Straw Retention with Reduced Fertilization Enhances Soil Properties, Crop Yields, and Emergy Sustainability of Wheat–Soybean Rotation
Abstract
1. Introduction
2. Results
2.1. Soil Physical Properties
2.2. Soil Chemical Properties
2.3. Yields and Economic Profits
2.4. Emergy Inputs, Outputs, and Emergy-Based Indicators
2.5. Relationships between Yields, Soil Physical, and Chemical Properties
3. Discussion
3.1. Effects of Treatments on Soil Physical Properties
3.2. Effects of Treatments on Soil Chemical Properties
3.3. Effects of Treatments on Crop Yields, Economic Profits, and Emergy Evaluation
4. Materials and Methods
4.1. Field Experiment Description
4.2. Experimental Design
4.3. Soil Sampling and Analysis
4.4. Emergy Evaluation Method
4.5. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qian, R.; Ma, Z.J.; Yang, Y.Y.; Guo, R.; Han, F.; Wang, J.J.; Wang, X.L.; Sun, B.P.; Ren, X.L.; Chen, X.L.; et al. Optimizing maize productivity: A sustainable approach integrating straw derivatives and film mulching in rainfed agriculture. Field Crop Res. 2024, 307, 109268. [Google Scholar] [CrossRef]
- Yang, X.L.; Xiong, J.R.; Du, T.S.; Ju, X.T.; Gan, Y.T.; Li, S.E.; Xia, L.L.; Shen, Y.J.; Pacenka, S.; Steenhuis, T.S.; et al. Diversifying crop rotation increases food production, reduces net greenhouse gas emissions and improves soil health. Nat. Commun. 2024, 15, 198. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.L.; Guo, S.H.; Zhu, X.Q.; Zhang, L.; Long, Y.; Wan, X.Y.; Wei, X. How maize-legume intercropping and rotation contribute to food security and environmental sustainability. J. Clean. Prod. 2024, 434, 140150. [Google Scholar] [CrossRef]
- Li, X.F.; Wang, Z.G.; Bao, X.G.; Sun, J.H.; Yang, S.C.; Wang, P.; Wang, C.B.; Wu, J.P.; Liu, X.R.; Tian, X.L.; et al. Long-term increased grain yield and soil fertility from intercropping. Nat. Sustain. 2021, 4, 943–950. [Google Scholar] [CrossRef]
- Mingotte, F.L.C.; Jardim, C.A.; Amaral, C.B.; Coelho, A.P.; Morello, O.F.; Leal, F.T.; Lemos, L.B.; Fornasieri Filho, D. Maize yield under Urochloa ruziziensis intercropping and previous crop nitrogen fertilization. Agron. J. 2021, 113, 1681–1690. [Google Scholar] [CrossRef]
- Hoss, M.; Behnke, G.D.; Davis, A.S.; Nafziger, E.D.; Villamil, M.B. Short corn rotations do not improve soil quality, compared with corn monocultures. Agron. J. 2018, 110, 1274–1288. [Google Scholar] [CrossRef]
- Li, Z.; Yang, X.; Cui, S.; Yang, Q.; Yang, X.L.; Li, J.C.; Shen, Y.Y. Developing sustainable cropping systems by integrating crop rotation with conservation tillage practices on the Loess Plateau, a long-term imperative. Field Crop Res. 2018, 222, 164–179. [Google Scholar] [CrossRef]
- UNDP. Sustainable Development Goals. 2016. Available online: http://www.undp.org/content/undp/en/home/sustainable-development-goals.html (accessed on 16 March 2018).
