Chemical Composition of Volatile and Extractive Organic Compounds in the Inflorescence Litter of Five Species of Woody Plants
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals
2.2. Plant Material and Techniques for Field Experiments
2.3. VOC Determination
2.4. Determination of the Composition of Extractive Substances
2.5. Component Identification
3. Results and Discussion
3.1. VOC Composition
3.2. Composition of Extractive Compounds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Isidorov, V.A.; Zajtsev, A.A. Reviews and synthesis: VOC emission from soil cover in boreal and temperate natural ecosystems of the Northern Hemisphere. Bigeosciences 2022, 19, 4715–4746. [Google Scholar] [CrossRef]
- Isidorov, V.A. Organic Chemistry of the Earth’s Atmosphere; Springer: Berlin, Germany, 1990. [Google Scholar]
- Fehsenfeld, F.C.; Calvert, J.; Fall, R.; Goldan, P.; Guenther, A.B.; Hewitt, C.N.; Lamb, B.; Liu, S.; Trainer, M.; Westberg, H.; et al. Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry. Glob. Biogeochem. Cycl. 1992, 6, 398–420. [Google Scholar] [CrossRef]
- Guenther, A.; Hewitt, C.N.; Erickson, D.; Fall, R.; Geron, C.; Graedel, T.; Harley, P.; Klinger, L.; Lerdau, M.; McKay, W.A.; et al. A global model of natural volatile organic compounds emission. J. Geophys. Res. 1995, 100, 8873–8892. [Google Scholar] [CrossRef]
- Sindelarova, K.; Granier, C.; Bouarar, I.; Guenther, A.; Tilmes, S.; Stavrakou, T.; Müller, J.F.; Kuhn, U.; Stefani, P.; Knorr, W. Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years. Atmos. Chem. Phys. 2014, 1, 9317–9341. [Google Scholar] [CrossRef]
- Fall, R.; Karl, T.; Jordan, A.; Lindinger, W. Biogenic C5 VOCs: Release from leaves after freeze–thaw wounding and occurrence in air at a high mountain observatory. Atmos. Environ. 2001, 35, 3905–3916. [Google Scholar] [CrossRef]
- Isidorov, V.; Jdanova, M. Volatile organic compounds from leaves litter. Chemosphere 2002, 48, 975–979. [Google Scholar] [CrossRef]
- Isidorov, V.A.; Vinogorova, V.T.; Rafałowski, K. HS–SPME analysis of volatile organic compounds of coniferous needle litter. Atmos. Environ. 2003, 37, 4645–4650. [Google Scholar] [CrossRef]
- Isidorov, V.; Vinogorova, V.; Rafałowski, K. Gas chromatographic determination of extractable compounds composition and emission rate of volatile terpenes from larch needle litter. J. Atmos. Chem. 2005, 50, 263–278. [Google Scholar] [CrossRef]
- Isidorov, V.A.; Smolewska, M.; Purzyńska–Pugacewicz, A.; Tyszkiewicz, Z. Chemical composition of volatile and extractive compounds of pine and spruce litter in the initial stages of decomposition. Biogeosciences 2010, 7, 2785–2794. [Google Scholar] [CrossRef]
- Kesselmeier, J.; Hubert, A. Exchange of reduced volatile sulfur compounds between leaf litter and the atmosphere. Atmos. Environ. 2002, 36, 4679–4686. [Google Scholar] [CrossRef]
- Hellén, H.; Hakola, H.; Pystynen, K.-H.; Rinne, J.; Haapanala, S. C2–C10 hydrocarbon emissions from a boreal wetland and forest floor. Biogeosciences 2006, 3, 167–174. [Google Scholar] [CrossRef]
- Leff, J.W.; Fierer, N. Volatile organic compound (VOC) emissions from soil and litter samples. Soil. Biol. Biochem. 2008, 40, 1629–1636. [Google Scholar] [CrossRef]
- Gray, C.M.; Monson, R.K.; Fierer, N. Emission of volatile organic compounds during the decomposition of plant litter. J. Geophys. Res. 2010, 115, G03015. [Google Scholar] [CrossRef]
- Aaltonen, H.; Pumpanen, J.; Pihlatie, M.; Hakola, H.; Helén, H.; Kulmala, L.; Vesala, T.; Bäk, J. Boreal pine forest floor biogenic volatile organic compound emissions peak in early summer and autumn. Agricul. Forest Meteorol. 2021, 151, 682–691. [Google Scholar] [CrossRef]
- Greenberg, J.P.; Asensio, D.; Turnipseed, A.; Guenther, A.B.; Karl, T.; Gochin, D. Contribution of leaf and needle litter to whole ecosystem BVOC fluxes. Atmos. Environ. 2012, 59, 302–311. [Google Scholar] [CrossRef]
- Lindwall, F.; Faubert, P.; Rinnan, R. Diel variation of biogenic volatile organic compound emissions-field study in the sub, low and high arctic on the effect of temperature and light. PLoS ONE 2015, 10, e0123610. [Google Scholar] [CrossRef]
