Investigating the Chemical Profile of Underexplored Parts of Dipteryx alata (Baru) Using the PS–MS Technique
Abstract
1. Introduction
2. Results and Discussion
Compound | Precursor ion (m/z) | Ionization Mode | Fragments (MS/MS) | Parts of the Baru | Reference | ||||
---|---|---|---|---|---|---|---|---|---|
AN | AT | C | E | P | |||||
Organic acids | |||||||||
Citric acid | 191 | - | 191, 111, 87, 85 | X | X | [27,32] | |||
Benzoic acid derivatives | |||||||||
Hydroxytrimesic acid | 267 | - | 163, 119 | X | [33] | ||||
Salicylic acid O- glucoside | 299 | - | 137 | X | X | [33,34] | |||
Ellagic acid | 301 | - | 301, 229 | X | X | X | [15] | ||
Vanillin hexoside | 313 | - | 151 | X | [33] | ||||
Protocatechuic acid hexoside | 315 | - | 153, 152, 109, 108 | X | X | [27,33,34] | |||
Homovanillic acid hexoside | 343 | - | 181 | X | X | [33] | |||
Syringic acid hexoside | 359 | - | 197 | X | X | X | [33] | ||
Ellagic acid derivative | 799 | + | 395 | X | X | X | X | X | [35] |
Steroids | |||||||||
Stigmasterol | 395 | + | 269,215 | X | X | [36] | |||
Phenylpropanoids | |||||||||
Isoferulic acid | 193 | - | 178, 149, 134 | X | X | X | [15] | ||
Hydroxybenzyl-malic acid (eucomic acid) | 239 | - | 195, 179, 177, 133 | X | [34] | ||||
Dihydrochrysin (pinocembrin) | 255 | - | 135 | X | X | X | X | [34] | |
p-O-Methylpiscidic acid | 269 | - | 209, 179, 148 | X | X | [33] | |||
Fukiic acid | 271 | - | 271, 181, 165, 151, 109 | X | X | [33] | |||
Naringenin | 153, 135 271, 151 | [32] | |||||||
Butein/Butin | 271, 135, 91 | ||||||||
p-Coumaroyl-malic acid | 279 | - | 119 | X | X | [33] | |||
Coutaric acid or Phaseolic acid | 295 | - | 135, 133, 115 | X | [33] | ||||
Feruloyl-malic acid | 309 | - | 193 | X | X | [33] | |||
Coumaroylhexose or p-Coumaric acid hexoside | 325 | - | 163, 119 | X | X | X | X | X | [32,33] |
Phenyllactic acid 2-O-hexoside | 327 | - | 165, 147 | X | X | [37] | |||
Caffeoylhexose or Caffeic acid-O-hexoside | 341 | - | 179 | X | X | X | X | X | [33,38] |
Ferulic acid hexoside I | 355 | - | 193 | X | [33] | ||||
Butein-hexoside | 433 | - | 433, 271, 135 | X | [32] | ||||
Tricaffeoyl-quinic acid | 678 | + | 515, 351 | X | X | [35] | |||
Flavonoids | |||||||||
Formonetin | 267 | - | 163, 119 | X | [34] | ||||
Genistein | 269 | - | 153, 133 | X | X | [34] | |||
Trihydroxyl-flavone | [33] | ||||||||
Luteolin | 285 | - | 285, 217, 199, 175, 151, 133 | X | X | X | [27,32,33] | ||
Calycosin | + | 270, 241, 137 | X | X | X | [39] | |||
Eriodictyol | 287 | - | 287, 151, 135 | X | X | [32] | |||
Chrysoeriol (diosmetin) | 299 | - | 284 | X | X | [33] | |||
Quercetin | 301 | - | 273, 271, 179, 151 | X | X | X | X | [33,34] | |
Myricetin | 317 | - | 287, 179 | X | [33] | ||||
