Biostimulant and Arbuscular Mycorrhizae Application on Four Major Biomass Crops as the Base of Phytomanagement Strategies in Metal-Contaminated Soils
Abstract
:1. Introduction
2. Results
2.1. Biomass Production
2.2. Metal Concentration and Accumulation in Aboveground Biomass
2.2.1. Annuals
2.2.2. Perennials
2.3. Phytoremediation Indices
2.3.1. Annual BCF and TF Values
2.3.2. Perennial BCF and TF Values
2.4. Multivariate Analysis
2.4.1. Sorghum PCA
2.4.2. Hemp PCA
2.4.3. Perennial PCA
3. Discussion
4. Materials and Methods
4.1. Soil Collection and Site Characteristics
4.2. Soil Preparation and Analysis
4.3. Biostimulant Treatments
4.4. Experimental Design and Greenhouse Management
4.5. Biomass Collection and Analyses
4.6. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations Environment Programme. Emissions Gap Report 2022: The Closing Window—Climate Crisis Calls for Rapid Transformation of Societies, 2022; UNEP: Nairobi, Kenya, 2022; Available online: https://www.unep.org/emissions-gap-report-2022 (accessed on 1 February 2024).
- EU Parliament. EU Directive 2023/2413 of the Parliament and of the Council; EU Parliament: Strasbourg, France, 2023; 32023L2413.
- Erickson, L.E.; Roozeboom, K. Balancing Soil Health and Biomass Production. In Phytotechnology with Biomass Production, 1st ed.; CRC Press: Boca Raton, FL, USA, 2021; pp. 115–122. [Google Scholar] [CrossRef]
- FAO. Global Soil Partnership 2012–2022; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Montanarella, L.; Vargas, R. Global governance of soil resources as a necessary condition for sustainable development. Curr. Opin. Environ. Sustain. Terr. Syst. 2012, 4, 559–564. [Google Scholar] [CrossRef]
- Von Cossel, M.; Lewandowski, I.; Elbersen, B.; Staritsky, I.; Van Eupen, M.; Iqbal, Y.; Mantel, S.; Scordia, D.; Testa, G.; Cosentino, S.L.; et al. Marginal agricultural land low-input systems for biomass production. Energies 2019, 12, 3123. [Google Scholar] [CrossRef]
- Panagos, P.; Van Liedekerke, M.; Yigini, Y.; Montanarella, L. Contaminated sites in Europe: Review of the current situation based on data collected through a European network. J. Environ. Public Health 2013, 2013, 158764. [Google Scholar] [CrossRef]
- Li, T.; Liu, Y.; Lin, S.; Liu, Y.; Xie, Y. Soil pollution management in China: A brief introduction. Sustainability 2019, 11, 556. [Google Scholar] [CrossRef]
- Wu, Y.; Li, X.; Yu, L.; Wang, T.; Wang, J.; Liu, T. Review of soil heavy metal pollution in China: Spatial distribution, primary sources, and remediation alternatives. Resour. Conserv. Recycl. 2022, 181, 106261. [Google Scholar] [CrossRef]
- Kidd, P.; Mench, M.; Álvarez-López, V.; Bert, V.; Dimitriou, I.; Friesl-Hanl, W.; Herzig, R.; Janssen, J.O.; Kolbas, A.; Müller, I.; et al. Agronomic practices for improving gentle remediation of trace element-contaminated soils. Int. J. Phytoremediation 2015, 17, 1005–1037. [Google Scholar] [CrossRef]
- Pourrut, B.; Lopareva-Pohu, A.; Pruvot, C.; Garçon, G.; Verdin, A.; Waterlot, C.; Bidar, G.; Shirali, P.; Douay, F. Assessment of fly ash-aided phytostabilisation of highly contaminated soils after an 8-year field trial: Part 2. Influence on plants. Sci. Total Environ. 2011, 409, 4504–4510. [Google Scholar] [CrossRef]
- Mench, M.J.; Dellise, M.; Bes, C.M.; Marchand, L.; Kolbas, A.; Le Coustumer, P.; Oustrière, N. Phytomanagement and remediation of cu-contaminated soils by high yielding crops at a former wood preservation site: Sunflower biomass and ionome. Front. Ecol. Evol. 2018, 6, 123. [Google Scholar] [CrossRef]