- Mäki, M.; Krasnov, D.; Hellen, H.; Noe, S.; Back, J. Stand type affects fluxes of volatile organic compounds from the forest floor in hemiboreal and boreal climates. Pant Soil 2019, 441, 363–381. [Google Scholar] [CrossRef]
- Mäki, M.; Aalto, J.; Hellèn, H.; Pihlatie, M.; Bäck, J. Interannual and seasonal dynamics of volatile organic compounds fluxes from the boreal forest floor. Front. Plant Sci. 2019, 10, 191. [Google Scholar] [CrossRef] [PubMed]
- Viros, J.; Fernandez, C.; Wortham, H.; Gavinet, J.; Lecareux, C.; Ormeño, E. Litter of mediterranean species as a source of volatile organic compounds. Atmos. Environ. 2020, 242, 117815. [Google Scholar] [CrossRef]
- Viros, J.; Santonja, M.; Temime-Roussel, B.; Wortham, H.; Fernandez, C.; Ormeño, E. Volatilome of Aleppo Pine litter over decomposition process. Ecol. Evol. 2021, 11, 6862–6880. [Google Scholar] [CrossRef]
- Drewer, J.; Leduning, M.M.; Purser, G.; Cash, J.M.; Sentian, J.; Skiba, U.M. Monoterpenes from tropical forest and oil palm plantation floor in Malaysian Borneo/Sabah: Emission and composition. Environ. Sci. Pollut. Res. 2021, 28, 31792–31802. [Google Scholar] [CrossRef] [PubMed]
- Curci, G.; Beekmann, M.; Vautard, R.; Smiatek, G.; Steinbrecher, R.; Theloke, J.; Friedrich, R. Modelling study of the impact of isoprene and terpene biogenic emissions on European ozone levels. Atmos. Environ. 2009, 43, 1444–1455. [Google Scholar] [CrossRef]
- Karl, M.; Guenther, A.; Köble, R.; Leip, A.; Seufert, G. A new European plant-specific emission inventory of biogenic volatile organic compounds for use in atmospheric transport models. Biogeosciences 2009, 6, 1059–1087. [Google Scholar] [CrossRef]
- Praplan, A.P.; Tykkä, T.; Schallhart, S.; Tarvainen, V.; Bäck, J.; Hellén, H. OH reactivity from the emissions of different tree species: Investigating the missing reactivity in a boreal forest. Biogeosciences 2020, 17, 4681–4705. [Google Scholar] [CrossRef]
- Hellén, H.; Praplan, A.P.; Tykkä, T.; Helin, A.; Schallhart, S.; Schiestl-Aalto, P.P.; Bäck, J.; Hakola, H. Sesquiterpenes and oxygenated sesquiterpenes dominate the VOC (C5-C20) emission of downy birches. Atmos. Chem. Phys. 2021, 21, 8045–8066. [Google Scholar] [CrossRef]
- David, J.F. The role of litter-feeding macroarthropods in decomposition process: A reappraisal common views. Soil Biol. Biochem. 2014, 76, 109–118. [Google Scholar] [CrossRef]
- Frouz, J.; Roubíčková, A.; Hedĕnec, P.; Tajovský, K. Do soil fauna really hasten litter decomposition? A meta-analysis of enclosure studies. Eur. J. Soil Biol. 2015, 68, 18–24. [Google Scholar] [CrossRef]
- Hassall, M.; Turner, J.G.; Rands, M.R.W. Effects of terrestrial isopods on the decomposition of woodland leaf litter. Oecologia 1987, 72, 597–604. [Google Scholar] [CrossRef]
- Kozlov, M.V.; Zverev, V.; Zvereva, E.L. Shelters of leaf-tying herbivores decompose faster than leaves damaged by free-living insects: Implications for nutrient turnover in polluted habitats. Sci. Tot. Environ. 2016, 568, 946–951. [Google Scholar] [CrossRef]
- Lukowski, A.; Giertych, M.J.; Zmuda, M.; Maderek, E.; Adamczyk, D.; Karolewski, P. Decomposition of herbivore-damaged leaves of understory species growing in oak and pine stands. Forests 2021, 12, 304. [Google Scholar] [CrossRef]
- Fuentes, J.D.; Wang, D. On the seasonality of isoprene emissions from a mixed temperate forest. Ecol. Appl. 1999, 9, 1118–1131. [Google Scholar] [CrossRef]
- Helmig, D.; Daly, R.W.; Milford, J.; Guenther, A. Seasonal trends of biogenic terpene emissions. Chemosphere 2013, 93, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Karl, T.; Guenther, A.; Spirig, C.; Hansel, A.; Fall, R. Seasonal variation of biogenic VOC emissions above a mixed hardwood forest in northern Michigan. Geophys. Res. Lett. 2003, 30, 2–5. [Google Scholar] [CrossRef]
