular
interest. These substances target and disrupt QS in bacteria without inhibiting bacterial
growth [13,14]. Resistance development is thus reduced because minimal selective pressure
is exerted on the pathogen [15,16]. There is limited information on the inhibition of QS and
biofilm formation using nanoparticles synthesized from plant organs, creating the need for
further investigations. [15,17,18].

Embelia ruminata (E.Mey. ex A.DC.) Mez, (Primulaceae) is a scandent shrub or liana
found along the east coast of South Africa [19]. A benzoquinone derivative (3-undecyl
2,5-dihydroxy, 1,4- benzoquinone) also referred to as embelin is the principal compound
found in the genus Embelia Burm.f. [20]. Several investigations have reported on the
pharmacological properties of embelin, which include antimicrobial [21], anticancer [22],
anti-Alzheimer’s [23], anti-inflammatory [24], antioxidant [25], antidiabetic [26], neuropro-
tective [27], and antiviral [28] properties.

In this study, AgNPs synthesized using aqueous E. ruminata leaf, stem-bark, and fruit
extracts were characterized using UV-visible spectroscopy, high-resolution transmission-
electron microscopy (HR-TEM), selected-area electron diffraction (SAED), energy-dispersive
X-ray analysis (EDX), Fourier-transformed infrared spectroscopy (FTIR), and zeta-potential
analyses. Additionally, the study aimed to optimize the temperature and duration of the
AgNPs fabrication process. Subsequently, the potential of E. ruminata AgNPs extracts
as antibacterial agents was assessed using a panel of Gram-negative and Gram-positive
bacterial species.

To assess their anti-QS properties, AgNPs phytosynthesized from E. ruminata were
tested for their ability to inhibit the QS process of two Gram-negative biosensor strains,
Chromobacterium subtsugae CV017 and Chromobacterium violaceum ATCC 12472. Both strains
produce an easily detectable, quantifiable, water-insoluble purple pigment called violacein
through the AHL QS process [29]. Thus, the ability of the synthesized nanoparticles to
alter the production of violacein by the Chromobacterium species biosensors was evaluated
by the loss of pigmentation, which was used as an indicator of QSI [30]. C. subtsugae
CV017 produces short-chain (C4–C6) AHL signals [31], while C. violaceum ATCC 12472
produces long-chain (C10+) AHL signals [32]. Broad-spectrum QS inhibitors that disrupt
the QS pathways of both long- and short-chain AHL signals are desirable, as they can limit
pathogenicity and virulence over an extended range of bacterial strains [33]. The potential
of AgNPs synthesized using the extracts of E. ruminata as broad-spectrum QS inhibitors
was thus investigated.

2. Material and Methods
2.1. Collection and Preparation of Plant Material

The leaves, stem-bark, and fruit of E. ruminata were collected from Reservoir Hills,
Durban, KwaZulu-Natal, South Africa (29◦48′26.7′′ S 30◦55′43.9′′ E), from February to
May 2019 [34]. The species identity was confirmed using taxonomic keys, and a voucher
specimen (Rambaran 1, accession number 18256) was deposited in the Ward Herbarium,
University of KwaZulu-Natal, South Africa [34]. Plant samples were separated, air-dried,
pulverized to a fine powder, and stored in airtight bottles [34]. For extraction, 20 g of the
powdered plant material was added to 200 mL of deionized water in an Erlenmeyer flask
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and incubated in a water bath at 60 ◦C for 30 min. The resultant solution was cooled to
room temperature (23 ± 2 ◦C), filtered using Whatman No.1 filter paper, and stored at 4 ◦C
until further use.

2.2. Synthesis of Silver Nanoparticles (AgNPs)

A 5 mL aliquot of leaf, stem-bark, or fruit extract of E. ruminata was added to 45 mL
of 1 mM of silver nitrate (AgNO3) solution for the bioreduction process [35]. The reaction
mixture was monitored visually for a change in color at regular intervals. To investigate
the effect of temperature, samples were incubated for 1 h at the experimental temperatures,
i.e., at room temperature (Rt) (23 ± 2 ◦C) and at 80 ◦C, in a water bath. Thereafter, all
samples were kept in the dark at room temperature for 24 h. The reaction mixtures were
centrifuged at 10,000 rpm for 20 min at 4 ◦C using a Beckman Coulter Avanti J-E centrifuge.
Supernatants were discarded, and pellets were washed three times with distilled water and
centrifuged again. The purified pellets were transferred to glass vials, dried at 50 ◦C, and
stored at room temperature until further use [36].