- Bert, V.; Bonnin, I.; Saumitou-Laprade, P.; De Laguérie, P.; Petit, D. Do Arabidopsis halleri from non metallicolous populations accumulate zinc and cadmium more effectively than those from metallicolous populations? New Phytol. 2022, 155, 47–57. [Google Scholar] [CrossRef] [PubMed]
- D‘Alessandro, A.; Taamalli, M.; Gevi, F.; Timperio, A.M.; Zolla, L.; Ghnaya, T. Cadmium stress responses in Brassica juncea: Hints from proteomics and metabolomics. J. Proteome Res. 2013, 12, 4979–4997. [Google Scholar] [CrossRef] [PubMed]
- Leitenmaier, B.; Küpper, H. Compartmentation and complexation of metals in hyperaccumulator plants. Front. Plant Sci. 2013, 4, 374. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Gurajala, H.K.; Wu, L.; van der Ent, A.; Qiu, R.; Baker, A.J.M.; Tang, Y.; Yang, X.; Shu, W. Hyperaccumulator Plants from China: A Synthesis of the Current State of Knowledge. Environ. Sci. Technol. 2018, 52, 11980–11994. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Du, Q.; Yan, S.; Cao, Y.; Liu, X.; Guan, D.-X.; Ma, L.Q. Geographical distribution of As-hyperaccumulator Pteris vittata in China: Environmental factors and climate changes. Sci. Total Environ. 2022, 803, 149864. [Google Scholar] [CrossRef] [PubMed]
- Yanqun, Z.; Yuan, L.; Schvartz, C.; Langlade, L.; Fan, L. Accumulation of Pb, Cd, Cu and Zn in plants and hyperaccumulator choice in Lanping lead–zinc mine area, China. Environ. Int. 2004, 30, 567–576. [Google Scholar] [CrossRef] [PubMed]
- McGrath, S.P.; Lombi, E.; Gray, C.W.; Caille, N.; Dunham, S.J.; Zhao, F.J. Field evaluation of Cd and Zn phytoextraction potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri. Environ. Pollut. 2006, 141, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Allica, J.; Becerril, J.M.; Garbisu, C. Assessment of the phytoextraction potential of high biomass crop plants. Environ. Pollut. 2008, 152, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Vamerali, T.; Bandiera, M.; Lucchini, P.; Dickinson, N.M.; Mosca, G. Long-term phytomanagement of metal-contaminated land with field crops: Integrated remediation and biofortification. Eur. J. Agron. 2014, 53, 56–66. [Google Scholar] [CrossRef]
- Van der Ent, A.; Baker, A.J.; Echevarria, G.; Nicolas-Simonnot, M.O.; Morel, J.L. (Eds.) Agromining: Farming for Metals, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar] [CrossRef]
- Nkrumah, P.N.; Baker, A.J.; Chaney, R.L.; Erskine, P.D.; Echevarria, G.; Morel, J.L.; van Der Ent, A. Current status and challenges in developing nickel phytomining: An agronomic perspective. Plant Soil 2016, 406, 55–69. [Google Scholar] [CrossRef]
- Banuelos, G.S.; Lin, Z.Q.; Caton, J. Selenium in soil-plant-animal systems and its essential role for human health. Front. Plant Sci. 2023, 14, 1237646. [Google Scholar] [CrossRef]
- Chaney, R.L.; Angle, J.S.; Broadhurst, C.L.; Peters, C.A.; Tappero, R.V.; Sparks, D.L. Improved understanding of hyperaccumulation yields commercial phytoextraction and phytoming technologies. J. Environ. Qual. 2007, 36, 1429–1443. [Google Scholar] [CrossRef]
- Puthur, J.T.; Dhankher, O.P. Bioenergy Crops: A Sustainable Means of Phytoremediation; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar] [CrossRef]
- Chai, Y.; Bai, M.; Chen, A.; Peng, L.; Shao, J.; Shang, C.; Peng, C.; Zhang, J.; Zhou, Y. Thermochemical conversion of heavy metal contaminated biomass: Fate of the metals and their impact on products. Sci. Total Environ. 2022, 822, 153426. [Google Scholar] [CrossRef] [PubMed]
- Dastyar, W.; Raheem, A.; He, J.; Zhao, M. Biofuel production using thermochemical conversion of heavy metal-contaminated biomass (HMCB) harvested from phytoextraction process. J. Chem. Eng. 2019, 358, 759–785. [Google Scholar] [CrossRef]