Apigenin 8-C-glucoside (Isovitexin) | 431 | - | 413, 371, 341, 311, 269 | X | [33,34] | ||||
Naringenin 6-C-β-D-glucoside (hemipholin) ou Naringenin 7- O-glucoside (prunin) | 433 | - | 343, 313, 271 | X | [34] | ||||
Naringenin-O-hexoside | 433, 271 | [32] | |||||||
Quercetin-arabinofuranoside | 301, 300 | [33] | |||||||
Quercetindeoxyhexose | 447 | - | 301, 300 | X | [33,34] | ||||
Kaempferol-O-glucoside | 285, 284 | [33,34,38] | |||||||
Orobol/Luteolin-O-hexoside; | 447, 285, 284, 255 | [32] | |||||||
Isoorientin | 429, 387, 357, 327 | [33] | |||||||
Eriodictyol-O-glucoside | 449 | - | 449, 287, 269, 259, 151 | X | [32] | ||||
Quercetin-3-O-glucouronide | 477 | - | 301, 179 | X | [40] | ||||
Dihydromyricetin (ampelopsin) 3′-O-β-D-glucopyranoside | 481 | - | 463, 355, 193 | X | X | [34] | |||
Noricaritin hexoside | 533 | - | 371 | X | X | [33] | |||
Isoschaftoside | 563 | - | 503, 473, 443, 353, 383 | X | X | X | [34] | ||
(-)-Theaflavin | 545, 519, 425 | ||||||||
Kaempferol 3-O-α-L-arabinopyranosyl-7-O-α-L-rhamno pyranoside | 431, 285 | ||||||||
Phloretinxyloglucoside | 567 | - | 435 | X | [40] | ||||
Apigenin 6,8-di-C-glucoside (vicenin 2) | 593 | - | 503, 383 | X | X | X | X | [27,33,34,37] | |
Naringenin di-C-hexoside | 595 | - | 475, 449, 385, 355, 329 | X | X | X | X | [34] | |
Eriodictyol-O-hexose-O-rhamnose or Eriodictyol-7-O-rutinoside (eriocitrin) | 595, 459, 433, 287 | [32,37] | |||||||
Phloretin-3′,5′-di-C-glucoside | 597 | - | 597, 477, 429, 417, 399, 315 | X | X | X | X | X | [32,37] |
Myrecitin-3-O-(2″-O-galloyl)-pentoside | 601 | - | 449 | X | X | X | [40] | ||
Quercetin hexose deoxyhexose | 609 | - | 489, 463, 447, 301 | X | X | X | [33,34] | ||
Kaempferol di-hexoside | 447, 285 | [33,38] | |||||||
Isorhamnetin 3-O-rutinoside | 477, 315 | [38] | |||||||
Hesperidin (Hesperetin-O-rutinoside) | 609, 301 | [32] | |||||||
Isorhamnetin3-O-(2″-α-arabinopyranosyl)-β-glucopyranoside | 623 | - | 477 | X | X | X | [38] | ||
Myricetin hexose deoxyhexose | 625 | - | 463, 317, 316 | X | X | X | [34] | ||
Myrecitin-3-O-(2″-O-galloyl)-hexoside | 631 | - | 479, 317 | X | [40] | ||||
Quercetin-acetyl-rutinoside | 651 | - | 609 | X | X | X | X | [33] | |
Luteolin-7-O-hexosyl-8-C-(6″-acetyl)-hexoside | 489, 327 | [40] | |||||||
Isorhamnetin-O-rhamnosylarabinoside-O-glucoside | 725 | - | 417 | X | X | X | X | X | [38] |
Quercetin-rhamnosylacetyl-hexoside-rhamnoside | 797 | - | 651 | X | X | X | X | X | [33] |
Schoepfin A derivative of (iso)mangiferin | 839 | - | 839, 821, 749, 331 | X | X | X | X | [37] | |
Schoepfin A derivative of (iso)mangiferin | 841 | + | 661, 559, 541, 523, 509, 491, 475, 439, 423 | X | X | X | [37] | ||
Nothofagin derivative of (iso)mangiferin | 855 | - | 855, 735 | X | X | X | X | X | [37] |