- Portillo-Estrada, M.; Ariza-Carricondo, C.; Ceulemans, R. Outburst of senescence-related VOC emissions from a bioenergy poplar plantation. Plant Physiol. Biochem. 2020, 148, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Vermeuel, M.P.; Novak, G.A.; Kilgour, D.B.; Claflin, M.S.; Lerner, B.M.; Trowbridge, A.M.; Thom, J.; Cleary, P.A.; Desai, A.R.; Bertram, T.H. Observations of biogenic volatile organic compounds over a mixed temperate forest during the summer to autumn transition. Atmos. Chem. Phys. 2023, 23, 4123–4148. [Google Scholar] [CrossRef]
- Farré-Armengol, G.; Fernándes-Martínez, M.; Filella, I.; Junker, R.R.; Penuelas, J. Deciphering the biotic and climatic factors that influence floral scents: A systematic review of floral volatile emissions. Front. Plant Sci. 2020, 11, 1154. [Google Scholar] [CrossRef]
- Isidorov, V.A.; Bakier, S.; Grzech, I. Gas chromatographic–mass spectrometric investigation of volatile and extractable compounds of crude royal jelly. J. Chromatogr. B 2012, 885, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Isidorov, V.A.; Bagan, R.; Szczepaniak, L.; Swiecicka, I. Chemical profile and antimicrobial activity of extractable compounds of Betula litwinowii (Betulaceae) buds. Open Chem. 2015, 13, 125–137. [Google Scholar] [CrossRef]
- Adams, R.A. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Tkachev, A.V. Investigation of Plant’s Volatile Compounds; Ofset Publ.: Novosibirsk, Russia, 2008. [Google Scholar]
- Isidorov, V.A. GC-MS of Biologically and Environmentally Significant Organic Compounds/TMS Derivatives; Wiley & Sons Ltd.: Hoboken, NJ, USA, 2020. [Google Scholar]
- Pflander, H.; Stoll, H. Terpenoid glycosides. Nat. Prod. Rep. 1991, 8, 69–95. [Google Scholar] [CrossRef]
- Rivas, F.; Parra, A.; Martinez, A.; Garcia-Granadas, A. Enzymatic glycosydation of terpenoids. Phytochem. Rev. 2013, 12, 327–339. [Google Scholar] [CrossRef]
- Sunesson, A.L.; Vaes, W.H.J.; Nilsson, C.A.; Blomquist, G.; Andersson, B.; Carlson, R. Identification of volatile metabolites from five fungal species cultivated on two media. Appl. Environ. Microbiol. 1995, 61, 2911–2918. [Google Scholar] [CrossRef] [PubMed]
- Stahl, P.D.; Parkin, T.B. Microbial production of volatile organic compounds in soil microcosm. Soil Sci. Soc. Am. J. 1996, 60, 821–828. [Google Scholar] [CrossRef]
- Nilsson, T.; Larsen, T.O.; Montanerella, L.; Madsen, J.Ø. Application of head-space solid-phase microextraction for the analysis of volatile metabolites emitted by Penicillium species. J. Microbiol. Met. 1996, 25, 245–255. [Google Scholar] [CrossRef]
- Atkinson, R.; Arey, J. Gas-phase tropospheric chemistry of biogenic volatile organic compounds: A review. Atmos Environ. 2003, 31, 197–219. [Google Scholar] [CrossRef]
- De Marco, A.; Proietti, C.; Anav, A.; Ciancarella, L.; D’Elia, I.; Fares, S.; Fornasier, M.F.; Fusaro, L.; Gualtieri, M.; Manes, F.; et al. Impacts of air pollution on human and ecosystem health, and implications for the National Emission Ceilings Directive: Insights from Italy. Environ. Intern. 2019, 125, 320–333. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Gordon, H.; Yu, H.; Lehtipalo, K.; Haley, R.; Li, Y.; Zhang, R. New particle formation in the atmosphere: From molecular clusters to global climate. J. Geophys. Res. Atmos. 2019, 124, 7098–7146. [Google Scholar] [CrossRef]
- Kim, M.J.; Park, R.J.; Ho, C.-H.; Choi, K.-C.; Song, C.-K.; Lee, J.-B. Future ozone and oxidants change under RCP scenarios. Atmos. Environ. 2015, 101, 103–115. [Google Scholar] [CrossRef]
Compound | RIcalc | 1 | 2 | 3 | 4 | 5 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
A | B | A | B | A | B | A | B | A | B | ||
Tricyclene | 919 | - * | - | 0.23 | 0.58 | - | - | - | - | - | - |
3-Thujene | 925 | - | - | trace ** | 0.30 | 2.17 | - | - | 0.39 | - | - |
α-Pinene | 936 | 1.10 | 0.06 | 6.81 | 0.51 | 2.82 | 0.19 | 4.42 | 1.31 | trace | 0.44 |
Camphene | 949 | - | - | 0.72 | 0.52 | trace | - | trace | 0.24 | - | 0.35 |
Sabinene | 973 | - | 0.299 | 0.36 | trace | 10.97 | trace | - | trace | - | 0.09 |
β-Pinene | 976 | trace | 0.28 | 0.50 | 0.29 | 0.72 | trace | 2.58 | 0.80 | - | 0.12 |
Myrcene | 991 | - | - | - | - | 2.37 | - | 0.81 | 1.61 | 2.22 | trace |
α-Phellandrene | 1005 | - | - | - | 0.28 | - | - | - | 20.04 | - | 15.37 |