- Moreira, H.; Pereira, S.I.; Mench, M.; Garbisu, C.; Kidd, P.; Castro, P.M. Phytomanagement of metal (loid)-contaminated soils: Options, efficiency and value. Front. Environ. Sci. 2021, 9, 661423. [Google Scholar] [CrossRef]
- Thijs, S.; Witters, N.; Janssen, J.; Ruttens, A.; Weyens, N.; Herzig, R.; Mench, M.; Van Slycken, S.; Meers, E.; Meiresonne, L.; et al. Tobacco, sunflower and high biomass SRC clones show potential for trace metal phytoextraction on a moderately contaminated field site in Belgium. Front. Plant Sci. 2018, 9, 1879. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, B.; Boléo, S.; Sidella, S.; Costa, J.; Duarte, M.P.; Mendes, B.; Cosentino, S.L.; Fernando, A.L. Phytoremediation of heavy metal-contaminated soils using the perennial energy crops Miscanthus spp. and Arundo donax L. Bioenergy Res. 2015, 8, 1500–1511. [Google Scholar] [CrossRef]
- Mahar, A.; Wang, P.; Ali, A.; Awasthi, M.K.; Lahori, A.H.; Wang, Q.; Li, R.; Zhang, Z. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Ecotoxicol. Environ. Saf. 2016, 126, 111–121. [Google Scholar] [CrossRef]
- Robinson, B.H.; Bañuelos, G.; Conesa, H.M.; Evangelou, M.W.; Schulin, R. The phytomanagement of trace elements in soil. CRC Crit. Rev. Plant Sci. 2009, 28, 240–266. [Google Scholar] [CrossRef]
- Guo, Z.; Gao, Y.; Cao, X.; Jiang, W.; Liu, X.; Liu, Q.; Chen, Z.; Zhou, W.; Cui, J.; Wang, Q. Phytoremediation of Cd and Pb interactive polluted soils by switchgrass (Panicum virgatum L.). Int. J. Phytoremediation 2019, 21, 1486–1496. [Google Scholar] [CrossRef]
- Liao, X.; Wu, Y.; Fu, T.; Iqbal, Y.; Yang, S.; Li, M.; Yi, Z.; Xue, S. Biomass Quality Variations over Different Harvesting Regimes and Dynamics of Heavy Metal Change in Miscanthus lutarioriparius around Dongting Lake. Agron. J. 2022, 12, 1188. [Google Scholar] [CrossRef]
- Rheay, H.T.; Omondi, E.C.; Brewer, C.E. Potential of hemp (Cannabis sativa L.) for paired phytoremediation and bioenergy production. Glob. Chang. Biol. Bioenergy 2021, 13, 525–536. [Google Scholar] [CrossRef]
- Rusinowski, S.; Krzyżak, J.; Clifton-Brown, J.; Jensen, E.; Mos, M.; Webster, R.; Sitko, K.; Pogrzeba, M. New Miscanthus hybrids cultivated at a Polish metal-contaminated site demonstrate high stomatal regulation and reduced shoot Pb and Cd concentrations. Environ. Pollut. 2019, 252, 1377–1387. [Google Scholar] [CrossRef]
- Silambarasan, S.; Logeswari, P.; Vangnai, A.S.; Kamaraj, B.; Cornejo, P. Plant growth-promoting actinobacterial inoculant assisted phytoremediation increases cadmium uptake in Sorghum bicolor under drought and heat stresses. Environ. Pollut. 2022, 307, 119489. [Google Scholar] [CrossRef]
- Silva, T.N.; Thomas, J.B.; Dahlberg, J.; Rhee, S.Y.; Mortimer, J.C. Progress and challenges in sorghum biotechnology, a multipurpose feedstock for the bioeconomy. J. Exp. Bot. 2022, 73, 646–664. [Google Scholar] [CrossRef]
- Song, G.; Zhang, J.; Wang, Y.; Ji, Y.; Fang, Z.; Cai, Q.; Xu, B. Overexpression of PvBiP2 improved biomass yield and cadmium tolerance in switchgrass (Panicum virgatum L.). J. Hazard. Mater. 2023, 446, 130648. [Google Scholar] [CrossRef]
- Xue, S.; Xiao, L.; Zili, Y. Miscanthus production and utilization in Dongting Lake region, China. In International Conference on Perennial Biomass Crops for a Resource-Constrained World. Biomass; Springer: Berlin/Heidelberg, Germany, 2015; pp. 7–10. [Google Scholar]
- Monti, A. (Ed.) Switchgrass: A Valuable Biomass Crop for Energy, 1st ed.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
- Zegada-Lizarazu, W.; Parrish, D.; Berti, M.; Monti, A. Dedicated crops for advanced biofuels: Consistent and diverging agronomic points of view between the USA and the EU-27. Biofuels Bioprod. Biorefin. 2013, 7, 715–731. [Google Scholar] [CrossRef]