- Franke, A.C.; van den Brand, G.J.; Vanlauwe, B.; Giller, K.E. Sustainable intensification through rotations with grain legumes in Sub- Saharan Africa: A review. Agric. Ecosyst. Environ. 2018, 261, 172–185. [Google Scholar] [CrossRef]
- Liu, J.; Fang, L.C.; Qiu, T.Y.; Chen, J.; Wang, H.; Liu, M.X.; Yi, J.; Zhang, H.L.; Wang, C.; Sardans, J.; et al. Crop residue return achieves environmental mitigation and enhances grain yield: A global meta-analysis. Agron. Sustain. Dev. 2023, 43, 78. [Google Scholar] [CrossRef]
- Wang, L.; Qian, X.; Gao, Y.B.; Zhang, H.; Liu, K.C.; Chen, G.Q.; Li, Z.X. Optimizing straw management to enhance carbon and nitrogen efficiency and economic benefit of wheat-maize double cropping system. Environ. Sci. 2023, 44, 463–472. (In Chinese) [Google Scholar]
- Amadou, A.; Song, X.; Huang, S.M.; Song, A.; Tang, Z.X.; Dong, W.L.; Zhao, S.C.; Zhang, B.; Yi, K.K.; Fan, F.L. Effects of long-term organic amendment on the fertility of soil, nodulation, yield, and seed quality of soybean in a soybean-wheat rotation system. J. Soils Sedi. 2021, 21, 1385–1394. [Google Scholar] [CrossRef]
- Goran, J.; Vladimir, A.; Milan, M.; Ljiljana, B.; Svetlana, V.; Dušan, D.; Srđan, Š. Effects of combined long-term straw return and nitrogen fertilization on wheat productivity and soil properties in the wheat-maize-soybean rotation system in the Pannonian Plain. Agronomy 2023, 13, 1529. [Google Scholar] [CrossRef]
- Lal, R. Sequestering carbon in soils of agro-ecosystems. Food Policy 2011, 36, S33–S39. [Google Scholar] [CrossRef]
- Zhang, K.L.; Maltais-Landry, G.; Liao, H.L. How soil biota regulate C cycling and soil C pools in diversified crop rotations. Soil Biol. Biochem. 2021, 156, 108219. [Google Scholar] [CrossRef]
- Campion, A.L.; Oury, F.; Heumez, E.; Rolland, B. Conventional versus organic farming systems: Dissecting comparisons to improve cereal organic breeding strategies. Org. Agric. 2020, 10, 63–74. [Google Scholar] [CrossRef]
- Fu, B.; Chen, L.; Huang, H.Y.; Qu, P.; Wei, Z.G. Impacts of crop residues on soil health: A review. Environ. Pollut. Bioavailab. 2021, 33, 164–173. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Lal, R. Crop residue removal impacts on soil productivity and environmental quality. Crit. Rev. Plant. Sci. 2009, 28, 139–163. [Google Scholar] [CrossRef]
- Dikgwatlhe, S.B.; Chen, Z.D.; Lal, R.; Zhang, H.L.; Chen, F. Changes in soil organic carbon and nitrogen as affected by tillage and residue management under wheat-maize cropping system in the North China Plain. Soil. Tillage Res. 2014, 144, 110–118. [Google Scholar] [CrossRef]
- Gunina, A.; Kuzyakov, Y. Pathways of litter C by formation of aggregates and SOM density fractions: Implications from 13C natural abundance. Soil Biol. Biochem. 2014, 71, 95–104. [Google Scholar] [CrossRef]
- Ma, Y.L.; Shi, H.K.; Zhang, S.K.; Lv, R.H. Whole maize straw addition: The changes of soil physical and chemical properties and the effect on winter wheat. J. China Agric. Univ. 2003, 8, 42–46. (In Chinese) [Google Scholar]
- Wu, G.L.; Yang, Z.; Cui, Z.; Liu, Y.; Fang, N.F.; Shi, Z.H. Mixed artificial grasslands with more roots improved mine soil infiltration capacity. J. Hydrol. 2016, 535, 54–60. [Google Scholar] [CrossRef]
- Zhu, L.Q.; Hu, N.J.; Zhang, Z.W.; Xu, J.L.; Tao, B.R.; Meng, Y.L. Short-term responses of soil organic carbon and carbon pool management index to different annual straw return rates in a rice-wheat cropping system. Catena 2015, 135, 283–289. [Google Scholar] [CrossRef]
- Zhao, S.C.; Li, K.J.; Zhou, W.; Qiu, S.J.; Huang, S.W.; He, P. Changes in soil microbial community, enzyme activities and organic matter fractions under long-term straw return in north-central China. Agric. Ecosyst. Environ. 2016, 216, 82–88. [Google Scholar] [CrossRef]