Nothofagin derivative of (iso)mangiferin | 857 | + | 677, 659, 641, 599, 575, 557, 509, 487, 439, 369, 357, 327 | X | [37] | ||||
Astragaloside I | 870 | + | 671, 455 | X | X | X | X | X | [39] |
Aspalathin derivative of (iso)mangiferin | 871 | - | 871 | X | X | X | X | X | [37] |
873 | + | 819, 807, 731, 675, 658, 631, 616, 604, 591, 573, 561, 489, 459, 447, 387, 369, 357, 303, 289 | X | X | X | X | [37] | ||
Tannins | |||||||||
Trigalloylglucose | 635 | - | 331 | X | X | X | [15] | ||
Tetragalloylglucose | 787 | - | 787 | X | X | X | X | [15] | |
Tetrahydroxyxanthone-C-hexoside | 841 | - | 841, 823, 805, 559, 329 | X | X | X | X | [37] | |
Procyanidin trimer | 850 | - | 697 | X | X | X | X | X | [40] |
Pentagalloylglucose | 939 | - | 939, 635 | X | X | X | X | [15] | |
Others | |||||||||
Medicarpin | 269 | - | 254, 210 | X | X | [34] | |||
4,10-Dihydroxy-3,9-dimethoxypterocarpan | 317 | + | 280 | X | X | X | [39] | ||
Sutherlandin | 741 | + | 303 | X | X | [41] |
3. Materials and Methods
3.1. Plant Material
3.2. Obtaining the Extracts
3.3. Chemical Profile Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weichert, R.F.; Rodrigues, D.B.; Da Costa, L.T.; Melo, J.O.F. Árvores Do Cerrado: Importância Econômica e Social Na Educação Ambiental; Editora Cientifica Digital: Guarujá, SP, Brazil, 2023; ISBN 9786553602205. [Google Scholar]
- Ramos, A.L.C.C.; Minighin, E.C.; Soares, I.I.C.; Ferreira, R.M.d.S.B.; de Sousa, I.M.N.; Augusti, R.; Labanca, R.A.; de Araújo, R.L.B.; Melo, J.O.F. Evaluation of the Total Phenolic Content, Antioxidative Capacity, and Chemical Fingerprint of Annona crassiflora Mart. Bioaccessible Molecules. Food Res. Int. 2023, 165, 9. [Google Scholar] [CrossRef]
- Schiassi, M.C.E.V.; de Souza, V.R.; Lago, A.M.T.; Campos, L.G.; Queiroz, F. Fruits from the Brazilian Cerrado Region: Physico-Chemical Characterization, Bioactive Compounds, Antioxidant Activities, and Sensory Evaluation. Food Chem. 2018, 245, 305–311. [Google Scholar] [CrossRef]
- Lima, D.S.; Egea, M.B.; Cabassa, I.d.C.C.; de Almeida, A.B.; de Sousa, T.L.; de Lima, T.M.; Loss, R.A.; Volp, A.C.P.; de Vasconcelos, L.G.; Dall’oglio, E.L.; et al. Technological Quality and Sensory Acceptability of Nutritive Bars Produced with Brazil Nut and Baru Almond Coproducts. LWT 2021, 137, 110467. [Google Scholar] [CrossRef]
- Ferreira, R.R.; Bezerra, L.R.; Marques, C.A.T.; Da Costa Torreão, J.N.; Edvan, R.L.; Araújo, M.J.; Amorim, D.S.; De Santana, H.A. Fermentation Characteristics and Nutritional Quality of Elephant Grass Silage Added the Buriti Fruit Peel. Semin. Agrar. 2017, 38, 931–942. [Google Scholar] [CrossRef]
- Sano, S.; Brito, M.; Ribeiro, J. Dipteryx alata Baru. In Espécies Nativas da Flora Brasileira de Valor Econômico Atual ou Potencial: Plantas para o Futuro-Região Centro-Oeste; MMA: Brasília, DF, Brazil, 2009; pp. 541–552. [Google Scholar]