- Kim, S.; Dale, B.E.; Martinez-Feria, R.; Basso, B.; Thelen, K.; Maravelias, C.T.; Landis, D.; Lark, T.J.; Robertson, G.P. Global warming intensity of biofuel derived from switchgrass grown on marginal land in Michigan. Glob. Chang. Biol. Bioenergy 2023, 15, 319–331. [Google Scholar] [CrossRef]
- Bonin, C.L.; Heaton, E.A.; Cogdill, T.J.; Moore, K.J. Management of sweet sorghum for biomass production. Sugar Tech 2016, 18, 150–159. [Google Scholar] [CrossRef]
- Habyarimana, E.; Laureti, D.; Ninno, M.D.; Lorenzoni, C. Performances of biomass sorghum [Sorghum bicolor (L.) Moench] under different water regimes in Mediterranean region. Ind. Crops Prod. 2004, 20, 23–28. [Google Scholar] [CrossRef]
- Zegada-Lizarazu, W.; Monti, A. Are we ready to cultivate sweet sorghum as a bioenergy feedstock? A review on field management practices. Biomass. Bioenergy 2012, 40, 1–12. [Google Scholar] [CrossRef]
- Pasumarthi, R.; Rao, P.S.; Gopalakrishnan, S. Cultivation of sweet sorghum on heavy metal-contaminated soils by phytoremediation approach for production of bioethanol. In Bioremediation and Bioeconomy, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 337–366. [Google Scholar] [CrossRef]
- Al Chami, Z.; Amer, N.; Al Bitar, L.; Cavoski, I. Potential use of Sorghum bicolor and Carthamus tinctorius in phytoremediation of nickel, lead and zinc. Int. J. Environ. Sci. Technol. 2015, 12, 3957–3970. [Google Scholar] [CrossRef]
- Zhuang, P.; Shu, W.; Li, Z.; Liao, B.; Li, J.; Shao, J. Removal of metals by sorghum plants from contaminated land. J. Environ. Sci. 2009, 21, 1432–1437. [Google Scholar] [CrossRef]
- Svennerstedt, B.; Sevenson, G. Hemp (Cannabis sativa L.) Trials in Southern Sweden 1999–2001. J. Ind. Hemp 2006, 11, 17–25. [Google Scholar] [CrossRef]
- Zhao, J.; Xu, Y.; Wang, W.; Griffin, J.; Roozeboom, K.; Wang, D. Bioconversion of industrial hemp biomass for bioethanol production: A review. Fuel 2020, 281, 118725. [Google Scholar] [CrossRef]
- Bartucca, M.L.; Cerri, M.; Del Buono, D.; Forni, C. Use of biostimulants as a new approach for the improvement of phytoremediation performance—A review. Plants 2022, 11, 1946. [Google Scholar] [CrossRef]
- Grammenou, A.; Petropoulos, S.A.; Thalassinos, G.; Rinklebe, J.; Shaheen, S.M.; Antoniadis, V. Biostimulants in the Soil–Plant Interface: Agro-environmental Implications—A Review. Earth Syst. Environ. 2023, 7, 583–600. [Google Scholar] [CrossRef]
- Vangronsveld, J.; Herzig, R.; Weyens, N.; Boulet, J.; Adriaensen, K.; Ruttens, A.; Thewys, T.; Vassilev, A.; Meers, E.; Nehnevajova, E.; et al. Phytoremediation of contaminated soils and groundwater: Lessons from the field. Environ. Sci. Pollut. Res. 2009, 16, 765–794. [Google Scholar] [CrossRef]
- Göhre, V.; Paszkowski, U. Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 2006, 223, 1115–1122. [Google Scholar] [CrossRef]
- Riaz, M.; Kamran, M.; Fang, Y.; Wang, Q.; Cao, H.; Yang, G.; Deng, L.; Wang, Y.; Zhou, Y.; Anastopoulos, I.; et al. Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: A critical review. J. Hazard. Mater. 2021, 402, 123919. [Google Scholar] [CrossRef]
- Baltazar, M.; Correia, S.; Guinan, K.J.; Sujeeth, N.; Bragança, R.; Gonçalves, B. Recent advances in the molecular effects of biostimulants in plants: An overview. Biomolecules 2021, 11, 1096. [Google Scholar] [CrossRef]
- Baştabak, B.; Gödekmerdan, E.; Koçar, G. A holistic approach to soil contamination and sustainable phytoremediation with energy crops in the Aegean Region of Turkey. Chemosphere 2021, 276, 130192. [Google Scholar] [CrossRef]
- Vamerali, T.; Bandiera, M.; Mosca, G. Field crops for phytoremediation of metal-contaminated land. A review. Environ. Chem. Lett. 2010, 8, 1–17. [Google Scholar] [CrossRef]
