Chemical Composition and In Vitro Bioactivities of Extracts from Cones of P. halepensis, P. brutia, and P. pinea: Insights into Pharmaceutical and Cosmetic Potential
Abstract
1. Introduction
2. Results and Discussion
2.1. Extraction Yields
2.2. Reducing Sugars Content
2.3. Total Polyphenol Content
2.4. Antioxidant Activity
2.5. Anticancer Activity
2.6. Chromatographic Analysis
2.6.1. Identification of Compounds Using HPLC-DAD
Compound | RT min | Structure | Aera mAU·min | Ref | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PA-C | PA-P | PB-C | PB-P | PP-C | PP-P | ||||||||||||||||
1SV | 2SV | 3SV | 1SV | 2SV | 3SV | 1SV | 2SV | 3SV | 1SV | 2SV | 3SV | 1SV | 2SV | 3SV | 1SV | 2SV | 3SV | ||||
Catechin | 0.90 | - | - | - | - | - | 59.88 | - | - | - | - | - | - | - | - | - | - | - | - | [58] | |
Chlorogenic acid | 1.19 | - | - | - | - | - | 56.70 | - | - | - | - | - | - | - | - | - | - | - | - | [59] | |
Gallic acid | 2.05 | - | - | 131.61 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | [60] | |
Gallocyanin | 2.34 | - | - | - | 1.11 | - | 216.16 | - | - | - | - | - | 73.57 | - | - | - | - | - | - | ||
Methyl 3,5-dihydroxybenzoate | 2.52 | - | 2.65 | 184.98 | 11.97 | 34.88 | - | - | - | - | - | - | - | - | - | - | - | 27.63 | - | ||
3-Amino-4-hydroxybenzoic acid | 2.97 | 18.89 | - | - | - | 69.26 | - | - | 38.31 | - | 27.80 | - | - | 6.84 | 29.93 | - | 9.54 | - | - | [61] | |
Caffeic acid | 3.15 | - | - | - | 34.76 | 71.50 | - | - | 33.54 | - | - | 29.94 | - | - | 29.93 | 40.32 | - | - | - | [62] | |
Sinapic acid | 3.33 | - | - | - | - | 79.53 | - | - | 38.61 | 42.02 | - | 24.34 | - | - | - | - | - | - | - | [63] | |
Trans-3-hydroxycinnamic acid | 3.65 | - | - | 99.40 | - | - | - | - | - | 46.89 | - | - | - | - | - | - | - | - | 60.22 | ||
p-coumaric acid | 3.85 | - | - | - | - | - | - | - | - | 46.70 | - | - | - | - | - | 80.78 | - | - | - | [63] | |
Trans-ferulic acid | 4.29 | - | - | - | - | - | - | - | - | 76.24 | - | - | - | - | - | - | - | - | 105.09 | [62] | |
Trans-cinnamic acid | 10.94 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 1.31 | [63] | |
5-Hydroxy-4′-methoxylflavone | 18.70 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0.31 | ||
Chrysin | 18.92 | - | - | - | - | - | - | - | - | - | 1.58 | - | - | - | - | - | - | - | - | [64] | |
4-Hydroxy-3-(3-oxo-1-phenylbutyl)coumarine | 19.10 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 15.48 | ||
3′-Hydroxy-a-naphthoflavone | 19.37 | - | 21.98 | - | - | - | - | - | - | - | 90.72 | - | - | - | - | - | - | - | - | ||
7-Hydroxyflavone | 19.70 | - | - | - | - | 17.59 | - | - | - | - | - | - | - | - | 210.28 | - | 0.55 | 24.02 | - | ||
Beta carotene | 19.79 | - | - | - | - | - | - | 33.59 | - | - | 5.13 | - | 113.49 | - | - | 2.20 | 66.63 | 4.75 | - | ||
Lutein | 19.81 | - | - | - | - | 3.87 | - | - | 218.07 | - | - | - | - | - | - | 26.29 | - | - | - | ||