- Jin, V.L.; Schmer, M.R.; Stewart, C.E.; Sindelar, A.J.; Varvel, G.E.; Wienhold, B.J. Long-term no-till and stover retention each decrease the global warming potential of irrigated continuous corn. Glob. Chang. Biol. 2017, 23, 2848–2862. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.J.; Ren, C.J.; Yang, G.H.; Liu, N.N.; Sun, J.; Zhu, J.X.; Ren, G.X.; Feng, Y.Z. Long-Term wheat-soybean rotation and the effect of straw retention on the soil nutrition content and bacterial community. Agronomy 2022, 12, 2126. [Google Scholar] [CrossRef]
- Lu, F.; Wang, X.K.; Han, B.; Ouyang, Z.Y.; Duan, X.N.; Zheng, H.; Miao, H. Soil carbon sequestrations by nitrogen fertilizer application, straw return and no tillage in China’s cropland. Glob. Chang. Biol. 2009, 15, 281–305. [Google Scholar] [CrossRef]
- Rong, Q.L.; Li, R.N.; Huang, S.W.; Tang, J.W.; Zhang, Y.C.; Wang, L.Y. Soil microbial characteristics and yield response to partial substitution of chemical fertilizer with organic amendments in greenhouse vegetable production. J. Integra. Agric. 2018, 17, 1432–1444. [Google Scholar] [CrossRef]
- Zhao, X.; He, C.; Liu, W.S.; Liu, W.X.; Liu, Q.Y.; Bai, W.; Li, L.J.; Lal, R.; Zhang, H.L. Responses of soil pH to no-till and the factors affecting it: A global meta-analysis. Glob. Chang. Biol. 2022, 28, 154–166. [Google Scholar] [CrossRef] [PubMed]
- Li, M.D.; Wu, H.Y.; Nie, J.; Shi, S.W. Utilities of straw and wastes of straw recycling returning on rice planting. Sci. Agric. Sin. 2010, 43, 3572–3579. (In Chinese) [Google Scholar]
- Song, D.L.; Hou, S.P.; Wang, X.B.; Liang, G.Q.; Zhou, W. Nutrient resource quality of crop straw and its potential of substituting. Plant Nutr. Fert. Sci. 2018, 24, 1–21. (In Chinese) [Google Scholar]
- Sekhon, N.K.; Hira, G.S.; Sidhu, A.S.; Thind, S.S. Response of soyabean (Glycine max Mer.) to wheat straw mulching in different cropping seasons. Soil. Use Manag. 2005, 21, 422–426. [Google Scholar] [CrossRef]
- Yang, Y.; Zou, J.; Huang, W.; Manevski, K.; Olesen, J.E.; Rees, R.M.; Hu, S.; Li, W.; Kersebaum, K.C.; Louarn, G.; et al. Farm-scale practical strategies to increase nitrogen use efficiency and reduce nitrogen footprint in crop production across the North China Plain. Field Crop Res. 2022, 283, 108526. [Google Scholar] [CrossRef]
- Song, J.; Xiong, L.R.; Liu, Y. Agro-Ecosystems emergy analysis research methods review. Ecol. Econ. 2013, 12, 77–80. (In Chinese) [Google Scholar]
- Giannetti, B.F.; Ogura, Y.; Bonilla, S.H.; Almeida, C.M.V.B. Emergy assessment of a coffee farm in Brazilian Cerrado considering in a broad form the environmental services, negative externalities and fair price. Agric. Syst. 2011, 104, 679–688. [Google Scholar] [CrossRef]
- Jaklic, T.; Juvancic, L.; Kavcic, S.; Debeljak, M. Complementarity of socio-economic and emergy evaluation of agricultural production systems: The case of Slovenian dairy sector. Ecol. Econ. 2014, 107, 469–481. [Google Scholar] [CrossRef]
- Lan, S.F.; Qin, P. Emergy analysis of ecosystems. Chin. J. Appl. Ecol. 2001, 1, 129–131. (In Chinese) [Google Scholar]
- Zhang, F.; Zhou, Z.X. Dynamic assessment of agri-ecological system based on emergy analysis in Yan’an city. Agric. Res. Arid. Areas 2010, 28, 251–257. (In Chinese) [Google Scholar]
- Wang, R.P.; Rong, X.M.; Hou, X.H. Energy analysis theory and its application in agro-ecosystem: A case of Shanxi. J. Hunan Agric. Univ. (Nat. Sci.) 2009, 35, 1007–1032. (In Chinese) [Google Scholar]