2.3. Characterization of Biosynthesized E. ruminata AgNPs
2.3.1. UV-Visible Absorbance Spectroscopy

The optical absorption at different time intervals (0 min, 60 min, and 24 h) was
analyzed using a Shimadzu UV-2600 spectrophotometer with a resolution of 1 nm and a
wavelength range of 200–800 nm [37].

2.3.2. High-Resolution Transmission-Electron Microscopy (HR-TEM) Analysis

A drop of sonicated AgNPs was placed onto carbon-coated copper grids lined with
formvar and was allowed to dry by evaporation for 20 min at Rt (23 ± 2 ◦C). The struc-
tural characterization and the selected-area electron diffraction (SAED) patterns of AgNPs
were acquired using a JEOL 2100 HRTEM (Tokyo, Japan) with an accelerating voltage of
200 kV [35]. The size of the nanoparticles was analyzed using iTEM (Soft imaging system,
Germany Version 5.0). The elemental composition of the samples was determined using
energy dispersive X-ray (EDX) analysis (Inca software coupled with an Oxford X-Max
80 mm detector, Oxford, UK).

2.3.3. Determination of Zeta Potential

Nanoparticle tracking analysis (NTA) was used to evaluate the zeta (ζ) potential. A
1:1000 dilution of each sample in double-distilled water was analyzed using a Nanosight
NS500 (Malvern Instruments, Worcestershire, UK, NTA 3.2 analytical software) equipped
with a sCMOS camera with a laser wavelength of 430 nm.

2.3.4. Fourier-Transformed Infrared Analysis (FTIR)

FTIR analysis of the crude E. ruminata extracts and their respective AgNPs was con-
ducted using a Perkin-Elmer Spectrum 100 FTIR (Shelton, CT, USA) spectroscope with a
scan range of 400 to 4000 cm−1 and a resolution of 4 cm−1 [38].

2.4. Antibacterial-Susceptibility Tests

Antibacterial-susceptibility assays were carried out using Kirby–Bauer disc diffusion
with methods based on protocols previously published by Rambaran et al. [34]. Briefly, four
Gram-negative and seven Gram-positive microorganisms were grown at 37 ◦C overnight
on Mueller-Hinton (MH) agar plates. Inocula equivalent to McFarland standard 0.5 were
swabbed onto the surfaces of MH agar plates [39]. Thereafter, blank discs impregnated with
100 and 200 µg of the AgNPs being tested were placed on the plates, and the plates were
then incubated for 24 h at 37 ◦C. Ciprofloxacin (CIP5) and gentamicin (GN10) were used as
the antibiotic controls. Following incubation, samples showing zone diameters ≥ 16 mm
were regarded as showing strong antibacterial activity, zone diameters between 11–15 mm
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were regarded as having intermediate antibacterial activity, and zone diameters ≤ 10 mm
were considered to possess weak antibacterial activity.

2.5. Qualitative Evaluation of Quorum-Sensing Inhibition

The QSI potential of E. ruminata AgNPs was investigated using the agar-overlay
diffusion assay, following a protocol based on previously developed methodologies [34].
Briefly, C. subtsugae CV017 and C. violaceum ATCC 12472, were used as the indicator
organisms [40]. Five milliliters of molten Lysogeny broth (LB) agar was inoculated with
150 µL of the Chromobacterium spp. biosensor strain to be tested, which was then grown
overnight at 30 ◦C. The agar culture was then poured over the surface of pre-warmed LB
agar plates and allowed to solidify. Next, blank discs were impregnated with 100 and
200 µg of the AgNPs being tested and placed on the surface of the agar plates. The plates
were then incubated overnight at 30 ◦C. Discs impregnated with 100 and 200 µg of vanillin
were used as the positive controls. After incubation, zone diameters were recorded. Opaque
zone diameters indicated QS inhibition, while clear zone diameters indicated bactericidal
activity. The AgNPs samples associated with opaque zone diameters ≥ 16 mm were
considered to have strong potential for QS inhibition; zone diameters between 11–15 mm
were considered to have intermediate for QS inhibition; and zone diameters ≤ 10 mm were
considered to have weak potential for QS inhibition.