4-Hydroxytamoxifen | 20.28 | - | - | 2.20 | 11.27 | 21.10 | - | - | 355.27 | 1.11 | - | 7.74 | - | - | 84.49 | - | 2.98 | 574.05 | - | ||
5,7-Dihydroxy-4-propylcoumarine | 20.62 | - | - | - | - | - | - | 5.98 | - | 199.33 | - | - | - | - | - | - | - | - | - | ||
3′-hydroxy-6-methylflavone | 20.75 | - | 17.37 | 28.50 | 19.14 | 57.41 | - | - | - | 258.76 | 101.82 | 8.43 | 0.79 | 215.56 | - | 1.25 | 52.22 | - | 250.09 | ||
5-hydroxyflavone | 21.00 | - | - | - | - | - | - | - | - | - | - | - | 18.00 | - | - | - | 126.49 | 7.21 | - | ||
3,3′,4′_trimethoxyflavone | 21.07 | - | - | 1.91 | 118.44 | - | - | 111.57 | - | 3.59 | 105.41 | - | - | 113.03 | 208.29 | - | 72.16 | 4.99 | - | ||
Butyl 4-hydroxybenzoate | 21.12 | - | 179.66 | - | - | - | - | - | 102.08 | - | 53.40 | 491.80 | - | - | - | - | - | - | - | ||
Cardamonin | 21.26 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 8.18 | - | 142.25 | - | ||
Caffeic acid 1,1-dimethylallyl ester | 21.34 | - | 220.98 | - | - | - | - | - | - | - | 2.45 | - | - | - | - | 2.93 | - | - | - | [65] | |
Benzyl 4-hydroxybenzoate | 21.50 | - | - | - | - | 20.31 | - | 73.51 | - | - | - | - | - | - | - | - | 87.51 | - | - | ||
7-Hydroxy-3′,4′,5′-trimethoxy-alpha-naphthoflavone | 21.50 | - | 8.14 | 8.67 | - | - | - | - | - | 82.97 | - | - | - | - | - | - | - | - | - | ||
3,3′-Dimethoxyflavone | 21.60 | - | - | 13.07 | 90.63 | - | - | 154.03 | - | - | - | - | - | 2.53 | 97.77 | - | 62.11 | - | 2.48 | ||
3,6,3′-Trimethoxyflavone | 21.79 | 90.08 | - | - | - | 17.67 | 3.93 | - | - | - | 92.96 | - | - | - | - | - | - | - | - | ||
3,7-Dimethoxyflavone | 21.83 | - | - | - | - | 212.04 | - | - | - | - | - | 12.71 | - | - | - | - | - | - | - | ||
5-Hydroxy-3′-methoxyflavone | 22.01 | - | - | - | 86.86 | 256.58 | - | 125.17 | - | 1.91 | 81.65 | - | 6.15 | 102.77 | - | 73.07 | 69.21 | 7.39 | 1.95 | ||
Xanthurenic acid | 22.12 | - | 17.22 | 2.35 | 101.45 | - | - | 54.68 | 686.13 | - | - | 141.72 | - | - | 32.49 | - | - | - | - | ||
4′,5′-Dimethoxy-2′-hydroxy-4-methylchalcone | 22.60 | 8.46 | 108.94 | 13.74 | 192.08 | 187.48 | - | 19.19 | - | 2.44 | 243.18 | - | - | 199.68 | - | - | - | 11.14 | - | ||
(z)-3-(3-Ethoxy-4-hydroxy-phenyl)-2-phenyl-acrylic acid | 23.40 | 50.13 | - | - | 10.98 | 170.16 | - | - | 246.22 | 1.61 | - | 14.01 | - | 118.02 | - | 9.06 | 36.45 | - | 2.80 | ||
Hamamelitannin | 24.06 | - | - | - | - | - | - | - | - | - | 7.95 | - | - | 14.02 | - | 8.05 | 31.36 | - | |||
3,4-Dihydroxy-5-methoxycinnamic acid | 25.04 | - | - | 5.27 | 64.18 | - | - | - | - | - | - | - | - | - | - | - | 69.71 | 5.82 |
2.6.2. Identification of Volatile Compounds by GC-MS
Compound | RT min | Structure | Area (×107) | Ref | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PA-C | PA-P | PB-C | PB-P | PP-C | PP-P | ||||||||||||||||
1SV | 2SV | 3SV | 1SV | 2SV | 3SV | 1SV | 2SV | 3SV | 1SV | 2SV | 3SV | 1SV | 2SV | 3SV | 1SV | 2SV | 3SV | ||||
Isopinocarveol | 9.04 | - | - | - | 13 | - | - | 8.49 | 0.2 | - | - | 0.11 | - | - | - | - | - | - | - | [72] | |