- Cao, N.; Zhi, M.L.; Zhao, W.Q.; Pang, J.Y.; Hu, W.; Zhou, Z.G.; Meng, Y.L. Straw retention combined with phosphorus fertilizer promotes soil phosphorus availability by enhancing soil P-related enzymes and the abundance of phoC and phoD genes. Soil. Tillage Res. 2022, 220, 105390. [Google Scholar] [CrossRef]
- Sheng, M.; Long, J.H.; Lei, W.Y.; Hao, X.X.; Li, N.; Han, X.Z.; Li, L.J. Effect of straw returning on the characteristics of Fourier Infrared Spectroscopy organic carbon within aggregates in a Mollisols. Soil. Crop. Sci. 2010, 9, 355–366. (In Chinese) [Google Scholar]
- Chen, Y.Y.; Zhou, Y.C. Protection of soil organic carbon in the Calcite Dolomite aggregate. Res. J. Soil. Water Conserv. 2012, 19, 82–85+89. (In Chinese) [Google Scholar]
- Singh, R.; Serawat, M.; Singh, A.; Babli, A. Effect of tillage and crop residue management on soil physical properties. J. Soil. Salin. Water Qual. 2018, 10, 200–206. [Google Scholar]
- Ram, H.; Dadhwal, V.; Vashist, K.K.; Kaur, H. Grain yield and water use efficiency of wheat (Triticum aestivum L.) in relation to irrigation levels and rice straw mulching in northwest India. Agric. Water Manag. 2013, 128, 92–101. [Google Scholar] [CrossRef]
- Zhao, X.L.; Yuan, G.Y.; Wang, H.Y.; Lu, D.J.; Chen, X.Q.; Zhou, J.M. Effects of full straw incorporation on soil fertility and crop yield in rice-wheat rotation for silty clay loamy cropland. Agronomy 2019, 9, 133. [Google Scholar] [CrossRef]
- Cui, S.; Zilverberg, C.J.; Allen, V.G.; Brown, C.P.; Moore-Kucera, J.; Wester, D.B.; Mirik, M.; Chaudhuri, S.; Phillips, N. Carbon and nitrogen responses of three old world bluestems to nitrogen fertilization or inclusion of a legume. Field Crop Res. 2014, 164, 45–53. [Google Scholar] [CrossRef]
- Keesstra, S.D.; Rodrigo-Comino, J.; Novara, A.; Gimenez-Morera, A.; Pulido, M.; DiPrima, S.; Cerdà, A. Straw mulch as a sustainable solution to decrease runoff and erosion in glyphosate-treated clementine plantations in Eastern Spain. An assessment using rainfall simulation experiments. Catena 2019, 174, 95–103. [Google Scholar] [CrossRef]
- Akhtar, K.; Wang, W.Y.; Khan, A.; Ren, G.X.; Afridi, M.Z.; Feng, Y.Z.; Yang, G.H. Wheat straw mulching offset soil moisture deficient for improving physiological and growth performance of summer sown soybean. Agric. Water Manag. 2019, 211, 16–25. [Google Scholar] [CrossRef]
- Liu, P.; He, J.; Li, H.; Wang, Q.J.; Lu, C.Y.; Zheng, K.; Liu, W.Z.; Zhao, H.B.; Lou, S.Y. Effect of straw retention on crop yield, soil properties, water use efficiency and greenhouse gas emission in China: A meta-analysis. Int. J. Plant Prod. 2019, 13, 347–367. [Google Scholar] [CrossRef]
- Zheng, Z.C.; Li, T.X.; He, S.Q.; Zhang, X.Z.; Xia, J.G. Research of ecological problems and countermeasures on the soil of greenhouse. Res. Soil. Water Conserv. 2006, 1, 18–20+53. (In Chinese) [Google Scholar]
- Noellemeyer, E.; Frank, F.; Alvarez, C.; Morazzo, G.; Quiroga, A. Carbon contents and aggregation related to soil physical and biological properties under a land-use sequence in the semiarid region of central Argentina. Soil. Tillage Res. 2008, 99, 179–190. [Google Scholar] [CrossRef]
- Sun, F.F.; Lu, S.G. Biochars improve aggregate stability, water retention, and pore-space properties of clayey soil. Plant Nutr. Soil. Sci. 2014, 177, 26–33. (In Chinese) [Google Scholar] [CrossRef]
- Chen, H.; Rao, J.X.; Sun, Q.Y. Comprehensive evaluation of effects of straw returning methods on soil physical and chemical properties. J. Anhui Agric. Univ. 2021, 48, 661–667. (In Chinese) [Google Scholar]
- Khalil, M.I.; Hossain, M.B.; Schumidhalter, U. Carbon and nitrogen mineralization in different upland soils of the subtropics treated with organic materials. Soil. Biol. Biochem. 2005, 37, 1507–1518. [Google Scholar] [CrossRef]
