Deciphering High-Temperature-Induced Lignin Biosynthesis in Wheat through Comprehensive Transcriptome Analysis
Abstract
:1. Introduction
2. Results
2.1. Phenotypic and Physiological Responses to High-Temperature Stress
2.2. Transcriptome Dynamics in Wheat Exposed to High-Temperature Stress
2.3. Construction of Co-Expression Networks under High-Temperature Conditions Reveals Links to Lignin Biosynthesis
2.4. Lignin Synthesis and Related Gene Expression in Response to High-Temperature Stress
2.5. Structural Insights and Conservation Patterns of PAL Genes
2.6. Validation of RNA-Seq Analysis Using qRT-PCR
2.7. Overexpression of TaPAL33 Boosts Lignin Levels and Mitigates Heat Stress in Wheat via Enzymatic Activity
3. Discussion
4. Materials and Methods
4.1. Wheat Growth Conditions and High-Temperature Treatments
4.1.1. Development of Heat-Resistant Mutant Wheat
4.1.2. Designing High-Temperature Stress Experiments for Wheat
4.2. Measurement of Physiological Parameters
4.3. Determination of Lignin Content
4.4. RNA-Seq and Bioinformatics Analysis
4.5. Histochemical Staining and Fluorescence Microscopy Detection
4.6. RNA Extraction and Real-Time Quantitative PCR
4.7. Subcellular Localization of PAL33 and Its Vector Construction for Agrobacterium-Mediated Wheat Transformation
4.8. PAL Activity Determination
4.9. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, M.A.; Shirazi, M.U.; Shereen, A.; Ali, M.; Asma, B.H.; Jilani, N.S.; Mahboob, W. Agronomical and physiological perspectives for identification of wheat genotypes for high temperature tolerance. Pak. J. Bot. 2020, 52, 1973–1980. [Google Scholar] [CrossRef] [PubMed]
- Ullah, A.; Nadeem, F.; Nawaz, A.; Siddique, K.H.; Farooq, M. Heat stress effects on the reproductive physiology and yield of wheat. J. Agron. Crop Sci. 2022, 208, 1–17. [Google Scholar] [CrossRef]
- Trono, D.; Pecchioni, N. Candidate genes associated with abiotic stress response in plants as tools to engineer tolerance to drought, salinity and extreme temperatures in wheat: An overview. Plants 2022, 11, 3358. [Google Scholar] [CrossRef]
- Liu, C.; Yu, H.S.; Voxeur, A.; Rao, X.L.; Dixon, R.A. FERONIA and wall-associated kinases coordinate defense induced by lignin modification in plant cell walls. Sci. Adv. 2023, 9, eadf7714. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.F.; Wang, B.; Li, Q.; Hui, W.K.; Yang, L.J.; Wang, Z.H.; Zhang, W.J.; Yue, F.X.; Liu, N.; Li, H.L.; et al. CRISPR/Cas9 mutated p-coumaroyl shikimate 3′-hydroxylase 3 gene in Populus tomentosa reveals lignin functioning on supporting tree upright. Int. J. Biol. Macromol. 2023, 253, 126762. [Google Scholar] [CrossRef] [PubMed]
- Li, G.H.; Song, C.; Manzoor, M.A.; Li, D.Y.; Cao, Y.P.; Cai, Y.P. Functional and kinetics of two efficient phenylalanine ammonia lyase from Pyrus bretschneideri. BMC Plant Biol. 2023, 23, 612. [Google Scholar] [CrossRef] [PubMed]
- Barros, J.; Dixon, R.A. Plant phenylalanine/tyrosine ammonia-lyases. Trends Plant Sci. 2020, 25, 66–79. [Google Scholar] [CrossRef] [PubMed]
- Feduraev, P.; Riabova, A.; Skrypnik, L.; Pungin, A.; Tokupova, E.; Maslennikov, P.; Chupakhina, G. Assessment of the role of PAL in lignin accumulation in wheat (Triticum aestivum L.) at the early stage of ontogenesis. Int. J. Mol. Sci. 2021, 22, 9848. [Google Scholar] [CrossRef]
- Lima, R.B.; dos Santos, T.B.; Vieira, L.G.E.; Ferrarese, M.D.L.L.; Ferrarese-Filho, O.; Donatti, L.; Boeger, M.R.T.; de Oliveira Petkowicz, C.L. Heat stress causes alterations in the cell-wall polymers and anatomy of coffee leaves (Coffea arabica L.). Carbohydr. Polym. 2013, 93, 135–143. [Google Scholar] [CrossRef]