(+)-Cis-verbenyl acetate | 10.84 | - | - | - | 5.3 | - | - | - | - | - | - | - | 4.61 | - | - | - | - | - | - | ||
Isobornyl formate | 11.39 | 2.58 | - | - | - | 1.28 | - | - | - | - | - | - | - | - | - | - | - | - | - | ||
p-Cymen-8-ol | 11.82 | - | 3.97 | - | - | - | - | - | - | - | - | 3.6 | - | - | - | - | - | - | - | ||
Carveol | 12.27 | 6.87 | 4.44 | - | - | 1.83 | - | - | - | - | - | - | 4.42 | 19.6 | 13.6 | - | 7.3 | 8.39 | - | ||
Verbenone | 12.58 | 75.7 | 36.1 | 0.98 | 24 | 15.7 | 1.59 | 40.4 | 27 | - | 61.8 | 33.3 | 6.82 | 24 | - | - | 35.8 | 16.1 | [73] | ||
Isobornyl acetate | 13.27 | 17 | 8.45 | - | 8.42 | - | - | - | - | - | - | - | - | - | - | - | 7.21 | - | - | ||
Bicyclohexyl | 13.43 | 15.8 | - | - | 21 | - | - | 20.8 | - | - | 7.45 | - | - | 19.4 | - | - | 10.4 | - | - | ||
Tetradecane | 13.87 | - | - | - | - | - | - | - | - | - | 1.64 | - | - | - | - | - | - | - | - | ||
Bicyclo [2.2.1]heptane-2,5-diol, 1,7,7-trimethyl-, (2-endo,5-exo)- | 14.19 | - | - | - | - | - | - | - | 0.5 | - | - | - | - | - | - | - | - | 0.9 | - | ||
Limonene glycol | 14.49 | - | - | - | - | - | 0.3 | - | - | - | - | - | 25.4 | 45 | 61.4 | - | 12.6 | 13.7 | - | ||
2,4-Di-tert-butylphenol | 16.33 | - | 5.42 | 12.6 | - | 10.8 | 18.7 | - | 4.67 | - | - | 3.22 | 19.4 | - | 5.73 | 15 | - | 3.58 | - | ||
Caryophyllene oxide | 17.62 | 18.9 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 51.8 | - | - | [74] | |
Phenol, 2,2′-methylenebis [6-(1,1-dimethylethyl)-4-methyl- | 17.92 | - | - | - | - | 74.7 | - | - | - | - | - | - | - | - | 100 | - | - | - | - | ||
18-Norabieta-8,11,13-triene | 21.86 | 8.61 | 9.63 | - | 7.58 | 4.05 | - | - | - | - | - | 3.67 | - | - | - | - | 0.1 | - | - | ||
Sclareol | 21.97 | - | - | - | 6.13 | - | - | - | - | - | 52.5 | 10.6 | - | 6.54 | - | - | 23.1 | - | - | ||
dehydroabietin | 22.99 | - | 12.2 | - | 11 | 11.7 | - | - | - | - | - | 8.54 | - | - | - | - | 7.25 | - | - | ||
17-Pentatriacontene | 23.23 | - | - | - | - | 19.5 | - | - | - | - | - | - | - | - | - | - | - | - | - | ||
7-Isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octahydro-1-phenanthrenol (isomer 1) | 25.11 | - | 8.95 | - | 10.7 | 8.77 | - | 9.25 | 4.65 | - | 45.1 | 6.79 | - | - | - | - | - | - | - | ||
Dehydroabietal | 27.98 | - | - | - | 68.5 | 0.1 | - | - | - | - | - | - | - | - | - | - | - | - | - | ||
Oleamide | 28.26 | 109 | - | 45.6 | - | 133 | 59.4 | - | 174 | - | 47.4 | - | - | - | - | 35.1 | - | - | - | ||
Methyl dehydroabietate | 29.23 | 15.2 | - | - | 204 | - | - | - | - | - | - | - | - | - | - | - | - | 15.8 | - | [75] |
Compound | RT min | Structure | Area (×107) | Ref | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PA-C | PA-P | PB-C | PB-P | PP-C | PP-P | ||||||||||||||||
1SV | 2SV | 3SV | 1SV | 2SV | 3SV | 1SV | 2SV | 3SV | 1SV | 2SV | 3SV | 1SV | 2SV | 3SV | 1SV | 2SV | 3SV | ||||
Glycol | 7.13 | - | 7.98 | - | - | 11.8 | - | - | 7.39 | - | - | 6.26 | - | - | - | - | - | - | - | ||