- Antunes, G.G.B.; Pereira, T.N.A.; Santos, J.R.C.; Vargas, M.d.R. Desenvolvimento e Caracterização Físico-Química de Macarrão Com Substituição Parcial Da Farinha de Trigo Por Farinha de Polpa de Baru. Res. Soc. Dev. 2021, 10, e393101321349. [Google Scholar] [CrossRef]
- Silva, D.V.; de Oliveira, D.E.; Resende, O.; da Silva, M.A.; Barcelos, K.R. Nutritional Quality of the Epicarp and Mesocarp Flours of Baru Fruits Submitted to Drying Qualidade Nutricional Das Farinhas Do Epicarpo e Mesocarpo de Frutos Baru Submetidos a Secagem. Revista Brasileira de Engenharia Agrícola e Ambiental 2019, 23, 65–70. [Google Scholar] [CrossRef]
- Silva-Luis, C.C.; Alves, J.L.d.B.; de Oliveira, J.C.P.L.; Luis, J.A.d.S.; Araújo, I.G.A.; Tavares, J.F.; Nascimento, Y.M.D.; Bezerra, L.S.; Azevedo, F.d.L.A.A.d.; Sobral, M.V.; et al. Effects of Baru Almond Oil (Dipteryx alata Vog.) Treatment on Thrombotic Processes, Platelet Aggregation, and Vascular Function in Aorta Arteries. Nutrients 2022, 14, 2098. [Google Scholar] [CrossRef] [PubMed]
- Lima, D.C.; Alves, M.d.R.; Noguera, N.H.; Nascimento, R.d.P.D. A Review on Brazilian Baru Plant (Dipteryx alata Vogel): Morphology, Chemical Composition, Health Effects, and Technological Potential. Future Foods 2022, 5, 100146. [Google Scholar] [CrossRef]
- Alves-Santos, A.M.; Fernandes, D.C.; Naves, M.M.V. Baru (Dipteryx alata Vog.) Fruit as an Option of Nut and Pulp with Advantageous Nutritional and Functional Properties: A Comprehensive Review. NFS J. 2021, 24, 26–36. [Google Scholar] [CrossRef]
- Campidelli, M.L.L.; de Paula Naves, M.; de Andrade, G.K.; de Deus de Souza Carneiro, J.; Magalhães, M.L.; de Souza, E.C.; Coli, P.C.; Lee, D.N.; de Barros Vilas Boas, E.V. Estudo Das Propriedades Nutricionais, Sensoriais e Microbiológicas de Pastas Alimentícias Elaboradas Com Amêndoa de Baru (Dipteryx alata Vog.). Res. Soc. Dev. 2020, 8, 147–154. [Google Scholar]
- Sampaio, M.B.; Carrazza, L.R. Manual Tecnológico de Aproveitamento Integral Do Fruto e Da Folha Do Buriti (Mauritia Flexuosa); Instituto Sociedade, População e Natureza (ISPN): Brasília, DF, Brazil, 2012. [Google Scholar]
- Campidelli, M.L.L.; Carneiro, J.d.D.d.S.; de Souza, E.C.; Boas, E.V.d.B.V.; Bertolucci, S.K.V.; Aazza, S.; de Oliveira, R.R.; Chalfun-Junior, A.; dos Reis, G.L.; Seixas, J.N.; et al. Baru Almonds (Dipteryx alata Vog.) and Baru Almond Paste Promote Metabolic Modulation Associated with Antioxidant, Anti-Inflammatory, and Neuroprotective Effects. Innov. Food Sci. Emerg. Technol. 2022, 80, 103068. [Google Scholar] [CrossRef]