2.6. Quantitative Quorum Sensing Inhibition

In this assay, 100 µL of the tested Chromobacterium spp. strains were cultured in 3 mL
of LB medium and incubated at 30 ◦C with increasing concentrations of each AgNPs extract
at 0, 20, 40, 80, 160, and 320 µg/mL. Bacterial growth (optical density (OD)600 nm) and
violacein production (OD560 nm) were determined following an overnight incubation. One
mL of the treated and untreated overnight cultures of Chromobacterium were centrifuged
(Labnet Prism Microcentrifuge) at 10,000 rpm for 10 min to precipitate insoluble violacein.
The pellet was resuspended in 1 mL of DMSO [37,38], centrifuged (10,000 rpm for 10 min),
and quantified at OD560 nm. The following formula was used to calculate percentage of
violacein inhibition (VI) [39,41].

% violacein inhibition = (control OD560 nm − test OD560 nm/control OD560 nm) × 100 (1)

Phytosynthesized AgNPs at any concentration that resulted in VI ≥ 50% and growth
inhibition (GI) ≤ 40% were considered QS inhibitors, while a VI ≥ 50% and GI > 40%
indicated bactericidal rather than QSI activity.

2.7. Statistical Analysis

Statistical analyses were conducted using SPSS versions 26 and 27. The significance of
the effect of temperature and time on synthesis, as well as the differences in the mean values
of VI between extracts and between concentrations, were determined by one-way analysis
of variance (ANOVA), which was followed by Tukey’s honest significant difference (HSD)
post hoc test using a 95% confidence interval, with p ≤ 0.05 considered significant [10].

3. Results and Discussion

It has been documented that the reduction of silver ions results in a characteristic color
change in the aqueous medium due to the excitation of the surface plasmon resonance
(SPR) on the synthesized particles [42]. In this study, the addition of silver AgNO3 to the
experimental plant extracts produced a wide range of color changes (Figure 1a–f insets).
Leaf Rt extracts changed from a bright golden color to a cloudy yellow. Correspondingly,
leaf 80 ◦C extracts displayed a similar color change, with greater intensity after the 1 h
incubation period. The stem-bark extracts changed from a bright golden color to a cloudy
brownish hue, with the change being more prominent in the 80 ◦C extracts. The fruit
extracts changed from a faint pink to a dull ash color. Overall, different extracts produced
different colors, signifying the varying reduction of Ag+ to Ag.
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Figure 1. UV-vis absorption of aqueous Embelia ruminata silver nanoparticles (AgNPs) biosynthesized at room temperature and at 80 °C at 0 min, 60 min, and 24 
h. Insets (from left to right) show the color changes observed during the biosynthesis of AgNPs at different time intervals (control, 0 min, 60 min, and 24 h). (a) 
L_Rt = leaf, room temperature; (b) L_80 °C = leaf, 80 °C; (c) SB_Rt = stem-bark, room temperature; (d) SB_80 °C = stem-bark, 80 °C, (e) F_Rt = fruit, room temperature; 
and (f) F_80 °C = fruit, 80 °C. 