Propyl glycol | 7.29 | 7.56 | 26.4 | - | 10 | 46.7 | - | 39.1 | - | - | 53.7 | 92.3 | - | 35.3 | - | - | 0.05 | - | - | ||
Cyclohexanol | 7.86 | 94.1 | - | - | 202 | - | - | 244 | - | - | 223 | - | - | 249 | - | - | 93.1 | 0.07 | - | ||
Lactic acid | 8.74 | - | 0.1 | - | - | 58 | - | - | 103 | - | - | 52.1 | - | - | 55.8 | - | - | - | - | [76] | |
Caproic acid | 8.84 | 207 | 43.9 | - | 58.9 | 32.3 | - | 136 | 37.3 | - | - | 21.1 | - | - | 43.3 | - | - | 3.57 | - | ||
3-Hydroxybutyric acid | 10.06 | - | - | - | - | 3.62 | - | - | - | - | - | - | - | - | - | - | - | - | - | ||
(+)-Cis-verbenol | 11.55 | - | 7.65 | - | - | 6.89 | - | - | - | - | - | - | - | - | - | - | 27.3 | - | - | ||
Glycerol | 11.7 | - | 35.1 | - | - | 80.4 | - | - | - | - | - | - | - | - | 51.2 | - | - | - | - | ||
Caprylic acid | 12.05 | 38.3 | - | - | - | 15.4 | - | - | - | - | - | - | - | - | - | - | 24.4 | - | - | ||
(-)-Myrtenol | 12.84 | - | - | - | - | - | - | 48.1 | - | - | 50.8 | - | - | - | - | - | - | - | - | ||
Succinic acid | 13.06 | - | - | - | - | 11.2 | - | - | - | - | - | 14.1 | - | - | - | - | - | - | - | ||
Pelargonic acid | 13.57 | 54.9 | - | - | 5.01 | 8.37 | - | - | - | - | - | - | - | - | - | - | 28.5 | - | - | ||
Citric acid | 14.01 | - | - | - | - | - | - | - | 84.1 | - | - | - | - | - | - | - | - | 0.41 | - | [76] | |
Cicrotoic acid | 14.17 | - | - | - | 2.14 | - | - | 3.47 | - | - | - | - | - | - | - | - | - | - | - | ||
Myrtenoic acid | 14.89 | 24.5 | - | - | 6.94 | 10.1 | - | 125 | 14.2 | - | 215 | 57.5 | - | - | - | - | 32.7 | - | - | ||
Vanillin | 16.93 | - | 33.1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | [77] | |
D-(-)-Ribofuranose | 17.22 | - | 11.2 | - | - | 69.8 | - | - | - | - | - | - | - | - | - | - | - | - | - | ||
Vanillic Acid | 18.82 | - | - | - | - | 29.1 | - | - | - | - | - | - | - | - | - | - | - | - | - | [78] | |
Protocatechuic acid | 19.1 | - | 106 | - | - | 181 | - | - | 187 | - | - | - | - | - | - | - | - | 200.2 | - | [78] | |
p-Coumaric acid | 20.48 | - | 9.08 | - | - | 5.51 | - | - | - | - | - | - | - | - | - | - | - | - | - | [78] | |
Palmitic Acid | 20.94 | 134 | 321 | - | - | 307 | - | 495 | 681 | - | 185 | 200.1 | - | 335 | 528 | - | 270.7 | 205 | - | [79] | |
Caffeic acid | 21.96 | 7.54 | - | - | - | 784 | - | - | - | - | - | - | - | - | - | - | - | - | - | [78] | |
Stearic acid | 23.35 | - | 42.3 | - | - | - | - | 39.7 | - | - | - | 184 | - | - | - | - | - | 17.9 | - | [79] |
2.7. Principal Component Analysis (PCA)
3. Materials and Methods
3.1. Chemicals
3.2. Collection and Identification of Plant Materials
3.3. Sample Preparation
3.4. Extraction of Extracts
3.5. Quantification of Reducing Sugar Content
3.6. Quantification of Total Phenolic Content (TPC)
3.7. Determination of Antioxidant Activity
3.8. Determination of Anticancer Activity
3.9. Identification of Bioactive Compounds
3.9.1. High-Performance Liquid Chromatography (HPLC-DAD)