- Oliveira-Alves, S.C.; Pereira, R.S.; Pereira, A.B.; Ferreira, A.; Mecha, E.; Silva, A.B.; Serra, A.T.; Bronze, M.R. Identification of Functional Compounds in Baru (Dipteryx alata Vog.) Nuts: Nutritional Value, Volatile and Phenolic Composition, Antioxidant Activity and Antiproliferative Effect. Food Res. Int. 2020, 131, 109026. [Google Scholar] [CrossRef]
- Gonçalves, T.d.O.; Filbido, G.S.; Pinheiro, A.P.d.O.; Piereti, P.D.P.; Villa, R.D.; de Oliveira, A.P. In Vitro Bioaccessibility of the Cu, Fe, Mn and Zn in the Baru Almond and Bocaiúva Pulp and, Macronutrients Characterization. J. Food Compos. Anal. 2020, 86, 103356. [Google Scholar] [CrossRef]
- Aracava, K.K.; Capellini, M.C.; Gonçalves, D.; Soares, I.D.; Margoto, C.M.; Rodrigues, C.E.C. Valorization of the Baru (Dipteryx alata Vog.) Processing Chain: Technological Properties of Defatted Nut Flour and Oil Solubility in Ethanol and Isopropanol. Food Chem. 2022, 383, 132587. [Google Scholar] [CrossRef]
- Borges, L.A.; Souto, R.N.B.; Nascimento, A.L.A.; Lima, J.P.; Soares, J.F.; Paiva, C.L.; Brandi, I.V. Chemical Characterization of Baru Oil and Its By-Product from the Northwest Region of Minas Gerais, Brazil. Grasas y Aceites 2022, 73, e460. [Google Scholar] [CrossRef]
- Campidelli, M.L.L.; Souza Carneiro, J.D.; Souza, E.C.; Magalhães, M.L.; dos Reis, G.L.; Vilas Boas, E.V.B. Fatty Acid Profile, Mineral Content and Bioactive Compounds of Cocoa Spreads Supplemented with Baru Almonds (Dipteryx alata Vog.). Grasas y Aceites 2020, 71, 382. [Google Scholar] [CrossRef]
- Rambo, M.K.D.; Nemet, Y.K.S.; Júnior, C.C.S.; Pedroza, M.M.; Rambo, M.C.D. Comparative Study of the Products from the Pyrolysis of Raw and Hydrolyzed Baru Wastes. Biomass Convers. Biorefin. 2021, 11, 1943–1953. [Google Scholar] [CrossRef]
- Ferreira, T.H.B.; Florizo, G.K.M.; Argondoña, E.J.S. Shelf Life of Cookies Made from Baru (Dipteryx alata Vog.) Pulp under Different Storage Conditions. J. Food Process. Preserv. 2020, 44, 14702. [Google Scholar] [CrossRef]
- Correia, V.T.d.V.; Silva, V.D.M.; Mendonça, H.d.O.P.; Ramos, A.L.C.C.; Silva, M.R.; Augusti, R.; de Paula, A.C.C.F.F.; Ferreira, R.M.d.S.B.; Melo, J.O.F.; Fante, C.A. Efficiency of Different Solvents in the Extraction of Bioactive Compounds from Plinia Cauliflora and Syzygium Cumini Fruits as Evaluated by Paper Spray Mass Spectrometry. Molecules 2023, 28, 2359. [Google Scholar] [CrossRef]
- Bartella, L.; Di Donna, L.; Napoli, A.; Siciliano, C.; Sindona, G.; Mazzotti, F. A Rapid Method for the Assay of Methylxanthines Alkaloids: Theobromine, Theophylline and Caffeine, in Cocoa Products and Drugs by Paper Spray Tandem Mass Spectrometry. Food Chem. 2019, 278, 261–266. [Google Scholar] [CrossRef]
- Barboza, N.L.; Cruz, J.M.d.A.; Corrêa, R.F.; Lamarão, C.V.; Lima, A.R.; Inada, N.M.; Sanches, E.A.; Bezerra, J.d.A.; Campelo, P.H. Buriti (Mauritia Flexuosa L. f.): An Amazonian Fruit with Potential Health Benefits. Food Res. Int. 2022, 159, 111654. [Google Scholar] [CrossRef]