- Singh, J.; Kumar, S. Seasonal changes of soil carbon fractions and enzyme activities in response to winter cover crops under long-term rotation and tillage systems. Europ. J. Soil. Sci. 2021, 72, 886–899. [Google Scholar] [CrossRef]
- Nishio, T.; Komada, M.; Arao, T.; Kanamori, T. Simultaneous determination of transformation rates of nitrate in soil. Japan Agric. Res. Quart. 2001, 35, 11–17. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, Y.X.; Jiang, F.; Hu, Y.Q.; Long, L.; Pei, L.Z.; Li, J.B.; Xu, K.M. Responses of soil microbial biomass carbon, nitrogen and microbial entropy to different materials returned to corn fields. J. Soil. Water Conserv. 2020, 34, 173–180. (In Chinese) [Google Scholar]
- Nicolardot, B.; Recous, S.; Mary, B. Simulation of C and N mineralisation during crop residue decomposition: A simple dynamic model based on the C:N ratio of the residues. Plant Soil. 2001, 228, 83–103. [Google Scholar] [CrossRef]
- Zhang, P.; Chen, X.L.; Wei, T.; Yang, Z.; Jia, Z.K.; Yang, B.P.; Han, Q.F.; Ren, X.L. Effects of straw incorporation on the soil nutrient contents, enzyme activities, and crop yield in a semiarid region of China. Soil. Tillage Res. 2016, 160, 65–72. [Google Scholar] [CrossRef]
- Wang, J.J.; Sun, X.; Du, L.N.; Sun, W.L.; Wang, X.L.; Gaafar, A.R.Z.; Zhang, P.; Cai, T.; Liu, T.N.; Jia, Z.K.; et al. Appropriate fertilization increases carbon and nitrogen sequestration and economic benefit for straw-incorporated upland farming. Geoderma 2024, 441, 116743. [Google Scholar] [CrossRef]
- Ren, B.Z.; Li, X.; Dong, S.T.; Liu, P.; Zhao, B.; Zhang, J.W. Soil physical properties and maize root growth under different tillage systems in the North China Plain. Crop J. 2018, 6, 669–676. [Google Scholar] [CrossRef]
- Guan, D.W.; Li, L.; Yue, X.L.; Ma, M.C.; Zhang, W.; Li, J. Study on potential of biological nitrogen fixation of soybean in China. J. Plant Nutri. Ferti. 2014, 20, 1497–1504. (In Chinese) [Google Scholar]
- Islam, M.U.I.; Guo, Z.C.; Jiang, F.H.; Peng, X.H. Does straw return increase crop yield in the wheat-maize cropping system in China? A meta-analysis. Field Crops Res. 2022, 279, 108447. [Google Scholar] [CrossRef]
- Liu, C.; Lu, M.; Cui, J.; Li, B.; Fang, C.M. Effects of straw carbon input on carbon dynamics in agricultural soils: A meta-analysis. Glob. Chang. Biol. 2014, 20, 1366–1381. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Lai, D.Y.F.; Wang, C.; Pan, T.; Zeng, C. Effects of rice straw incorporation on active soil organic carbon pools in a subtropical paddy field. Soil. Tillage Res. 2015, 152, 8–16. [Google Scholar] [CrossRef]
- Cooray, A.; Rejesus, R.M.; Aglasan, S.; Li, Z.; Woodley, A. The impact of conservation tillage intensities on mean yields and yield risk. Soil. Security 2023, 12, 100096. [Google Scholar] [CrossRef]
- Eagle, A.J.; Bird, J.A.; Horwath, W.R.; Linquist, B.A.; Brouder, S.M.; Hill, J.E.; van Kessel, C. Rice yield and nitrogen efficiency under alternative straw management pratices. Agron. J. 2000, 92, 1096–1103. [Google Scholar] [CrossRef]
- Scarpare, F.V.; van Lier, Q.D.J.; de Camargo, L.; Pires, R.C.M.; Ruiz-Correa, S.T.; Bezerra, A.H.F.; Gava, G.J.C.; Dias, C.T.D.S. Tillage effects on soil physical condition and root growth associated with sugarcane water availability. Soil. Tillage Res. 2019, 187, 110–118. [Google Scholar] [CrossRef]
- Ren, Z.J.; Han, X.J.; Feng, H.X.; Wang, L.F.; Ma, G.; Li, J.H.; Lv, J.J.; Tian, W.Z.; He, X.H.; Zhao, Y.N.; et al. Long-term conservation tillage improves soil stoichiometry balance and crop productivity based on a 17-year experiment in a semi-arid area of northern China. Sci. Total Environ. 2024, 908, 168283. [Google Scholar] [CrossRef]