- Rostami, S.; Azhdarpoor, A. The application of plant growth regulators to improve phytoremediation of contaminated soils: A review. Chemosphere 2019, 220, 818–827. [Google Scholar] [CrossRef]
- Weyens, N.; van der Lelie, D.; Taghavi, S.; Newman, L.; Vangronsveld, J. Exploiting plant–microbe partnerships to improve biomass production and remediation. Trends Biotechnol. 2009, 27, 591–598. [Google Scholar] [CrossRef]
- Mench, M.; Lepp, N.; Bert, V.; Schwitzguébel, J.P.; Gawronski, S.W.; Schröder, P.; Vangronsveld, J. Successes and limitations of phytotechnologies at field scale: Outcomes, assessment and outlook from COST Action 859. J. Soils Sediments 2010, 10, 1039–1070. [Google Scholar] [CrossRef]
- Potgieter, A.B.; George-Jaeggli, B.; Chapman, S.C.; Laws, K.; Cadavid, L.A.S.; Wixted, J.; Watson, J.; Eldridge, M.; Jordan, D.R.; Hammer, G.L. Multi-spectral imaging from an unmanned aerial vehicle enables the assessment of seasonal leaf area dynamics of sorghum breeding line. Front. Plant Sci. 2017, 8, 1532. [Google Scholar] [CrossRef]
- Alloway, B.J. Zinc in Soils and Crop Nutrition, 2nd ed.; International Zinc Association: Brussels, Belgium, 2008. [Google Scholar]
- Fernandes, J.C.; Henriques, F.S. Biochemical, physiological, and structural effects of excess copper in plants. Bot. Rev. 1991, 57, 246–273. [Google Scholar] [CrossRef]
- Galić, M.; Perčin, A.; Zgorelec, Ž.; Kisić, I. Evaluation of heavy metals accumulation potential of hemp (Cannabis sativa L.). J. Central Eur. Agric. 2019, 20, 700–711. [Google Scholar] [CrossRef]
- Marchiol, L.; Fellet, G.; Perosa, D.; Zerbi, G. Removal of trace metals by Sorghum bicolor and Helianthus annuus in a site polluted by industrial wastes: A field experience. Plant Physiol. Biochem. 2007, 45, 379–387. [Google Scholar] [CrossRef]
- Mocquot, B.; Vangronsveld, J.; Clijsters, H.; Mench, M. Copper toxicity in young maize (Zea mays L.) plants: Effects on growth, mineral and chlorophyll contents, and enzyme activities. Plant Soil 1996, 182, 287–300. [Google Scholar] [CrossRef]
- Ofori-Agyemang, F.; Waterlot, C.; Manu, J.; Laloge, R.; Francin, R.; Papazoglou, E.G.; Alexopoulou, E.; Sahraoui, A.L.-H.; Tisserant, B.; Mench, M.; et al. Plant testing with hemp and miscanthus to assess phytomanagement options including biostimulants and mycorrhizae on a metal-contaminated soil to provide biomass for sustainable biofuel production. Sci. Total Environ. 2024, 912, 169527. [Google Scholar] [CrossRef]
- Jarausch-Wehrheim, B.; Mocquot, B.; Mench, M. Uptake and partitioning of sludge-borne copper in field-grown maize (Zea mays L.). Eur. J. Agron. 1996, 5, 259–271. [Google Scholar] [CrossRef]
- Chaudhry, F.M.; Loneragan, J.F. Zinc absorption by wheat seedlings: I. Inhibition by macronutrient ions in short-term experiments and its relevance to long-term zinc nutrition. Soil Sci. Soc. Am. J. 1972, 36, 323–327. [Google Scholar] [CrossRef]
- Al Chami, Z.; Cavoski, I.; Mondelli, D.; Miano, T. Effect of compost and manure amendments on zinc soil speciation, plant content, and translocation in an artificially contaminated soil. Environ. Sci. Pollut. Res. 2013, 20, 4766–4776. [Google Scholar] [CrossRef]
- Harrington, M.J.; Mutwil, M.; Barriere, Y.; Sibout, R. Molecular biology of lignification in grasses. Adv. Bot. Res. 2012, 61, 77–112. [Google Scholar] [CrossRef]
- Saleem, K.; Asghar, M.A.; Saleem, M.H.; Raza, A.; Kocsy, G.; Iqbal, N.; Ali, B.; Albeshr, M.F.; Bhat, E.A. Chrysotile-asbestos-induced damage in Panicum virgatum and Phleum pretense species and its alleviation by organic-soil amendment. Sustainability 2022, 14, 10824. [Google Scholar] [CrossRef]