Figure 1. UV-vis absorption of aqueous Embelia ruminata silver nanoparticles (AgNPs) biosynthesized at room temperature and at 80 ◦C at 0 min, 60 min, and
24 h. Insets (from left to right) show the color changes observed during the biosynthesis of AgNPs at different time intervals (control, 0 min, 60 min, and 24 h).
(a) L_Rt = leaf, room temperature; (b) L_80 ◦C = leaf, 80 ◦C; (c) SB_Rt = stem-bark, room temperature; (d) SB_80 ◦C = stem-bark, 80 ◦C, (e) F_Rt = fruit, room
temperature; and (f) F_80 ◦C = fruit, 80 ◦C.
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The conversion of silver to nanostructures was monitored by UV-visible spectroscopy,
and absorbance peaks between 290 and 320 nm were observed for the synthesized AgNPs.
This result further confirmed the biofabrication of AgNPs in reaction mixtures (Figure 1a–f).
Notably, the intensity of the SPR peaks (Figure 1a–f) increased in the extracts from the
initial time to 60 min, to 24 h, signifying the presence of increasing concentrations of
AgNPs [43,44]. Moreover, the intensity of the color changes in the reaction mixtures was
directly proportional to the incubation time [45]. This finding may imply that the synthesis
of AgNPs increased with time, as observed from the increase in the absorbance of the SPR
band (λmax = 290 to 320 nm) [46]. Varghese et al. [47] suggested that an SPR peak at 290 nm
indicates proteins capped around the AgNPs that act as stabilizing agents for AgNPs.

Regarding the synthesis temperatures, no significant difference was observed in the
nanoparticle size for samples incubated at Rt versus 80 ◦C. This finding may indicate
that E. ruminata extracts developed nanocomposites of this size at Rt, without the effect
of increased temperatures. Previous studies have shown that smaller nanoparticles are
produced at higher temperatures of 80–90 ◦C [48]. Conversely, it has been noted that stable
biosynthesis of plant extract-mediated AgNPs occurs at diverse temperatures ranging from
25 to >40 ◦C, with room temperature being preferred, as room temperature allows the
formation of spherical AgNPs with single surface plasmons at low wavelengths [49]. It
has been observed that higher biosynthesis temperatures yield larger nanoparticles under
conditions of Ag+ precursor abundance [50]. In another study, it was postulated that
increasing the temperature above 50 ◦C might lead to the degradation of compounds such
as amino acids [51].

The HR-TEM results confirmed the presence of AgNPs with variable shapes and
no notable differences among sample types were observed. Most of the AgNPs were
spherical-to-almost-spherical (Figure 2a–f) and poly-dispersed, with a mean size range of
21.06–32.15 µm (Figure 3a–f). The EDX analysis showed a peak at 3 keV, which confirmed
the presence of elemental silver ions [52]. The SAED results, together with d-spacing
values, revealed that the synthesized AgNPs were polycrystalline, with a ring diffraction
pattern that correlated to (111), (200) (220), and (222) (Figure 4a–f) [53,54]. The lattice
plane (311) was not detected in the SAED patterns, possibly due to the rates of AgNPs
synthesis [55]. Furthermore, there were no differences in the d-spacing of the crystal
formation for samples synthesized at Rt versus 80 ◦C. These results agreed with HR-
TEM data, which indicated that the formation of AgNPs was independent of temperature.
Manikandan et al. [56] reported an average size of 30.2 ± 2 nm and the polycrystalline
nature of AgNPs synthesized using the fruit of Embelia ribes Burm.f.

The NTA data showed a much larger size for AgNPs than did the HR-TEM analysis
(Table 1). The disparity in the results may be due to the lower sensitivity of NTA; this
method may have detected nanoparticles that were close to each other as larger parti-
cles [55]. Nanoparticles with a ζ-potential higher than +30 mV or lower than −30 mV [57]
likely have sufficient repulsive force between the charged particles to attain better colloidal
stability [58]. Conversely, a low zeta potential suggests particle aggregation and flocculation
due to the van der Waals attractive forces that act upon the nanoparticles [59]. In the present
study, all samples yielded a ζ-potential that ranged from −12.8–7.3 mV, indicating that
AgNPs may incline towards lower stability and may have a greater tendency to aggregate.
However, Joseph and Singhvi [58] stated that along with ζ-potential, other variables, such
as material properties, presence of surfactants, and the solution chemistry, also influence the
physical stability of the obtained nanosuspension. Their work suggests that zeta potential
is not an absolute measurement of nanoparticle stability [60].
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Figure 2. HR-TEM micrographs of silver nanoparticles (AgNPs)synthesized from Embelia ruminata
extracts at room temperature (Rt) and 80 ◦C. Labels: (a) leaf, room temperature; (b) leaf, 80 ◦C;
(c) stem-bark, room temperature; (d) stem-bark, 80 ◦C, (e) fruit, room temperature; and (f) fruit, 80 ◦C.
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Figure 3. Nanoparticle-size-distribution histogram for silver nanoparticles (AgNPs) biosynthesized
from Embelia ruminata extracts at room temperature (Rt) and 80 ◦C. Labels: (a) leaf, Rt; (b) leaf, 80 ◦C;
(c) stem-bark, Rt; (d) stem-bark, 80 ◦C, (e) fruit, Rt; and (f) fruit, 80 ◦C.