3.9.2. Gas Chromatography-Mass Spectrometry (GC-MS)
3.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bozorgmer, B.; Macki Aleagha, M.; Behbahani Nia, A. Identification and Assessment of Fire Risk Factors Using the Delphi Technique and Multiple-Criteria Decision Analysis A Case Study: Forest Parks in the Southern Slopes of Alborz, Iran. J. Hum. Environ. Health Promot. 2023, 9, 33–39. [Google Scholar] [CrossRef]
- Gajurel, P.R.; Doni, T. Diversity of Wild Edible Plants Traditionally Used by the Galo Tribe of Indian Eastern Himalayan State of Arunachal Pradesh. Plant Sci. Today 2020, 7, 523–533. [Google Scholar] [CrossRef]
- Duffy, C.; Toth, G.G.; Hagan, R.P.; McKeown, P.C.; Rahman, S.A.; Widyaningsih, Y.; Sunderland, T.C.; Spillane, C. Agroforestry Contributions to Smallholder Farmer Food Security in Indonesia. Agrofor. Syst. 2021, 95, 1109–1124. [Google Scholar] [CrossRef]
- Schmidt, B.M. Responsible Use of Medicinal Plants for Cosmetics. HortScience 2012, 47, 985–991. [Google Scholar] [CrossRef]
- Hermans, N.; Cos, P.; Maes, L.; De Bruyne, T.; Vanden Berghe, D.; Vlietinck, A.J.; Pieters, L. Challenges and Pitfalls in Antioxidant Research. Curr. Med. Chem. 2007, 14, 417–430. [Google Scholar] [CrossRef]
- Garcia-Manieri, J.A.A.; Correa, V.G.; Backes, E.; de Sá-Nakanishi, A.B.; Bracht, L.; Comar, J.F.; Corrêa, R.C.G.; Peralta, R.M.; Bracht, A. A Critical Appraisal of the Most Recent Investigations on the Hepatoprotective Action of Brazilian Plants. Plants 2022, 11, 3481. [Google Scholar] [CrossRef]
- Swallah, M.S.; Sun, H.; Affoh, R.; Fu, H.; Yu, H. Antioxidant Potential Overviews of Secondary Metabolites (Polyphenols) in Fruits. Int. J. Food Sci. 2020, 2020, 081686. [Google Scholar] [CrossRef]
- Marahatha, R.; Gyawali, K.; Sharma, K.; Gyawali, N.; Tandan, P.; Adhikari, A.; Timilsina, G.; Bhattarai, S.; Lamichhane, G.; Acharya, A. Pharmacologic Activities of Phytosteroids in Inflammatory Diseases: Mechanism of Action and Therapeutic Potentials. Phytother. Res. 2021, 35, 5103–5124. [Google Scholar] [CrossRef]
- Saewan, N.; Jimtaisong, A.; Panyachariwat, N.; Chaiwut, P. In Vitro and In Vivo Anti-Aging Effect of Coffee Berry Nanoliposomes. Molecules 2023, 28, 6830. [Google Scholar] [CrossRef]
- Sagar, N.A.; Pareek, S.; Benkeblia, N.; Xiao, J. Onion (Allium cepa L.) Bioactives: Chemistry, Pharmacotherapeutic Functions, and Industrial Applications. Food Front. 2022, 3, 380–412. [Google Scholar] [CrossRef]
- Li, X.-X.; Liu, C.; Dong, S.-L.; Ou, C.-S.; Lu, J.-L.; Ye, J.-H.; Liang, Y.-R.; Zheng, X.-Q. Anticarcinogenic Potentials of Tea Catechins. Front. Nutr. 2022, 9, 3024. [Google Scholar] [CrossRef] [PubMed]
- Mollica, A.; Scioli, G.; Della Valle, A.; Cichelli, A.; Novellino, E.; Bauer, M.; Kamysz, W.; Llorent-Martínez, E.J.; Fernández-de Córdova, M.L.; Castillo-López, R. Phenolic Analysis and in Vitro Biological Activity of Red Wine, Pomace and Grape Seeds Oil Derived from Vitis vinifera L. Cv. Montepulciano d’Abruzzo. Antioxidants 2021, 10, 1704. [Google Scholar] [CrossRef] [PubMed]