- Sharmin, S.A.; Alam, I.; Kim, K.H.; Kim, Y.G.; Kim, P.J.; Bahk, J.D.; Lee, B.H. Chromium-induced physiological and proteomic alterations in roots of Miscanthus sinensis. Plant Sci. 2012, 187, 113–126. [Google Scholar] [CrossRef]
- Arduini, I.; Masoni, A.; Ercoli, L. Effects of high chromium applications on miscanthus during the period of maximum growth. Environ. Exp. Bot. 2006, 58, 234–243. [Google Scholar] [CrossRef]
- Page, V.; Feller, U. Heavy metals in crop plants: Transport and redistribution processes on the whole plant level. Agronomy 2015, 5, 447–463. [Google Scholar] [CrossRef]
- Dal Corso, G.; Manara, A.; Furini, A. An overview of heavy metal challenge in plants: From roots to shoots. Metallomics 2013, 5, 1117–1132. [Google Scholar] [CrossRef]
- Nsanganwimana, F.; Al Souki, K.S.; Waterlot, C.; Douay, F.; Pelfrêne, A.; Ridošková, A.; Louvel, B.; Pourrut, B. Potentials of Miscanthus × giganteus for phytostabilization of trace element-contaminated soils: Ex situ experiment. Ecotoxicol. Environ. Saf. 2021, 214, 112125. [Google Scholar] [CrossRef]
- Xin, J.; Tang, J.; Tian, R.; Liu, Y.; Liu, J.; Nie, Y. The role of iron plaque in Miscanthus sacchariflorus Seedling Growth, Cadmium Uptake, and Translocation. Water Air Soil Pollut. 2022, 233, 32. [Google Scholar] [CrossRef]
- Zadel, U.; Cruzeiro, C.; Durai, A.C.R.; Nesme, J.; May, R.; Balázs, H.; Michalke, B.; Płaza, G.; Schröder, P.; Schloter, M.; et al. Exudates from Miscanthus × giganteus change the response of a root-associated Pseudomonas putida strain towards heavy metals. Environ. Pollut. 2022, 313, 119989. [Google Scholar] [CrossRef]
- HHoeksema, J.D.; Chaudhary, V.B.; Gehring, C.A.; Johnson, N.C.; Karst, J.; Koide, R.T.; Pringle, A.; Zabinski, C.; Bever, J.D.; Moore, J.C.; et al. A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol. Let. 2010, 13, 394–407. [Google Scholar] [CrossRef]
- Bahador, M.; Tadayon, M.R.; Karimzadeh Soureshjani, H.; Ghaffari, H. Radiation and Water Use Efficiencies of Mycorrhizal Inoculated Hemp Under Water-Deficit Stress. J. Soil Sci. Plant Nutr. 2023, 23, 2202–2214. [Google Scholar] [CrossRef]
- Sun, S.; Fan, X.; Feng, Y.; Wang, X.; Gao, H.; Song, F. Arbuscular mycorrhizal fungi influence the uptake of cadmium in industrial hemp (Cannabis sativa L.). Chemosphere 2023, 330, 138728. [Google Scholar] [CrossRef]
- Chandra, P.; Singh, A.; Prajapat, K.; Rai, A.K.; Yadav, R.K. Native arbuscular mycorrhizal fungi improve growth, biomass yield, and phosphorus nutrition of sorghum in saline and sodic soils of the semi–arid region. Environ. Exp. Bot. 2022, 201, 104982. [Google Scholar] [CrossRef]
- Schmidt, C.S.; Mrnka, L.; Frantík, T.; Motyka, V.; Dobrev, P.I.; Vosátka, M. Combined effects of fungal inoculants and the cytokinin-like growth regulator thidiazuron on growth, phytohormone contents and endophytic root fungi in Miscanthus × giganteus. Plant Physiol. Biochem. 2017, 120, 120–131. [Google Scholar] [CrossRef]
- Selvakumar, G.; Shagol, C.C.; Kang, Y.; Chung, B.N.; Han, S.G.; Sa, T.M. Arbuscular mycorrhizal fungi spore propagation using single spore as starter inoculum and a plant host. J. Appl. Microbiol. 2018, 124, 1556–1565. [Google Scholar] [CrossRef]
- Sun, H.; Xie, Y.; Zheng, Y.; Lin, Y.; Yang, F. The enhancement by arbuscular mycorrhizal fungi of the Cd remediation ability and bioenergy quality-related factors of five switchgrass cultivars in Cd-contaminated soil. PeerJ 2018, 6, e4425. [Google Scholar] [CrossRef]
- Sun, S.; Feng, Y.; Huang, G.; Zhao, X.; Song, F. Rhizophagus irregularis enhances tolerance to cadmium stress by altering host plant hemp (Cannabis sativa L.) photosynthetic properties. Environ. Pollut. 2022, 314, 120309. [Google Scholar] [CrossRef]