The FTIR absorption spectra of extracts before and after the reduction of Ag+ ions are
presented in (Figure 5a–c). Absorption peaks in the 3600–3000 cm−1 range were observed
for all biosynthesized AgNPs. These bands are characteristic of stretching vibrations of
the O-H functional group in carboxylic acid and N-H stretching vibrations of amines in
amino acids, peptides, and proteins [61,62]. Previous studies have indicated that hydroxyl
groups serve as reducing agents and that carboxyl groups support the size and shape of
nanoparticles [33,43]. New spectral peaks were observed at 1586.42, 1585.8, 1582.5, and
1582.73 cm−1 in leaf Rt and 80 ◦C AgNPs spectra, as well as in fruit Rt and 80 ◦C AgNPs
spectra. This result could be attributed to the amide II N-H bending vibration coupled
with C-N stretching at 1044.58, 1042.89, 1046.76, and 1045.23 cm−1 [63]. These absorption
bands may indicate that proteins were interacting with the AgNPs [35]. Peak shifts were
also noted at wavelengths of 1610.71 and 1606 cm−1 in the stem-bark Rt and 80 ◦C AgNPs.
This could be attributed to a quinone compound, which has been shown to be responsible
for the reduction of AgNO3 and for particle size [64].
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Figure 4. Selected-area electron-diffraction patterns of silver nanoparticles (AgNPs) biosynthesized
from Embelia ruminata extracts at room temperature (Rt) and 80 ◦C. Labels: (a) leaf, Rt; (b) leaf, 80 ◦C;
(c) stem-bark, Rt; (d) stem-bark, 80 ◦C, (e) fruit, Rt; and (f) fruit, 80 ◦C.

Table 1. Comparison of particle size of Embelia ruminata silver nanoparticles (AgNPs) at room
temperature (Rt) and 80 ◦C using HR-TEM, nanoparticle-tracking analysis, and zeta potential.

Samples HR-TEM NTA

Nanoparticle Size
(nm) ± SD

Nanoparticle Size
(nm) ± SD

ζ-Potential
(mV) ± SD

Leaf Rt 21.06 ± 11.38 46.9 ± 1.4 −0.2 ± 0.2
80 ◦C 21.25 ± 8.14 102.0 ± 4.7 1.8 ± 0.7

Stem-Rt 32.15 ± 8.27 58.3 ± 16.1 −12.8 ± 1.4
80 ◦C 28.56 ± 13.69 65.9 ± 9.4 7.3 ± 0.2

Fruit Rt 29.75 ± 8.51 160 ± 19.5 −8.4 ± 1.0
80 ◦C 25.20 ± 11.13 198 ± 12.9 −0.2 ± 1.7

HR-TEM = High-resolution transmission-electron microscopy analysis, NTA = Nanoparticle Tracking Analysis,
ζ = Zeta, and SD = Standard deviation.
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Figure 5. FTIR spectra of aqueous crude extracts and AgNPs of Embelia ruminata biosynthesized at
room temperature (Rt) and 80 ◦C. Labels (a) leaf extract (b) stem-bark (SB) extract, and (c) fruit extract.