3-Carene | 1011 | 1.50 | 0.16 | 1.88 | 4.26 | 0.77 | 0.68 | trace | 8.88 | 0.55 | 0.54 |
α-Terpinene | 1017 | - | - | - | - | 0.69 | - | - | - | trace | - |
Limonene | 1030 | 2.19 | 0.51 | 0.48 | 2.26 | 1.17 | 0.996 | 2.41 | 8.73 | 0.26 | 6.74 |
(E)-β-Ocimene | 1050 | - | 0.59 | 0.56 | - | 5.49 | - | - | - | 3.90 | - |
γ-Terpinene | 1059 | - | - | - | - | 1.19 | 0.02 | - | - | 3.90 | - |
Terpinolene | 1085 | - | - | - | - | 0.50 | - | - | - | - | 0.38 |
Linalool | 1101 | - | 0.59 | - | - | - | - | - | - | 1.69 | - |
keto-Pyranolinalool oxide | 1107 | 0.40 | - | - | - | - | 2.72 | - | - | - | - |
(E)-Pinocarveol | 1137 | 1.02 | 1.64 | - | - | - | - | 6.55 | - | - | - |
(E)-Verbenol | 1142 | - | - | - | - | - | - | 9.31 | - | - | - |
Camphor | 1144 | - | - | - | - | - | - | - | 0.35 | - | 0.62 |
Borneol | 1162 | - | - | - | - | - | - | 1.55 | - | - | - |
4-Terpineol | 1173 | - | - | - | - | - | - | 2.00 | - | trace | - |
α-Terpineol | 1191 | - | - | - | - | - | - | 4.32 | - | - | - |
(E)-Carveol | 1217 | - | - | - | - | - | - | 1.16 | - | - | - |
Citronellol | 1231 | - | - | - | - | - | - | - | - | 0.65 | - |
Myrtanol | 1259 | 1.30 | 1.27 | - | - | - | - | - | - | - | - |
Bornyl acetate | 1285 | 0.29 | 0.20 | trace | 0.18 | - | trace | 8.18 | - | trace | 0.10 |
α-Terpenyl acetate | 1354 | - | - | - | - | - | - | - | 2.95 | - | - |
Monoterpene compounds | 18.34 | 10.50 | 11.87 | 10.43 | 31.87 | 16.38 | 62.88 | 35.19 | 11.71 | 26.73 | |
Unknown sesquiterpene 1 | 1298 | 1.30 | - | - | - | - | 1.05 | - | - | - | - |
Unknown sesquiterpene 2 | 1307 | 2.57 | - | - | 0.11 | - | 3.03 | - | trace | - | - |
Unknown sesquiterpene 3 | 1318 | 0.68 | - | - | - | - | 0.29 | - | - | - | - |
Unknown sesquiterpene 6 | 1345 | - | - | - | 0.38 | - | 1.54 | - | - | - | 0.15 |
α-Cubebene | 1350 | - | 9.91 | 0.18 | 1.00 | - | - | - | - | - | - |
Longicyclene | 1367 | - | - | - | 0.69 | - | 0.73 | - | - | - | - |
α-Ylangene | 1372 | 0.65 | 2.82 | trace | 0.48 | - | 4.87 | 1.20 | 4.38 | trace | 0.38 |
α-Copaene | 1376 | 1.51 | 6.44 | 0.80 | 2.48 | trace | 11.18 | 1.14 | 8.99 | 0.88 | 1.10 |
β-Bourbonene | 1388 | 0.44 | 0.93 | 0.45 | 2.10 | - | 1.18 | - | 0.27 | 0.57 | trace |
Longifolene | 1402 | - | - | - | 1.02 | - | - | 10.43 | 6.27 | - | - |
β-Caryophyllene | 1417 | 0.28 | 0.63 | 0.87 | 2.77 | 1.04 | 2.34 | trace | 0.72 | 0.46 | 0.11 |
Guaia-6,9-diene | 1441 | 0.74 | 3.10 | - | 0.57 | - | 5.99 | - | 0.55 | 0.05 | 0.30 |
Aromadendrene | 1443 | 0.37 | - | 0.35 | 0.72 | - | 1.40 | - | 1.44 | - | - |
9-epi-β-Caryophyllene | 1458 | - | - | - | - | - | - | 0.26 | 2.69 | - | 0.10 |
Alloaromadendrene | 1463 | - | 1.16 | - | 0.90 | - | 1.86 | - | 2.05 | - | - |
γ-Muurolene | 1472 | - | 0.62 | 0.23 | 1.40 | - | 1.69 | - | 1.00 | - | - |
α-Amorphene | 1479 | - | 0.33 | - | - | - | 0.50 | 1.55 | 0.43 | - | - |
(E,E)-α-Farnesene | 1511 | - | 1.53 | 1.20 | - | 21.67 | - | - | - | 10.44 | - |
γ-Cadinene | 1516 | - | 0.36 | 0.43 | 1.82 | - | 0.79 | - | 0.70 | - | - |
δ-Cadinene | 1524 | - | 0.41 | 0.37 | 2.37 | trace | 1.20 | - | 1.11 | - | - |
Caryophyllene oxide | 1581 | - | 0.14 | - | - | - | - | 5.04 | - | - | - |
Sesquiterpene compounds | 14.71 | 22.52 | 5.99 | 28.92 | 26.88 | 52.86 | 28.62 | 35.28 | 13.00 | 2.26 | |
Toluene | 763 | 16.28 | 0.63 | 5.63 | 6.47 | 3.36 | 11.80 | - | 5.57 | 0.28 | 33.93 |
Styrene | 890 | - | 1.04 | 15.36 | 24.81 | - | 1.27 | - | - | 7.38 | 0.19 |
Benzaldehyde | 959 | - | 1.67 | 0.68 | - | - | - | - | - | 0.51 | trace |
Mesitylene | 993 | - | - | - | 1.93 | - | - | - | - | 4.45 | 0.69 |
p-Cymene | 1023 | 0.19 | 0.33 | 0.37 | 2.98 | 0.97 | 0.94 | 1.47 | 3.91 | 0.02 | 4.55 |
Benzyl alcohol | 1035 | trace | 1.20 | 4.49 | - | - | - | - | - | 8.04 | - |
Salicyl aldehyde | 1042 | - | - | 1.04 | - | - | - | trace | - | 1.12 | - |
2-Methyxyphenol | 1090 | - | - | - | - | - | - | - | - | 0.51 | - |
2-Phenyl ethanol | 1114 | 0.33 | 1.52 | 0.27 | - | trace | - | - | - | 3.77 | - |
p-Cymen-8-ol | 1183 | - | - | - | - | - | - | - | 1.56 | - | - |
Benzyl tiglate | 1499 | - | - | - | - | - | - | - | - | 1.27 | - |