- Al-Lami, M.K.; Oustriere, N.; Gonzales, E.; Burken, J.G. Amendment-assisted revegetation of mine tailings: Improvement of tailings quality and biomass production. Int. J. Phytoremediation 2019, 21, 425–434. [Google Scholar] [CrossRef]
- Canellas, L.P.; Olivares, F.L.; Okorokova-Façanha, A.L.; Façanha, A.R. Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane H+-ATPase activity in maize roots. Plant Physiol. 2002, 130, 1951–1957. [Google Scholar] [CrossRef]
- Jindo, K.; Martim, S.A.; Navarro, E.C.; Pérez-Alfocea, F.; Hernandez, T.; Garcia, C.; Aguiar, N.O.; Canellas, L.P. Root growth promotion by humic acids from composted and non-composted urban organic wastes. Plant Soil 2012, 353, 209–220. [Google Scholar] [CrossRef]
- Da Silva, S.F.; Olivares, F.L.; Canellas, L.P. The biostimulant manufactured using diazotrophic endophytic bacteria and humates is effective to increase sugarcane yield. Chem. Biol. Technol. Agric. 2017, 4, 1–6. [Google Scholar] [CrossRef]
- Nardi, S.; Schiavon, M.; Francioso, O. Chemical structure and biological activity of humic substances define their role as plant growth promoters. Molecules 2021, 26, 2256. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G. Synergistic biostimulatory action: Designing the next generation of plant biostimulants for sustainable agriculture. Front. Plant Sci. 2018, 9, 1655. [Google Scholar] [CrossRef]
- Vandenbossche, M.; Jimenez, M.; Casetta, M.; Traisnel, M. Remediation of heavy metals by biomolecules: A review. Crit. Rev. Environ. Sci. Technol. 2015, 45, 1644–1704. [Google Scholar] [CrossRef]
- Audet, P.; Charest, C. Dynamics of arbuscular mycorrhizal symbiosis in heavy metal phytoremediation: Meta-analytical and conceptual perspectives. Environ. Pollut 2007, 147, 609–614. [Google Scholar] [CrossRef]
- Nowak, K.; Szada-Borzyszkowska, A.; Krzyżak, J.; Rusinowski, S.; Soja, M.; Pogrzeba, M. Comparison of root colonization by arbuscular mycorrhizal fungi in energy crop species cultivated on arable land contaminated with heavy metals. IOP Conf. Ser. Earth Environ. Sci. 2019, 214, 012030. [Google Scholar] [CrossRef]
- DECRETO LEGISLATIVO 3 Aprile 2006, n. 152. Available online: https://www.normattiva.it/uri-res/N2Ls?urn:nir:stato:decreto.legislativo:2006-04-03;152 (accessed on 1 February 2024).
- GB 15618-1995; Environmental Quality Standard for Soils. ChineseStandard: Beijing, China, 1995.
- Amaducci, S.; Zatta, A.; Raffanini, M.; Venturi, G. Characterisation of hemp (Cannabis sativa L.) roots under different growing conditions. Plant Soil 2008, 313, 227–235. [Google Scholar] [CrossRef]
- Mann, J.J.; Barney, J.N.; Kyser, G.B.; DiTomaso, J.M. Root system dynamics of Miscanthus× giganteus and Panicum virgatum in response to rainfed and irrigated conditions in California. Bioenergy Res 2013, 6, 678–687. [Google Scholar] [CrossRef]
- Monti, A.; Zatta, A. Root distribution and soil moisture retrieval in perennial and annual energy crops in Northern Italy. Agric. Ecosyst. Environ. 2009, 132, 252–259. [Google Scholar] [CrossRef]
- Giandon, P.; Bortolami, P. L’interpretazione Delle Analisi del Terreno. In Strumento per Sostenibilità Ambientale, 2nd ed.; ARPAV, Veneto Agricoltura—Azienda Regionale per i settori Agricolo, Forestale e Agro-Alimentare: Padova, Italy, 2007; ISBN 88-7504-115-6. [Google Scholar]
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA Soil Test for Zinc, Iron, Manganese, and Copper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Symbiom, C.Z. Symbiom’s Research Activities. Available online: https://www.symbiom.cz/en/research-activities (accessed on 17 May 2024).