In the antibacterial assays, the aqueous fruit AgNPs appeared to be most promising,
with fruit Rt AgNPs showing intermediate antibacterial activity against sensitive Escherichia
coli ATCC 25922 at 200 µg, multi-drug resistant Pseudomonas aeruginosa ATCC 27853 at
200 µg and Staphylococcus. epidermidis ATCC 12228 at 100 and 200 µg (Table 2). Similarly,
fruit 80 ◦C AgNPs demonstrated intermediate activity against methicillin-resistant Staphylo-
coccus aureus ATCC 33591 and ATCC 700698 at 200 µg, as well as against S. epidermidis ATCC
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12228 at 100 and 200 µg. For comparison, in a study by Manikandan et al. [56], AgNPs
synthesized using the fruit extracts of E. ribes showed intermediate and weak antibacterial
inhibitory activity against E. coli and S. aureus, respectively. Additionally, in a previous
study [34], E. ruminata chloroform fruit extracts showed greater inhibitory activity against
methicillin-resistant S. aureus ATCC 700698 and vancomycin-resistant Enterococcus faecalis
ATCC 51299 than the antibiotic controls ciprofloxacin and gentamicin [34]. Likewise, the
fruit Rt and 80 ◦C AgNPs, at 100 and 200 µg, showed greater antibacterial activity against
S. aureus ATCC 700698 than the antibiotic ciprofloxacin. Additionally, all AgNPs extracts at
200 µg showed greater antibacterial activity than gentamicin against E. faecalis ATCC 51299.

Table 2. Antibacterial profile of Embelia ruminata silver nanoparticles (AgNPs) against selected
Gram-negative and Gram-positive bacteria, showing zones of inhibition (mm).

Gram-Negative Pacteria Gram-Positive Bacteria

Sample
E. coli
ATCC
25922

E. coli
ATCC
35218

K. pneumo-
niae ATCC

700603

P. aerugi-
nosa

ATCC
27853

E.
faecalis
ATCC
29212

E.
faecalis
ATCC
51299

S. aureus
ATCC
29213

S. aureus
ATCC
33591

S. aureus
ATCC
43300

S. aureus
ATCC
700698

S.
epidermidis

ATCC
12228

Concentration (µg) 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200

NPs

Leaf Rt 0 9 0 8 0 7 0 8 7 9 7 10 7 9 7 8 7 9 7 7 10 12

Leaf 80 ◦C 0 0 0 8 7 7 0 8 7 9 7 10 7 7 8 8 7 7 8 10 0 9

Stem-bark Rt 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 8 8 0 0 0 0

Stem-bark 80 ◦C 0 8 0 0 0 0 0 0 0 8 0 8 0 0 0 0 0 0 0 0 7 9

Fruit Rt 9 12 8 10 0 8 9 11 7 8 7 8 8 9 8 9 8 9 7 9 11 13

Fruit 80 ◦C 0 0 0 10 0 8 8 10 8 9 7 9 8 9 10 12 8 8 9 12 13 13

Controls

Ciprofloxacin (CIP5) 30 37 26 32 33 38 23 22 23 6 28

Gentamicin (GN10) 19 20 17 19 18 0 19 16 9 11 20

Antibacterial activity classified as follows: ≤10 mm = weak, 11–15 mm = intermediate and ≥16 mm = strong.

Interestingly, apart from stem-bark RT AgNPs, all other AgNPs showed antibacterial
activity against S. epidermidis at 200 µg (Table 2). Swamy et al. [65] demonstrated that
ethanolic leaf extracts of E. ribes showed significant wound-healing activity compared to
the standard skin ointment, framycetin. Additionally, the results from the current study
support the ethnopharmacological use of Embelia leaves as a paste applied topically to cure
skin infections [66].

Overall, the results of the antibacterial assays showed that AgNPs were more effective
against Gram-positive bacteria than against Gram-negative bacteria. The outer membrane
of Gram-negative bacteria poses a significant barrier to many compounds, including
antibiotics. In comparison, the cell wall of Gram-positive bacteria is made up of several
layers of peptidoglycan, enabling compounds to penetrate to varying degrees [67]. It was
interesting to note that the AgNPs extracts showed greater antibacterial potential than the
hexane, chloroform, and methanolic leaf, stem-bark, fruit, and seed extracts from previous
studies [34]. The FTIR results showed a distinct OH group in all the AgNPs extracts. This
finding was most prominent in the fruit 80 ◦C AgNPs. This result may signify the presence
of functional phenol groups, which are known to exhibit antibacterial activity [68].