Aromatic compounds | 17.52 | 7.01 | 27.85 | 46.73 | 4.23 | 14.68 | 3.02 | 9.48 | 29.24 | 40.92 | |
Methanol | - | - | - | 3.21 | - | - | - | - | - | - | - |
Ethanol | - | - | - | - | - | - | - | 1.15 | trace | - | - |
1-Butanol | 663 | - | - | - | - | 1.80 | - | - | - | - | - |
3-Methylbutanol | 725 | - | 0.15 | - | - | - | 0.66 | - | - | 0.16 | - |
2-Methylbutanol | 732 | - | - | 6.06 | - | - | - | - | - | 0.64 | - |
(Z)-3-Hexen-1-ol | 854 | - | - | 0.35 | - | 1.00 | - | - | - | 0.37 | - |
1-Hexanol | 867 | 0.25 | 0.45 | 0.73 | - | 0.61 | - | - | - | 0.43 | 0.11 |
2-Heptanol | 904 | - | - | - | - | 0.31 | - | - | - | 0.86 | - |
1-Heptanol | 971 | - | - | - | - | - | - | - | - | 1.47 | - |
3-Ethyl-4-methylpentan-1-ol | 1024 | - | - | - | - | - | - | - | - | 0.76 | - |
3-Methyloctan-2-ol? *** | 1068 | - | - | - | - | - | - | - | - | 1.87 | - |
1-Octanol | 1071 | trace | 2.39 | - | - | 2.27 | - | - | - | 2.21 | - |
1-Nonanol | 1174 | - | 0.55 | - | - | - | - | - | - | 2.90 | - |
Aliphatic alcohols | 18.15 | 4.98 | 14.81 | 0.51 | 6.13 | 1.02 | 1.15 | 4.51 | 8.01 | 0.11 | |
Acetone | - | - | 1.37 | 0.93 | - | - | - | 3.93 | 0.52 | 0.01 | - |
2-Butanone | 600 | - | - | - | - | - | - | - | - | 1.03 | - |
3-Pentanone | 701 | - | - | 2.21 | - | 0.73 | - | - | - | trace | - |
Hexanal | 801 | trace | 2.93 | trace | - | - | - | - | 0.59 | - | 0.80 |
(2E)-Hexenal (leaf aldehyde) | 852 | - | 2.62 | - | - | 0.26 | - | - | - | 0.23 | - |
Heptanal | 903 | trace | 0.63 | - | - | - | - | - | - | - | 0.13 |
3-Octanone | 989 | 4.80 | - | - | - | - | - | - | 3.96 | - | 0.23 |
Octanal | 1002 | - | 1.99 | - | - | - | - | - | - | - | - |
(E,E)-3,5-Octadien-2-one | 1072 | - | - | - | - | - | - | - | - | - | 0.64 |
Nonanal | 1106 | 1.26 | 9.34 | 0.57 | 0.34 | trace | 0.02 | trace | 0.57 | 4.33 | 1.28 |
Decanal | 1206 | 0.22 | 1.27 | trace | 0.11 | - | - | - | - | 0.51 | 0.25 |
(E)-2-Decenal | 1262 | - | 0.82 | - | - | - | - | - | - | trace | - |
Aliphatic carbonyls | 6.28 | 39.30 | 6.67 | 0.11 | 3.80 | - | 3.3 | 6.12 | 6.49 | 3.48 | |
Formic acid | - | - | 0.33 | - | 1.54 | - | - | - | - | 0.01 | - |
Acetic acid | 661 | 0.37 | 1.89 | 4.00 | 1.71 | 2.37 | 1.58 | trace | 2.47 | 0.51 | trace |
Aliphatic acids | 0.37 | 2.60 | 4.25 | 3.25 | 2.37 | 2.97 | 1.91 | 2.47 | 0.52 | trace | |
3-Methylbutyl isopentoate | 1107 | - | - | - | - | - | - | - | - | 1.00 | trace |
2-Methylbutyl isopentanoate | 1110 | - | - | - | - | - | - | - | - | 1.47 | - |
(2Z)-2-Pentenyl pentanoate | 1152 | - | - | - | - | - | - | - | - | 0.81 | - |
Isopentyl tiglate | 1196 | - | - | - | - | - | - | - | - | 4.68 | - |
(Z)-3-Hexenyl pentanoate | 1234 | - | - | - | - | - | - | - | - | 2.53 | - |
Hexyl 2-methylbutanoate | 1238 | - | - | - | - | - | - | - | - | 1.57 | 0.12 |
Prenyl tyglate | 1245 | - | - | - | - | - | - | - | - | 2.02 | trace |
(Z)-3-Hexenyl (E)-2-methyl-but-2-enoate | 1326 | - | - | - | - | - | - | - | - | 1.57 | - |
Hexyl tiglate | 1332 | - | - | - | - | - | - | - | - | 0.50 | - |
Aliphatic esters | 0.64 | - | 0.49 | - | - | - | - | - | 17.64 | 0.12 | |
2-Methylfuran | 606 | 0.06 | - | - | - | - | trace | 1.56 | 0.45 | - | - |
3-Methylfuran | 613 | 0.59 | - | 2.11 | - | 2.37 | 0.10 | trace | 0.75 | - | 7.71 |
2-Ethylfuran | 705 | - | 0.53 | trace | trace | - | - | trace | - | - | 4.00 |
(E)-2-(2-Pentenyl)furan | 1004 | - | - | - | - | - | - | - | - | 0.41 | - |
Furans | 3.51 | 1.93 | 5.09 | trace | 2.37 | 0.11 | 1.56 | 1.20 | 0.41 | 11.71 | |
Isobutyl nitrile | 623 | - | - | - | - | 1.91 | - | - | - | - | - |
2-Methylbutyl nitrile | 721 | - | 0.31 | - | 3.09 | - | - | - | - | - | |
3-Methylbutyl nitrile | 729 | - | - | 2.44 | - | 1.70 | - | - | - | - | - |
N-Containing compounds | - | 0.07 | 2.75 | trace | 6.70 | - | - | - | - | - | |
Dimethyldisulphide | 742 | - | 0.25 | 1.01 | trace | - | trace | - | 0.17 | 0.32 | 0.15 |
Dimethyltrisulphide | 966 | - | 0.20 | 0.31 | - | - | - | - | - | - | - |
S-Containing compounds | - | 0.45 | 1.32 | trace | - | trace | - | 0.17 | 0.32 | 0.15 | |
(E,Z)-2,4-Hexadiene | 635 | - | - | - | - | - | - | - | - | - | 8.85 |