- Cai, Z.; He, F.; Feng, X.; Liang, T.; Wang, H.; Ding, S.; Tian, X. Transcriptomic analysis reveals important roles of lignin and flavonoid biosynthetic pathways in rice thermotolerance during reproductive stage. Front. Genet. 2020, 11, 562937. [Google Scholar] [CrossRef]
- Barros, J.; Serrani-Yarce, J.C.; Chen, F.; Baxter, D.; Venables, B.J.; Dixon, R.A. Role of bifunctional ammonia-lyase in grass cell wall biosynthesis. Nat. Plants 2016, 2, 16050. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Shen, Y.; Mu, K.; Cai, W.; Zhao, Y.; Shen, H.; Wang, X.; Ma, H. Phenylalanine ammonia lyase GmPAL1.1 promotes seed vigor under high-temperature and -humidity stress and enhances seed germination under salt and drought stress in transgenic Arabidopsis. Plants 2022, 11, 3239. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Luo, L.; Zheng, L. Lignins: Biosynthesis and biological functions in plants. Int. J. Mol. Sci. 2018, 19, 335. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Li, P.; Liu, X.; Xu, T.; Zhang, Y.; Meng, H.; Xia, T. High temperature increased lignin contents of poplar (Populus spp) stem via inducing the synthesis caffeate and coniferaldehyde. Front. Genet. 2022, 13, 1007513. [Google Scholar] [CrossRef] [PubMed]
- Sewalt, V.J.; Ni, W.; Blount, J.W.; Jung, H.G.; Masoud, S.A.; Howles, P.A.; Lamb, C.; Dixon, R.A. Reduced lignin content and altered lignin composition in transgenic tobacco down-regulated in expression of L-phenylalanine ammonia-lyase or cinnamate 4-hydroxylase. Plant Physiol. 1997, 115, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Bonawitz, N.D.; Kim, J.I.; Tobimatsu, Y.; Ciesielski, P.N.; Anderson, N.A.; Ximenes, E.; Maeda, J.; Ralph, J.; Donohoe, B.S.; Ladisch, M.; et al. Disruption of Mediator rescues the stunted growth of a lignin-deficient Arabidopsis mutant. Nature 2014, 509, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Millar, D.J.; Long, M.; Donovan, G.; Fraser, P.D.; Boudet, A.M.; Danoun, S.; Bramley, P.M.; Bolwell, G.P. Introduction of sense constructs of cinnamate 4-hydroxylase (CYP73A24) in transgenic tomato plants shows opposite effects on flux into stem lignin and fruit flavonoids. Phytochemistry 2007, 68, 1497–1509. [Google Scholar] [CrossRef] [PubMed]
- Bonawitz, N.D.; Chapple, C. Can genetic engineering of lignin deposition be accomplished without an unacceptable yield penalty? Curr. Opin. Biotechnol. 2013, 24, 336–343. [Google Scholar] [CrossRef]
- Xie, M.; Zhang, J.; Tschaplinski, T.J.; Tuskan, G.A.; Chen, J.G.; Muchero, W. Regulation of lignin biosynthesis and its role in growth-defense tradeoffs. Front. Plant Sci. 2018, 9, 407961. [Google Scholar] [CrossRef] [PubMed]
- Boudet, A.M. Evolution and current status of research in phenolic compounds. Phytochemistry 2007, 68, 2722–2735. [Google Scholar] [CrossRef]
- Boyce, C.K.; Zwieniecki, M.A.; Cody, G.D.; Jacobsen, C.; Wirick, S.; Knoll, A.H.; Holbrook, N.M. Evolution of xylem lignification and hydrogel transport regulation. Proc. Natl. Acad. Sci. USA 2004, 101, 17555–17558. [Google Scholar] [CrossRef]
- Kavi, K.P.B.; Srinivas, B.; Prashant, S.; Sahitya, G.; Tulya, R.S.V.; Rajasheker, G.; Prashanth, S. Modulation of Lignin and its Implications in Salt, Drought and Temperature Stress Tolerance. Curr. Chem. Biol. 2023, 17, 2–12. [Google Scholar] [CrossRef]
- Moura, J.C.M.S.; Bonine, C.A.V.; de Oliveira Fernandes Viana, J.; Dornelas, M.C.; Mazzafera, P. Abiotic and biotic stresses and changes in the lignin content and composition in plants. J. Integr. Plant Biol. 2010, 52, 360–376. [Google Scholar] [CrossRef]