- Buscaroli, A. An overview of indexes to evaluate terrestrial plants for phytoremediation purposes. Ecol. Indic. 2017, 82, 367–380. [Google Scholar] [CrossRef]
Sites | Parameter | Total Content (mg kg−1) | Legal Threshold (mg kg−1) | Bioavailable Fraction (mg kg−1) |
---|---|---|---|---|
Chiarini (Site-1) | Lead (Pb) | 159 | 100 | 33 * |
Copper (Cu) | 137 | 120 | 45 * | |
Zinc (Zn) | 455 | 150 | 62 * | |
Nickel (Ni) | 209 | 120 | 9.9 * | |
Tin (Sn) | 8.8 | 1 | not detected | |
Zhuzhou (Site-2) | Cadmium (Cd) | 1.2 | 0.3 | 0.25 ** |
Chromium (Cr) | 70.4 | 150 | 0.01 ** |
Parameter | Unit | Site-1 | Site-2 |
---|---|---|---|
Clay | g kg−1 | 149 | 260 |
Silt | g kg−1 | 329 | 340 |
Sand | g kg−1 | 522 | 400 |
pH | 8 | 6 | |
Total limestone | g kg−1 | 160 | n.d. |
Active limestone | g kg−1 | 52 | n.d. |
Total organic carbon | g kg−1 | 10 | n.d. |
Organic Matter | g kg−1 | 17 | 17 |
Total nitrogen | g kg−1 | 1 | 1 |
Total phosphorus | g kg−1 | n.d. | 2 |
Total potassium | g kg−1 | n.d. | 4 |
Assimilable phosphorus | mg kg−1 | 20 | n.d. |
Exchangeable potassium | mg kg−1 | 318 | n.d. |
C/N | 11 | n.d. | |
EC | µS cm−1 | n.d. | 129 |
WHC | % | 20 | 25 |
Abbreviation | Composition |
---|---|
M | Mixture of 7 endo-mycorrhizae * (Symbivit®, Symbiom, Letohrad, Czech Republic) |
B1 | Foliar biostimulant: hydrolyzed peptides (55% m/m) and amino acids (10% m/m) in water solution (Siapton®, Isagro S.p.A, Milan, Italy) |
B2 | Powdered water-soluble root biostimulant: humic acids (75% m/m) and fulvic acids (5% m/m) (Lonite 80SP®, Alba Milagro, Milan, Italy) |
MB1 | Combination of mycorrhizae and foliar biostimulant |
MB2 | Combination of mycorrhizae and root biostimulant |
C | Untreated control |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peroni, P.; Liu, Q.; Lizarazu, W.Z.; Xue, S.; Yi, Z.; Von Cossel, M.; Mastroberardino, R.; Papazoglou, E.G.; Monti, A.; Iqbal, Y. Biostimulant and Arbuscular Mycorrhizae Application on Four Major Biomass Crops as the Base of Phytomanagement Strategies in Metal-Contaminated Soils. Plants 2024, 13, 1866. https://doi.org/10.3390/plants13131866
Peroni P, Liu Q, Lizarazu WZ, Xue S, Yi Z, Von Cossel M, Mastroberardino R, Papazoglou EG, Monti A, Iqbal Y. Biostimulant and Arbuscular Mycorrhizae Application on Four Major Biomass Crops as the Base of Phytomanagement Strategies in Metal-Contaminated Soils. Plants. 2024; 13(13):1866. https://doi.org/10.3390/plants13131866
Chicago/Turabian StylePeroni, Pietro, Qiao Liu, Walter Zegada Lizarazu, Shuai Xue, Zili Yi, Moritz Von Cossel, Rossella Mastroberardino, Eleni G. Papazoglou, Andrea Monti, and Yasir Iqbal. 2024. "Biostimulant and Arbuscular Mycorrhizae Application on Four Major Biomass Crops as the Base of Phytomanagement Strategies in Metal-Contaminated Soils" Plants 13, no. 13: 1866. https://doi.org/10.3390/plants13131866
APA StylePeroni, P., Liu, Q., Lizarazu, W. Z., Xue, S., Yi, Z., Von Cossel, M., Mastroberardino, R., Papazoglou, E. G., Monti, A., & Iqbal, Y. (2024). Biostimulant and Arbuscular Mycorrhizae Application on Four Major Biomass Crops as the Base of Phytomanagement Strategies in Metal-Contaminated Soils. Plants, 13(13), 1866. https://doi.org/10.3390/plants13131866