- Santos, B.O.; Tanigaki, M.; Silva, M.R.; Ramos, A.L.C.C.; Labanca, R.A.; Augusti, R.; Melo, J.O.F.; Takahashi, J.A.; de Araújo, R.L.B. Development and Chemical Characterization of Pequi Pericarp Flour (Caryocar Brasiliense Camb.) and Effect of in Vitro Digestibility on the Bioaccessibility of Phenolic Compounds. J. Braz. Chem. Soc. 2022, 33, 1058–1068. [Google Scholar] [CrossRef]
- Ramos, A.L.C.C.; Silva, M.R.; Mendonça, H.d.O.P.; Mazzinghy, A.C.D.C.; Silva, V.D.M.; Botelho, B.G.; Augusti, R.; Ferreira, R.M.d.S.B.; de Sousa, I.M.N.; Batista-Santos, P.; et al. Use of Pulp, Peel, and Seed of Annona crassiflora Mart. in Elaborating Extracts for Fingerprint Analysis Using Paper Spray Mass Spectrometry. Food Res. Int. 2022, 160, 111687. [Google Scholar] [CrossRef]
- Leite, N.R.; de Araújo, L.C.A.; Rocha, P.d.S.d.; Agarrayua, D.A.; Ávila, D.S.; Carollo, C.A.; Silva, D.B.; Estevinho, L.M.; Souza, K.d.P.; dos Santos, E.L. Baru Pulp (Dipteryx alata Vogel): Fruit from the Brazilian Savanna Protects against Oxidative Stress and Increases the Life Expectancy of Caenorhabditis elegans via Sod-3 and Daf-16. Biomolecules 2020, 10, 1106. [Google Scholar] [CrossRef]
- Cavalcanti, C.P.L.; e Macedo, T.J.S.; Gois, G.C.; Menezes, V.G.; Monte, A.P.O.D.; da Silva, A.D.; da Silva, D.J.M.; da Silva, E.O.; de Araújo, G.G.L.; Rodrigues, R.T.d.S.; et al. Licuri Oil Improves Feedlot Performance and Modifies Ruminal Fauna of Santa Inês Ewes. Livest. Sci. 2022, 265, 105093. [Google Scholar] [CrossRef]
- Monteiro, G.d.M.; Carvalho, E.E.N.; Boas, E.V.B.V. Baru (Dipteryx alata Vog.): Fruit or Almond? A Review on Applicability in Food Science and Technology. Food Chem. Adv. 2022, 1, 100103. [Google Scholar] [CrossRef]
- Paulo, L.; Fernandes, R.; Gandra, K.; Minim, V.; Minim, L.; Grimaldi, R.; Vidigal, M. Baru Seed Extracted Oil (Dipteryx alata Vog.): Chemical Composition and Thermal and Oxidative Stability. J. Braz. Chem. Soc. 2022, 34, 664–672. [Google Scholar] [CrossRef]
- Nemet, Y.K.d.S.; Rambo, M.K.D.; Nemet, F.E.; Gregório, S.R. Obtenção de Biocarvões Ativados a Partir de Biomassa de Baru (Dipteryx alata Vog) e Sua Aplicação Como Adsorventes. DESAFIOS-Revista Interdisciplinar da Universidade Federal do Tocantins 2021, 8, 130–136. [Google Scholar] [CrossRef]
- Stander, M.A.; Redelinghuys, H.; Masike, K.; Long, H.; Van Wyk, B.E. Patterns of Variation and Chemosystematic Significance of Phenolic Compounds in the Genus Cyclopia (Fabaceae, Podalyrieae). Molecules 2019, 24, 2352. [Google Scholar] [CrossRef] [PubMed]