1-Octene | 795 | 0.88 | 0.14 | 0.42 | - | trace | 0.48 | - | trace | - | - |
1,3-Octadiene | 822 | 1.03 | - | - | 0.38 | - | - | - | 0.37 | - | - |
1-Undecene | 1091 | 5.18 | 0.46 | 0.25 | 1.81 | 0.24 | 5.85 | trace | trace | 0.90 | - |
n-Tridecane | 1300 | 1.89 | 0.62 | 0.33 | - | - | trace | - | 0.40 | 0.43 | - |
Alkane and alkene | 20.81 | 6.26 | 18.13 | 5.54 | 14.79 | 8.88 | 1.20 | 1.99 | 2.19 | 9.92 | |
Diethyl ether | - | 0.28 | - | - | 0.60 | 1.20 | - | - | - | - | - |
3,7,7-Trimethyl-1,3,5-cyclo-pentetriene | 967 | - | - | - | 2.35 | - | - | - | - | - | - |
1,3,3-Trimethyl-2-oxabicyc-lo [2.2.2]octan-6-one | 1214 | - | - | - | - | - | 1.83 | - | - | - | - |
Diterpene C20H32 | 1946 | - | 1.37 | - | - | - | - | - | - | - | - |
Other compounds | 0.28 | 1.37 | - | 2.95 | 1.20 | 1.83 | - | - | - | - | |
NN | 1.34 | 0.88 | 2.95 | 2.54 | 0.44 | 3.81 | 1.07 | 3.12 | 2.02 | 2.70 | |
Peak number | 74 | 119 | 84 | 92 | 58 | 86 | 51 | 63 | 85 | 66 |
Compound (TMS Derivative) | RIcalc | Relative Composition (% of TIC) | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
Amino acids | 0.61 | 7.41 | 2.95 | - * | 15.21 | |
Valine, mono-OTMS | 1089 | - | 0.12 | trace ** | - | 0.23 |
Alanine, di-N,O-TMS | 1114 | - | 0.19 | 0.14 | - | 0.38 |
Valine, di-TMS | 1227 | - | 0.45 | 0.23 | - | 2.05 |
Serine, O,O-di-TMS | 1265 | - | trace | 0.08 | - | - |
Leucine, N,O-di-TMS | 1284 | - | 0.54 | 0.12 | - | 1.12 |
Proline, di-TMS | 1303 | - | 0.30 | 0.83 | - | 0.47 |
Isoleucine, di-TMMS | 1308 | - | 0.56 | - | - | 2.16 |
γ-Aminobutyric acid, di-TMS | 1310 | - | 0.15 | - | - | 0.46 |
Serine, tri-TMS | 1370 | - | 0.17 | 0.16 | - | 1.67 |
Threonine, tri-TMS | 1406 | - | - | 0.17 | - | 1.71 |
Pyroglutamic acid, di-TMS | 1530 | 0.61 | 2.35 | 0.26 | - | 1.99 |
γ-Aminobutyric acid, tri-TMS | 1541 | - | 0.31 | 0.16 | - | - |
Phenylalanine, di-TMS | 1640 | - | 0.07 | 0.20 | - | - |
Glutamine, N,O,O-tri-TMS | 1642 | - | 0.22 | 0.09 | - | - |
Asparagine, tri-O,O′,N-TMS | 1690 | - | 0.61 | 0.38 | - | - |
Glutamine, N,‘O,O-tetra-TMS | 1798 | - | 0.93 | 0.09 | - | 2.31 |
Triptophane, N,N′,O-tri-TMS | 2236 | - | 0.19 | - | - | 0.29 |
Monosaccharides and related compounds | 54.95 | 40.00 | 61.23 | 45.39 | 52.11 | |
Threitol, tetra-TMS | 1540 | - | 0.21 | - | 0.06 | - |
Arabinose, tetra-TMS | 1649 | 0.07 | - | 0.07 | 0.09 | - |
Rhamnose, tetra-TMS | 1660 | 0.12 | - | 0.06 | 0.07 | - |
Xylofuranose, tetra-TMS | 1670 | 0.08 | - | 0.06 | - | - |
α-Ribofuranose, tetra-TMS | 1678 | trace | - | 0.05 | 0.11 | - |
β-Ribofuranose, tetra-TMS | 1680 | 0.06 | - | 0.11 | 0.09 | - |
Fucose, tetra-TMS | 1699 | - | - | 0.11 | 0.07 | - |
Pentafuranose, TMS | 1720 | 0.17 | - | 0.11 | 0.08 | - |
Xylopyranose, tetra-TMS | 1736 | 0.23 | - | 0.56 | 0.94 | - |
Xylitol, penta-TMS | 1745 | - | - | 0.06 | - | - |
Pentitol, penta-TMS | 1757 | 0.25 | - | 0.29 | 0.45 | - |
Ribitol, penta-TMS | 1762 | - | - | 0.05 | - | 0.38 |
Luxofuranose, tetra-TMS | 1767 | 0.08 | 0.52 | - | 0.72 | - |
Arabinitol, penta-TMS | 1776 | 0.24 | 0.34 | - | - | - |
β-Xylopyranose, tetra-TMS | 1792 | 0.23 | - | 0.63 | 1.21 | - |
β-Xylofuranose, tetra-TMS | 1799 | 0.25 | - | 0.26 | 0.30 | - |
α-Methylfuranoside, tetra-TMS | 1812 | 0.48 | - | 0.12 | 0.47 | - |
Fucitol, penta-TMS | 1817 | - | - | - | 0.08 | - |
Carbohydrate acid, TMS | 1824 | - | - | - | - | 0.45 |
Carbohydrate acid, TMS | 1843 | - | - | - | - | 0.61 |
Methyl-α-D-mannopyranoside, tetra-TMS | 1828 | - | - | - | 068 | - |
Inositol, deoxy-, penta-TMS | 1834 | 0.53 | - | - | - | - |
α-Fructofuranose, penta-TMS | 1849 | 6.90 | 2.85 | 6.16 | 5.91 | 9.47 |
β-Fructofuranose, penta-TMS | 1858 | 5.26 | 8.43 | 7.38 | 5.44 | 15.19 |
α-Galactofuranose, penta-TMS | 1860 | - | - | 2.64 | 1.41 | |
Pinitol, penta-TMS | 1872 | - | - | 0.88 | - | |
β-Fructopyranose, penta-TMS | 1887 | 1.04 | 0.32 | 0.75 | 0.59 | trace |
β-Glucofuranose, penta-TMS | 1892 | 1.22 | 0.56 | 1.00 | 0.95 | 1.33 |
α-Galactopyranose, penta-TMS | 1899 | - | 0.51 | - | - | - |
Cyclohexanepentol, penta-TMS | 1910 | 6.76 | - | 13.76 | - | - |