- Agati, G.; Azzarello, E.; Pollastri, S.; Tattini, M. Flavonoids as antioxidants in plants: Location and functional significance. Plant Sci. 2012, 196, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Vanholme, R.; De Meester, B.; Ralph, J.; Boerjan, W. Lignin biosynthesis and its integration into metabolism. Curr. Opin. Biotechnol. 2019, 56, 230–239. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Gambhir, G.; Dass, A.; Tripathi, A.K.; Singh, A.; Jha, A.K.; Yadava, P.; Choudhary, M.; Rakshit, S. Genetically modified crops: Current status and future prospects. Planta 2020, 251, 91. [Google Scholar] [CrossRef] [PubMed]
- Al-Sheikh Ahmed, S.; Zhang, J.; Farhan, H.; Zhang, Y.; Yu, Z.; Islam, S.; Chen, J.; Cricelli, S.; Foreman, A.; den Ende, W.V.; et al. Diurnal changes in water soluble carbohydrate components in leaves and sucrose associated TaSUT1 gene expression during grain development in wheat. Int. J. Mol. Sci. 2020, 21, 8276. [Google Scholar] [CrossRef] [PubMed]
- Marković, S.; Petrović, M.; Dukić, N. Variability of Malondialdehyde Content and Yield Elements in Triticum aestivum L. under Heat Stress Conditions. Kragujev. J. Sci. 2020, 42, 45–54. Available online: https://scidar.kg.ac.rs/handle/123456789/13303 (accessed on 16 January 2024). [CrossRef]
- Li, W.X.; Huang, R.P.; Han, S.C.; Li, X.Y.; Gong, H.B.; Zhang, Q.Y.; Yan, C.Y.; Li, Y.F.; He, R.R. Potential of Tamarind Shell Extract against Oxidative Stress In Vivo and In Vitro. Molecules 2023, 28, 1885. [Google Scholar] [CrossRef]
- Li, X.C.; Xing, Y.Z.; Jiang, X.; Qiao, J.; Tan, H.L.; Tian, Y.; Zhou, B. Identification and characterization of the catalase gene pycat from the red alga pyropia yezoensis (bangiales, rhodophyta). J. Phycol. 2012, 48, 664–669. [Google Scholar] [CrossRef] [PubMed]
- Fredrik, A.; Elisabeth, S. Protocol for Round Robin Test of Lignin Content in Lignin Samples. (COST FP0901). Version 3. (2010-12-14). 2011, pp. 1–3. Available online: http://web.abo.fi/fak/tkf/spk/costfp0901/Round_robin/COST_FP0901-Protocol_for_round_robin_test_of_lignin_content-version_3.pdf (accessed on 16 January 2024).
- Trapnell, C.; Roberts, A.; Goff, L.; Pertea, G.; Kim, D.; Kelley, D.R.; Pimentel, H.; Salzberg, S.L.; Rinn, J.L.; Pachter, L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 2012, 7, 562–578. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.W.; Breen, P.J. Activity of phenylalanine ammonia-lyase (PAL) and concentrations of anthocyanins and phenolics in developing strawberry fruit. J. Am. Soc. Hortic. Sci. 1991, 116, 865–869. [Google Scholar] [CrossRef]
- Rosler, J.; Krekel, F.; Amrhein, N.; Schmid, J. Maize phenylalanine ammonia-lyase has tyrosine ammonia-lyase activity. Plant Physiol. 1997, 113, 175–179. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, J.; Wang, Z.; Wu, X.; Xia, J.; Wang, L.; Wang, Z.; Zhang, Y. Deciphering High-Temperature-Induced Lignin Biosynthesis in Wheat through Comprehensive Transcriptome Analysis. Plants 2024, 13, 1832. https://doi.org/10.3390/plants13131832
Han J, Wang Z, Wu X, Xia J, Wang L, Wang Z, Zhang Y. Deciphering High-Temperature-Induced Lignin Biosynthesis in Wheat through Comprehensive Transcriptome Analysis. Plants. 2024; 13(13):1832. https://doi.org/10.3390/plants13131832
Chicago/Turabian StyleHan, Junjie, Zhenlong Wang, Xianghu Wu, Jianqiang Xia, Lihong Wang, Zhong Wang, and Yueqiang Zhang. 2024. "Deciphering High-Temperature-Induced Lignin Biosynthesis in Wheat through Comprehensive Transcriptome Analysis" Plants 13, no. 13: 1832. https://doi.org/10.3390/plants13131832
APA StyleHan, J., Wang, Z., Wu, X., Xia, J., Wang, L., Wang, Z., & Zhang, Y. (2024). Deciphering High-Temperature-Induced Lignin Biosynthesis in Wheat through Comprehensive Transcriptome Analysis. Plants, 13(13), 1832. https://doi.org/10.3390/plants13131832