In the qualitative assessment of QSI using the short-chain AHL C. subtsugae CV017 biosen-
sor, the stem-bark Rt, fruit Rt and 80 ◦C AgNPs demonstrated QSI at 100 to 200 µg, together
with bactericidal activity (Table 3 and Supplementary Materials Figure S1a1–a12,b1–b12). At
200 µg, the leaf Rt AgNPs displayed QSI with killing, while the stem-bark 80 ◦C AgNPs
demonstrated only QSI activity. In the assays using the long-chain AHL C. violaceum ATCC
12472 biosensor, all AgNPs displayed QSI activity at 200 µg (Table 3). The stem-bark Rt
AgNPs showed only VI, while with the other AgNPs, VI was accompanied by growth
inhibition. The objective of QSI is to disrupt quorum sensing; it is not aimed at killing the
bacteria [13]. Thus, the most effective AgNPs were the stem-bark 80 ◦C and Rt AgNPs,
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which displayed QSI in the assays with the biosensors CV017 and ATCC 12472 at 200 µg,
respectively, with no bactericidal effects.

Table 3. Qualitative evaluation of inhibitory effects of the aqueous silver nanoparticles (AgNPs)
of Embelia ruminata leaf, stem-bark, and fruit on quorum sensing (QS), as determined by violacein
production by Chromobacterium subtsugae and Chromobacterium violaceum biosensors.

C. subtsugae CV017 C. violaceum ATCC 12472

100 µg 200 µg 100 µg 200 µg

Extracts

Total
Zone

Diameter
(mm)

Clear
Zone

Diameter
(mm)

QSI
Halo
(mm)

Total
Zone

Diameter
(mm)

Clear
Zone

Diameter
(mm)

QSI
Halo
(mm)

Total
Zone

Diameter
(mm)

Clear
Zone

Diameter
(mm)

QSI
Halo
(mm)

Total
Zone

Diameter
(mm)

Clear
Zone

Diameter
(mm)

QSI
Halo
(mm)

Leaf RT 11 11 0 12 10 2 16 10 6 18 10 8

Leaf 80 ◦C 13 13 0 9 9 0 17 10 7 18 12 6

Stem-bark RT 14 9 5 16 9 7 12 8 4 13 8 5

Stem-bark 80 ◦C 0 0 0 8 0 8 13 8 5 13 9 4

Fruit RT 13 10 3 12 10 2 13 10 3 13 9 4

Fruit 80 ◦C 13 11 2 13 11 2 12 9 3 13 11 2

Control

Vanillin 11 0 11 11 0 11 9 0 9 9 0 9

Light grey = bactericidal activity, medium grey = QSI + bactericidal activity, dark grey = QSI activity, QSI
considered weak ≤10 mm, intermediate 11–15 mm and strong ≥16 mm, RT = room temperature (23 ± 2 ◦C).

In the quantitative violacein-inhibition assay, QSI was considered noteworthy when
the % VI was ≥50% and the % GI was ≤40% (Figure 6a–f,a1–f1). Using the CV017 biosensor,
fruit Rt AgNPs were bactericidal at 320 µg/mL with GI of 85.59% and an IC50 of 4.97 µg/mL
(Figure 6e). The fruit 80 ◦C AgNPs (IC50 of 4.32 µg/mL) demonstrated VI of 50.47% at
160 µg/mL but were bactericidal at 320 µg/mL, with a GI of 70.27% (Figure 6f). This
biosensor produces short-chain AHL signals, so inhibition indicates interference with
short-chain AHL-based QS.

According to assays with the ATCC 12472 biosensor, the leaf and fruit Rt AgNPs
with IC50 values of 3.8 and 4.39 µg/mL demonstrated QS inhibition ≥ 50% at 160 µg/mL
with no growth inhibition and 16.20% GI (Figure 6a1 and e1), respectively. However,
bactericidal activity was observed at 320 µg/mL with GI of 86.10 and 87.41%, respectively.
This biosensor produces long-chain AHL signals, so inhibition indicates interference with
long-chain AHL-based QS.