2-Amino-2-deoxyglucose, tetra-TMS | 1912 | 1.17 | - | - | - | - |
α-Glucopyranose, penta-TMS | 1932 | 11.34 | 9.50 | 8.24 | 9.57 | 11.78 |
β-Mannopyranose, penta-TMS | 1943 | 0.52 | - | - | 0.52 | - |
β-Talopyranose, penta-TMS | 1949 | - | - | 0.57 | - | - |
Mannitol, hexa-TMS | 1970 | 0.41 | 0.41 | 0.13 | 0.28 | trace |
Glucitol, hexa-TMS | 1976 | - | 0.14 | 0.87 | trace | trace |
Altitol, hexa-TMS | 1984 | - | - | 0.29 | 0.41 | - |
Pinitol, isomer, penta-TMS | 1996 | 1.04 | - | - | - | - |
chiro-Inositol, hexa-TMS | 2000 | 3.62 | trace | 0.19 | - | - |
scillo-Inositol, hexa-TMS | 2028 | trace | - | - | - | 0.46 |
β-Glucopyranose, penta-TMS | 2032 | 7.86 | 10.85 | 8.79 | 8.04 | 12.78 |
Gluconic acid, hexa-TMS | 2045 | - | 0.29 | 0.21 | - | - |
myo-Inositol, hexa-TMS | 2131 | 2.25 | 1.77 | 2.68 | 2.05 | trace |
N-Acetylglucosamine, tetra-TMS | 2143 | 0.14 | - | 0.19 | - | |
Carbohydrate derivative, TMS | 2226 | - | - | - | - | 0.55 |
Carbohydrate derivative, TMS | 2373 | - | - | - | - | 0.23 |
Polysaccharides and glycosides | 16.98 | 32.65 | 13.98 | 30.72 | 9.73 | |
myo-Inositol phosphate | 2260 | - | 0.26 | - | - | - |
2-O-Glycerol-α-D-galactopyranoside | 2374 | - | 0.31 | - | - | - |
Glycosode, TMS | 2439 | - | - | - | - | 0.41 |
Pyrocatechol β-D-glucopyranoside, penta-TMS | 2491 | - | 0.47 | - | - | - |
Salicin, penta-TMS | 2582 | - | 2.75 | - | - | 0.49 |
Disaccharide, TMS | 2600 | - | - | - | - | 2.62 |
Arbutin, penta-TMS | 2647 | - | - | - | 0.10 | - |
Disaccharide, TMS | 2663 | - | - | - | - | 2.46 |
Xylobiose, hexa-TMS | 2698 | - | - | 0.17 | 0.57 | 0.46 |
Sucrose, octa-TMS | 2714 | 3.93 | 12.85 | 6.23 | 6.78 | 1.88 |
α-Maltose, octa-TMS | 2746 | - | - | 0.15 | 0.37 | 1.92 |
Cellobiose, octa-TMS | 2762 | 0.13 | - | - | - | - |
Turanose | 2793 | 0.15 | - | 0.18 | - | - |
β-Maltose, octa-TMS | 2803 | - | 0.30 | 0.14 | 0.08 | - |
Palatinose, octa-TMS | 2818 | - | - | 0.18 | - | - |
Salidroside, penta-TMS | 2832 | - | - | - | 1.86 | - |
Laminaribiose, octa-TMS, anomer 1 | 2864 | - | - | 0.48 | - | - |
Laminaribiose, octa-TMS, anomer 2 | 2891 | - | - | 1.35 | - | - |
Vanillic acid 4-β-glucoside | 2937 | - | - | - | 0.43 | - |
Raffinose, undeca-TMS | 3503 | - | 0.67 | - | - | - |
1-Kestose, undeca-TMS | 3517 | - | 0.33 | 0.29 | - | - |
Erlose, undeca-TMS | 3548 | - | - | 0.03 | - | - |
Syringin, penta-TMS | 3143 | - | 0.20 | - | - | - |
Glycoside with 4-hydroxyphenylethanol moiety | 3533 | 1.83 | - | - | - | - |
epi-Catechin-O-glycoside,octa-TMS? *** | 3736 | - | - | - | 0.11 | - |
Kaempherol-3-β-O-galactoside, hepta-TMS | 3742 | - | - | 0.51 | - | - |
Kaempherol-3-β-O-glucopyranoside, hepta-TMS | 3755 | - | - | 0.46 | - | - |
Glycoside with quercetine moiety?, TMS | 3806 | - | - | 0.16 | - | - |
Quercetin-3-α-O-galactoside, octa-TMS | 3826 | - | - | 0.18 | - | - |
Quercetin-3-O-glucoside, octa-TMS | 3836 | - | - | 0.08 | - | - |
Tremuloidin, tetra-TMS, isomer 1 | 3861 | - | 0.66 | - | - | - |
Catechin-7-O-glycoside,octa-TMS? | 3866 | - | - | - | 7.18 | - |
Glycoside with 4-hydroxyphenylethanol moiety | 3887 | 0.07 | - | - | - | - |
Tremuloidin, tetra-TMS, isomer 2 | 3897 | - | 0.54 | - | - | |
Quercetin-3-α-L-arabinopyranoside, hepta-TMS | 3918 | 0.40 | - | - | 1.43 | - |
Naringenin-7-O-glucoside, hexa-TMS? | 3927 | 0.23 | - | 0.11 | - | - |
Glycoside with quercetine moiety, TMS | 3931 | - | - | - | 23.08 | - |
β-Sitosterol-β-D-O-glucoside, tetra-TMS | >4000 | 1.41 | - | 1.27 | 0.87 | - |
Aliphatic acids | 8.56 | 5.53 | 4.26 | 4.74 | 6.72 | |
Lactic aci, di-TMS | 1073 | - | - | 0.05 | - | - |
Glycolic acid, di-TMS | 1083 | 0.04 | - | 0.03 | - | - |
Malonic, acid. Tri-TMS | 1216 | - | - | 0.06 | - | - |
Succinic acid, di-TMS | 1324 | 0.33 | - | 0.19 | 0.40 | 0.94 |
Glyceric acid, tri-TMS | 1348 | 0.17 | 0.35 | 0.26 | 0.08 | 0.63 |
Fumaric acid, di-TMS | 1355 | trace | trace | 0.05 | - | 0.58 |
Malic acid, tri-TMS | 1510 | 4.85 | 2.65 | 1.04 | 3.29 | 1.39 |
2,3,4-Trihydroxybutyric acid, isomer 1, tetra-TMS | 1575 | - | 0.91 | trace | trace | 0.37 |
2,3,4-Trihydroxybutyric acid, isomer 2, tetra-TMS | 1597 | - | 0.14 | 0.92 | 0.12 | 0.62 |