- Abu-Reidah, I.M.; Arráez-Román, D.; Warad, I.; Fernández-Gutiérrez, A.; Segura-Carretero, A. UHPLC/MS2-Based Approach for the Comprehensive Metabolite Profiling of Bean (Vicia faba L.) by-Products: A Promising Source of Bioactive Constituents. Food Res. Int. 2017, 93, 87–96. [Google Scholar] [CrossRef]
- Abu-Reidah, I.M.; del Mar Contreras, M.; Arraez-Roman, D.; Fernández-Gutiérrez, A.; Segura-Carretero, A. UHPLC-ESI-QTOF-MS-Based Metabolic Profiling of Vicia faba L. (Fabaceae) Seeds as a Key Strategy for Characterization in Foodomics. Electrophoresis 2014, 35, 1571–1581. [Google Scholar] [CrossRef] [PubMed]
- Salah, E.M.; Ibrahim, R.R.; Gonaid, M.H.; Soliman, H.S.M. Chemical and Pharmacological Evaluation of the Non-Flowering Aerial Parts of Acacia Modesta Wall. Cultivated in Egypt. Future J. Pharm. Sci. 2020, 6, 122. [Google Scholar] [CrossRef]
- Ashraf, H.; Moussa, A.; Seleem, A.; Eldahshan, O.; Singab, A.-N. UPLC-ESI/MS/MS Profiling and Anti-Inflammatory Activity of Gleditsia Caspica. Arch. Pharm. Sci. Ain Shams Univ. 2020, 4, 124–134. [Google Scholar] [CrossRef]
- Beelders, T.; De Beer, D.; Stander, M.A.; Joubert, E. Comprehensive Phenolic Profiling of Cyclopia genistoides (L.) Vent. by LC-DAD-MS and -MS/MS Reveals Novel Xanthone and Benzophenone Constituents. Molecules 2014, 19, 11760–11790. [Google Scholar] [CrossRef]
- Salem, M.A.; Farid, M.M.; El-Shabrawy, M.; Mohammed, R.; Hussein, S.R.; Marzouk, M.M. Spectrometric Analysis, Chemical Constituents and Cytotoxic Evaluation of Astragalus sieberi DC. (Fabaceae). Sci. Afr. 2020, 7, e00221. [Google Scholar] [CrossRef]
- Kumar, S.; Sephuhle, N.; Bouic, P.J.; Rosenkranz, B. HPLC/LC-MS Guided Phytochemical and in Vitro Screening of Astragalus membranaceus (Fabaceae), and Prediction of Possible Interactions with CYP2B6. J. Herb. Med. 2018, 14, 35–47. [Google Scholar] [CrossRef]
- Sobeh, M.; ElHawary, E.; Peixoto, H.; Labib, R.M.; Handoussa, H.; Swilam, N.; El-Khatib, A.H.; Sharapov, F.; Mohamed, T.; Krstin, S.; et al. Identification of Phenolic Secondary Metabolites from Schotia brachypetala Sond. (Fabaceae) and Demonstration of Their Antioxidant Activities in Caenorhabditis elegans. PeerJ 2016, 2016, e2404. [Google Scholar] [CrossRef]
- Albrecht, C.F.; Stander, M.A.; Grobbelaar, M.C.; Colling, J.; Kossmann, J.; Hills, P.N.; Makunga, N.P. LC-MS-Based Metabolomics Assists with Quality Assessment and Traceability of Wild and Cultivated Plants of Sutherlandia frutescens (Fabaceae). S. Afr. J. Bot. 2012, 82, 33–45. [Google Scholar] [CrossRef]
- Rocha, E.d.F.L.D.; Cabral, I.B.; Sampaio, L.H.F.; Bento, L.B.P.; Ayres, F.M. Aplicabilidades Do Baru (Dipteryx alata Vogel) Na Saúde Humana: Revisão De Literatura. Revista EVS-Revista de Ciências Ambientais e Saúde 2022, 48, 8306. [Google Scholar] [CrossRef]