In contrast the qualitative QSI tests, the AgNPs of E. ruminata had a more pronounced
effect against long-chain than short-chain autoinducers. Studies have shown that NPs
can form conjugates with phytocompounds that bind competitively to AHL receptor sites,
thereby suppressing the QS circuit [69,70]. Thus, it is possible that the phytocompounds of
E. ruminata AgNPs were able to bind to receptor sites, displacing AHL more effectively in
the long-chain than the short-chain biosensor strain.

According to previous studies, the hexane, chloroform and methanolic extracts of
the leaf, stem-bark, fruit, and seed performed better in the QSI assays than did the Ag-
NPs extracts [34]. This result may be due to the solubility of phytocompounds in the
extracting solvent. Embelin, the principal compound of the genus Embelia, has a lipophilic
affinity [71,72]. It is possible that embelin and other lipophilic compounds were not soluble
in the aqueous extraction process for Ag nanosynthesis [73]. This insolubility may have
influenced the better performance of the crude plant extracts compared to the AgNPs
extracts as QS inhibitors. Furthermore, it is possible that the phytocompounds involved in
AgNPs reduction and capping were not significant QSI agents.
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Figure 6. Quantitative analysis of the concentration-dependent inhibitory effects of silver nanoparticles (AgNPs) synthesized using aqueous Embelia ruminata
extracts, on growth and violacein production by Chromobacterium spp. CV017 and ATCC 12472. Labels (a,a1) = Leaf Rt, (b,b1) = Leaf 80 ◦C, (c,c1) = Stem-bark Rt,
(d,d1) = Stem-bark 80 ◦C, (e,e1) = Fruit Rt, (f,f1) = Fruit 80 ◦C using biosensors Chromobacterium subtsugae CV017 and Chromobacterium violaceum ATCC 12472,
respectively. The average of three triplicate independent experiments and standard deviations are shown. Significance at p ≤ 0.05 indicated by different
alphabetic letters.
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Statistical analyses showed that the mean values of violacein inhibition and thus
QSI among AgNPs were greater than expected by chance and demonstrated a signifi-
cant difference at p ≤ 0.05. Dwivedi and Singh [74] found that embelin isolated from
E. ribes could inhibit biofilm formation by Streptococcus mutans, possibly by disrupting
the QS pathway. Leema et al. [75] extrapolated from their studies that the antibacterial
properties of the embelin-synthesized AgNPs were enhanced compared to the pure em-
belin extracts. Following this trend, further studies involving the isolation of principal
compounds from E. ruminata, as well as exploring a range of extracting solvents and tem-
perature gradients to synthesize AgNPs, may result in the derivatization of valuable QSI
and biofilm-inhibitory compounds.

4. Conclusions

The green synthesis of AgNPs using E. ruminata extracts was achieved and confirmed
by the various characterization methods employed in this study. Additionally, the results
indicated that the formation of AgNPs occurred at Rt, i.e., independent of elevated tem-
peratures. Furthermore, the data suggest that the fruit AgNPs extracts exhibited the most
promise as antibacterial agents. Likewise, in the quantitative QSI analyses, fruit 80 ◦C
AgNPs demonstrated the most significant VI according to the result of the assays with
the short-chain AHL CV017 biosensor, while the leaf and fruit Rt AgNPs demonstrated
the most noteworthy VI according to the result of the assays with the long-chain acyl
AHL ATCC 12472 biosensor. Regarding broad-spectrum QS inhibition, none of the Ag-
NPs extracts exhibited the potential to disrupt the QS pathways of both long and short
chain AHL signals. Despite this drawback, future research exploring the fractionation
of pure compounds could yield phytochemicals with broad-spectrum QS inhibitory po-
tential. Thus, this study has created the foundation for prospective studies and revealed
the therapeutic potential of AgNPs derived from E. ruminata. Moreover, this research has
demonstrated a novel strategy of using QS disruption to attenuate bacterial virulence and
antibiotic resistance.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/plants13020168/s1, Figure S1: Inhibitory effects of silver nanoparticles
(AgNPs) biosynthesized using aqueous extracts of Embelia ruminata on violacein production by
Chromobacterium subtsugae CV017 and Chromobacterium violaceum ATCC 12472.
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