L-Tartaric acid, tetra-TMS | 1630 | 1.36 | - | 0.43 | - | 2.19 |
Azelaic acid, di-TMS | 1808 | 0.10 | - | - | - | - |
Palmitic acid, mono-TMS | 2052 | 0.42 | 0.48 | 0.44 | 0.27 | trace |
Linoleic acid, mono-TMS | 2215 | 0.23 | 0.46 | 0.28 | 0.30 | 0.35 |
α-Linolenic & oleic acids, mono-TMS | 2222 | 0.20 | 0.54 | 0.39 | 0.17 | 0.37 |
Stearic acid, mono-TMS | 2249 | 0.14 | trace | 0.13 | trace | trace |
Docosanoic acid, mono-TMS | 2646 | - | - | - | 0.10 | - |
Aliphatic alcohols | 1.07 | 1.24 | 2.14 | 0.96 | 1.75 | |
2,3-Butanediol, di-TMS, isomer 1 | 1042 | - | - | 0.05 | - | - |
2,3-Butanediol, di-TMS, isomer 2 | 1050 | - | - | 0.08 | - | - |
Glycerol, tri-TMS | 1294 | 1.07 | 1.24 | 2.01 | 0.66 | 1.75 |
1-Dodecanol, mono-TMS | 2558 | - | - | - | 0.30 | - |
Aromatics | 6.88 | 3.61 | 6.83 | 6.29 | - | |
Benzoic acid, mono-TMS | 1246 | - | 0.37 | - | - | - |
Pyrocatechol, di-TMS | 1321 | - | 0.12 | - | - | - |
4-Hydroxybenzaldehyde, mono-TMS | 1373 | 0.05 | - | - | - | - |
Salicyl alcohol, di-TMS | 1444 | - | 0.16 | - | - | - |
4-Hydroxyphenylethanol, di-TMS | 1582 | 0.08 | - | - | - | - |
4-Hydroxybenzoic acid, di-TMS | 1636 | - | 0.07 | - | - | - |
Protocatechuic acid, tri-TMS | 1835 | 0.06 | - | 0.16 | 0.07 | - |
Methyl gallate. Tri-TMS | 1920 | 1.40 | - | 3.16 | - | - |
p-Coumaric acid, di-TMS | 1946 | - | 1.18 | - | - | - |
Gallic acid, tetra-TMS | 1985 | 3.24 | 0.19 | 3.39 | 0.46 | - |
(E)-Ferulic acid, di-TMS | 2101 | - | 0.32 | - | - | - |
epi-Catechin, penta-TMS | 2909 | - | - | - | 0.79 | - |
p-Coumaroylquinate, penta-TMS, isomer 1 | 2909 | - | - | 0.26 | - | - |
Catechin, penta-TMS | 2940 | 0.78 | 0.27 | - | 3.63 | - |
Apigenin, 7,4′-di-TMS | 3082 | - | 0.45 | - | - | - |
Kaempherol, tetra-TMS | 3115 | - | - | 0.07 | - | - |
p-Coumaroylquinate, penta-TMS, isomer 2 | 3123 | 0.21 | - | 0.07 | 0.19 | - |
Apigenin, tri-TMS | 3158 | - | 0.17 | - | - | - |
Chlorogenic acid, hexa-TMS | 3186 | 0.24 | 0.30 | - | 0.43 | - |
Quercetin, penta-TMS | 3210 | 0.09 | - | - | 0.60 | - |
Ellagic acid, tetra-TMS | 3335 | 0.45 | - | 0.05 | - | - |
Procyanidin B1, deca-TMS | >4000 | - | - | - | 0.75 | - |
Cryptochlorogenic acid, hexa-TMS | 3256 | 0.09 | - | - | - | - |
Neochlorogenic acid, hexa-TMS | 3272 | 0.19 | - | - | - | - |
Other compounds | 3.25 | 2.35 | 1.42 | 4.88 | 6.17 | |
Phosphoric acid, tri-TMS | 1290 | 1.31 | 0.46 | 0.62 | 0.15 | 1.25 |
2-Pyrrolidone-5-carboxylic acid, mono-TMS | 1505 | 0.51 | - | - | - | - |
α-Glycerophosphoric acid, tetra-TMS | 1797 | 0.21 | 0.10 | 0.13 | - | 0.50 |
Dihydroxyacetone, dimer, tetra-TMS | 1826 | - | 0.15 | - | - | - |
Quiniv acid | 1902 | - | - | - | - | 0.52 |
Ascorbic acid, tetra-TMS | 1981 | 0.35 | - | - | - | - |
Uridine, tri-TMS | 2468 | - | - | 0.13 | 0.08 | - |
Adenosin riboside, tetra-TMS | 2672 | - | - | 0.17 | - | - |
n-Pentacosane | 2500 | - | - | - | 0.14 | 2.62 |
β-Sitosterol, mono-TMS | 3349 | 0.17 | 0.24 | 0.37 | 0.37 | 1.35 |
Esters (docosanoate?) | >4000 | - | - | - | 2.98 | - |
NN | 7.70 | 7.21 | 7.19 | 7.02 | 3.18 | |
Peak number | 97 | 97 | 133 | 118 | 67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Isidorov, V.A.; Masłowiecka, J. Chemical Composition of Volatile and Extractive Organic Compounds in the Inflorescence Litter of Five Species of Woody Plants. Plants 2024, 13, 1829. https://doi.org/10.3390/plants13131829
Isidorov VA, Masłowiecka J. Chemical Composition of Volatile and Extractive Organic Compounds in the Inflorescence Litter of Five Species of Woody Plants. Plants. 2024; 13(13):1829. https://doi.org/10.3390/plants13131829
Chicago/Turabian StyleIsidorov, Valery A., and Jolanta Masłowiecka. 2024. "Chemical Composition of Volatile and Extractive Organic Compounds in the Inflorescence Litter of Five Species of Woody Plants" Plants 13, no. 13: 1829. https://doi.org/10.3390/plants13131829
APA StyleIsidorov, V. A., & Masłowiecka, J. (2024). Chemical Composition of Volatile and Extractive Organic Compounds in the Inflorescence Litter of Five Species of Woody Plants. Plants, 13(13), 1829. https://doi.org/10.3390/plants13131829