- Zhang, D.; Zhuang, Y.; Pan, J.; Wang, H.; Li, H.; Yu, Y.; Wang, D. Investigation of Effects and Mechanisms of Total Flavonoids of Astragalus and Calycosin on Human Erythroleukemia Cells. Oxid. Med. Cell. Longev. 2012, 2012, 209843. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, L.; Wang, J.; Ren, B.; Zhang, L.; Li, W. Formononetin, an Isoflavone from Astragalus membranaceus Inhibits Proliferation and Metastasis of Ovarian Cancer Cells. J. Ethnopharmacol. 2018, 221, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Correia, V.T.d.V.; da Silva, P.R.; Ribeiro, C.M.S.; Ramos, A.L.C.C.; Mazzinghy, A.C.D.C.; Silva, V.D.M.; Júnior, A.H.O.; Nunes, B.V.; Vieira, A.L.S.; Ribeiro, L.V.; et al. An Integrative Review on the Main Flavonoids Found in Some Species of the Myrtaceae Family: Phytochemical Characterization, Health Benefits and Development of Products. Plants 2022, 11, 2796. [Google Scholar] [CrossRef] [PubMed]
- Erlund, I. Review of the Flavonoids Quercetin, Hesperetin, and Naringenin. Dietary Sources, Bioactivities, Bioavailability, and Epidemiology. Nutr. Res. 2004, 24, 851–874. [Google Scholar] [CrossRef]
- Hounsome, N.; Hounsome, B.; Tomos, D.; Edwards-Jones, G. Plant Metabolites and Nutritional Quality of Vegetables. J. Food Sci. 2008, 73, 48–65. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nunes, B.V.; Silva, V.D.M.; Ramos, A.L.C.C.; Coelho, T.; Melo, A.C.d.; Ferreira, R.M.d.S.B.; Augusti, R.; Lucena, R.F.P.d.; Melo, J.O.F.; Araújo, R.L.B.d. Investigating the Chemical Profile of Underexplored Parts of Dipteryx alata (Baru) Using the PS–MS Technique. Plants 2024, 13, 1833. https://doi.org/10.3390/plants13131833
Nunes BV, Silva VDM, Ramos ALCC, Coelho T, Melo ACd, Ferreira RMdSB, Augusti R, Lucena RFPd, Melo JOF, Araújo RLBd. Investigating the Chemical Profile of Underexplored Parts of Dipteryx alata (Baru) Using the PS–MS Technique. Plants. 2024; 13(13):1833. https://doi.org/10.3390/plants13131833
Chicago/Turabian StyleNunes, Bruna Vieira, Viviane Dias Medeiros Silva, Ana Luiza Coeli Cruz Ramos, Talvane Coelho, Angelita Cristine de Melo, Ricardo Manuel de Seixas Boavida Ferreira, Rodinei Augusti, Reinaldo Farias Paiva de Lucena, Júlio Onésio Ferreira Melo, and Raquel Linhares Bello de Araújo. 2024. "Investigating the Chemical Profile of Underexplored Parts of Dipteryx alata (Baru) Using the PS–MS Technique" Plants 13, no. 13: 1833. https://doi.org/10.3390/plants13131833
APA StyleNunes, B. V., Silva, V. D. M., Ramos, A. L. C. C., Coelho, T., Melo, A. C. d., Ferreira, R. M. d. S. B., Augusti, R., Lucena, R. F. P. d., Melo, J. O. F., & Araújo, R. L. B. d. (2024). Investigating the Chemical Profile of Underexplored Parts of Dipteryx alata (Baru) Using the PS–MS Technique. Plants, 13(13), 1833. https://doi.org/10.3390/plants13131833