- Tao, F.L.; Palosuo, T.; Valkama, E.; Mäkipää, R. Cropland soils in China have a large potential for carbon sequestration based on literature survey. Soil. Tillage Res. 2019, 186, 70–78. [Google Scholar] [CrossRef]
- Li, Y.; Feng, H.; Dong, Q.G.; Xia, L.L.; Li, J.C.; Li, C.; Zang, H.D.; Andersen, M.N.; Olesen, J.E.; Jørgensen, U.; et al. Ammoniated straw incorporation increases wheat yield, yield stability, soil organic carbon and soil total nitrogen content. Field Crop Res. 2022, 284, 108558. [Google Scholar] [CrossRef]
- Berzsenyi, Z.; Győrffy, B.; Lap, D. Effect of crop rotation and fertilisation on maize and wheat yields and yield stability in a long-term experiment. Eur. J. Agron. 2000, 13, 225–244. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Liu, Q.J.; Liu, S.T.; Li, J.J.; Geng, J.B.; Wang, L.Z. Key soil properties influencing infiltration capacity after long-term straw incorporation in a wheat (Triticum aestivum L.)-maize (Zea mays L.) rotation system. Agric. Ecosyst. Environ. 2023, 344, 108301. [Google Scholar] [CrossRef]
- Sindelar, A.J.; Schmer, M.R.; Jin, V.L.; Wienhold, B.J.; Varvel, G.E. Crop rotation affects corn, grain sorghum, and soybean yields and nitrogen recovery. Agron. J. 2016, 108, 1592–1602. [Google Scholar] [CrossRef]
- Wang, X.L.; Lin, Z.J.; Long, P.; Yan, L.L.; Gao, W.S.; Chen, Y.Q.; Sui, P. Sustainability evaluation of recycling in agricultural systems by emergy accounting. Resour. Conserv. Recycl. 2017, 117, 114–124. [Google Scholar] [CrossRef]
- Ghaley, B.B.; Porter, J.R. Emergy synthesis of a combined food and energy production system compared to a conventional wheat (Triticum aestivum) production system. Ecol. Indic. 2013, 24, 534–542. [Google Scholar] [CrossRef]
- Wang, W.Y.; Qiao, B.; Kashif, A.; Yuan, S.; Ren, G.X.; Feng, Y.Z. Effects of straw returning to field on soil respiration and soil water heat in winter wheat-summer maize rotation system under no tillage. Sci. Agric. Sin. 2016, 49, 2136–2152. (In Chinese) [Google Scholar]
- Zhang, X.; Shen, S.W.; Xue, S.Q.; Hu, Y.S.; Wang, X.D. Long-term tillage and cropping systems affect soil organic carbon components and mineralization in aggregates in semiarid regions. Soil. Tillage Res. 2023, 231, 105742. [Google Scholar] [CrossRef]
- Yu, Q.; Wang, H.; Wen, P.F.; Wang, S.L.; Li, J.; Wang, R.; Wang, X.L. A suitable rotational conservation tillage system ameliorates soil physical properties and wheat yield: An 11-year in-situ study in a semi-arid agroecosystem. Soil. Tillage Res. 2020, 199, 104600. [Google Scholar] [CrossRef]
- Fungo, B.; Lehmann, J.; Kalbitz, K.; Thiongo, M.; Okeyo, I.; Tenywa, M.; Neufeldt, H. Aggregate size distribution in a biochar-amended tropical Ultisol under conventional hand-hoe tillage. Soil. Tillage Res. 2017, 165, 190–197. [Google Scholar] [CrossRef]
- Long, M.; Li, M.; Yu, C.Y.; Ding, Y.P.; Li, W.; Zhang, H.P.; Zhang, T.S.; Wen, X.X. Effects of straw returning method on soil physical and chemical properties and growth of winter wheat in rainfed area of the Loess Plateau. J. Soil. Sci. Plant Nutr. 2023, 23, 5567–5581. [Google Scholar] [CrossRef]
- Ellert, B.H.; Bettany, J.R. Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Can. J. Soil. Sci. 1995, 75, 529–538. [Google Scholar] [CrossRef]
- Bao, S.D. (Ed.) Soil and Agricultural Chemistry Analysis; China Agriculture Press: Beijing, China, 2000. (In Chinese) [Google Scholar]
- National Food and Strategic Reserves Administration. 2023. Available online: http://www.lswz.gov.cn/ (accessed on 20 September 2023).
- Odum, H.T. Environmental Accounting: Emergy and Environmental Decision Making; Wiley: New York, NY, USA, 1996. [Google Scholar]
- Chen, F.; Sui, P. Agricultural Ecology, 3rd ed.; China Agricultural University Press: Beijing, China, 2019. (In Chinese) [Google Scholar]
- Odum, H.T.; Brown, M.; Brandt-Williams, S.L. Handbook of Emergy Evaluation Folio 1: Introduction and Global Budget; University of Florida: Gainesville, FL, USA, 2000. [Google Scholar]
Treatment | Grain Yields (kg·ha−1) | Economic Profits (CNY·ha−1) | ||||
---|---|---|---|---|---|---|
Wheat (WY) | Soybean (SY) | Wheat + Soybean (TY) | Wheat (WEP) | Soybean (SEP) | Wheat + Soybean (TEP) | |
TNS | 4183.7 b | 2409.1 c | 6592.8 c | 6190.5 c | 9330.9 c | 15,521.4 a |
TS | 4680.5 a | 2956.4 b | 7636.9 b | 7333.6 b | 12,067.2 b | 19,400.8 b |
DS | 4788.9 a | 3286.9 a | 8075.8 a | 7771.5 a | 13,783.7 a | 21,555.2 a |
Treatment | Mineral Fertilizer Application Amount (kg·ha−1) | Crop Straw Management (Both Wheat and Soybean) |
---|---|---|
TNS | Wheat: N = 111.1; P2O5 = 78.2 Soybean: N = 0; P2O5 = 32.2 | All above ground straw was removed |
TS | Wheat: N = 111.1; P2O5 = 78.2 Soybean: N = 0; P2O5 = 32.2 | Above ground straw was crushed into 3–5 cm fragments and returned to field |
DS | Wheat: N = 88.9; P2O5 = 62.6 Soybean: N = 0; P2O5 = 25.8 | Same as the TS treatment above |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Q.; Jiao, X.; Wang, C.; Wang, Y.; Xu, X.; Liu, Z.; Ren, G.; Feng, Y. Straw Retention with Reduced Fertilization Enhances Soil Properties, Crop Yields, and Emergy Sustainability of Wheat–Soybean Rotation. Plants 2024, 13, 1812. https://doi.org/10.3390/plants13131812
Yu Q, Jiao X, Wang C, Wang Y, Xu X, Liu Z, Ren G, Feng Y. Straw Retention with Reduced Fertilization Enhances Soil Properties, Crop Yields, and Emergy Sustainability of Wheat–Soybean Rotation. Plants. 2024; 13(13):1812. https://doi.org/10.3390/plants13131812
Chicago/Turabian StyleYu, Qi, Xiaoying Jiao, Chenyu Wang, Yanbo Wang, Xiyang Xu, Zhenyuan Liu, Guangxin Ren, and Yongzhong Feng. 2024. "Straw Retention with Reduced Fertilization Enhances Soil Properties, Crop Yields, and Emergy Sustainability of Wheat–Soybean Rotation" Plants 13, no. 13: 1812. https://doi.org/10.3390/plants13131812
APA StyleYu, Q., Jiao, X., Wang, C., Wang, Y., Xu, X., Liu, Z., Ren, G., & Feng, Y. (2024). Straw Retention with Reduced Fertilization Enhances Soil Properties, Crop Yields, and Emergy Sustainability of Wheat–Soybean Rotation. Plants, 13(13), 1812. https://doi.org/10.3390/plants13131812