- Uwineza, P.A.; Waśkiewicz, A. Recent Advances in Supercritical Fluid Extraction of Natural Bioactive Compounds from Natural Plant Materials. Molecules 2020, 25, 3847. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Chen, M.; Zeng, Y.; Liu, G. Application and Perspectives of Supercritical Fluid Technology in the Nutraceutical Industry. Adv. Sustain. Syst. 2022, 6, 2200055. [Google Scholar] [CrossRef]
- Kate, A.E.; Singh, A.; Shahi, N.C.; Pandey, J.P.; Prakash, O.; Singh, T.P. Novel Eco-Friendly Techniques for Extraction of Food Based Lipophilic Compounds from Biological Materials. Nat. Prod. Chem. Res. 2016, 4, 1000231. [Google Scholar] [CrossRef]
- Baldino, L.; Scognamiglio, M.; Reverchon, E. Extraction of Rotenoids from Derris Elliptica Using Supercritical CO2. J. Chem. Technol. Biotechnol. 2018, 93, 3656–3660. [Google Scholar] [CrossRef]
- Luque de Castro, M.D.; García Ayuso, L.E. Environmental Applications|Soxhlet Extraction. In Encyclopedia of Separation Science; Wilson, I.D., Ed.; Academic Press: Oxford, UK, 2000; pp. 2701–2709. ISBN 978-0-12-226770-3. Available online: https://www.thevespiary.org/library/Files_Uploaded_by_Users/Sedit/Chemical%20Analysis/Encyclopedia%20of%20Separation%20Science/Level%20III%20-%20Practical%20Applications/ENVIRONMENTAL%20APPLICATIONS%20-%20Soxhlet%20Extraction.pdf (accessed on 14 June 2024).
- Ćujić, N.; Šavikin, K.; Janković, T.; Pljevljakušić, D.; Zdunić, G.; Ibrić, S. Optimization of Polyphenols Extraction from Dried Chokeberry Using Maceration as Traditional Technique. Food Chem. 2016, 194, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Mahindrakar, K.V.; Rathod, V.K. Ultrasonic Assisted Aqueous Extraction of Catechin and Gallic Acid from Syzygium Cumini Seed Kernel and Evaluation of Total Phenolic, Flavonoid Contents and Antioxidant Activity. Chem. Eng. Process. Process Intensif. 2020, 149, 107841. [Google Scholar] [CrossRef]
- Shirsath, S.; Sable, S.; Gaikwad, S.; Sonawane, S.; Saini, D.; Gogate, P. Intensification of Extraction of Curcumin from Curcuma Amada Using Ultrasound Assisted Approach: Effect of Different Operating Parameters. Ultrason. Sonochem. 2017, 38, 437–445. [Google Scholar] [CrossRef]
- Mohareb, A.S.; Kherallah, I.E.; Badawy, M.E.; Salem, M.Z.; Yousef, H.A. Chemical Composition and Activity of Bark and Leaf Extracts of Pinus halepensis and Olea europaea Grown in AL-Jabel AL-Akhdar Region, Libya against Some Plant Phytopathogens. J. Appl. Biotechnol. Bioeng 2017, 3, 331–342. [Google Scholar]
- Yu, L.; Zhao, M.; Wang, J.S.; Cui, C.; Yang, B.; Jiang, Y.; Zhao, Q. Antioxidant, Immunomodulatory and Anti-Breast Cancer Activities of Phenolic Extract from Pine (Pinus massoniana Lamb) Bark. Innov. Food Sci. Emerg. Technol. 2008, 9, 122–128. [Google Scholar] [CrossRef]
- Daly hassen, H.; Ayari, A. Avantages Socio-Économiques de La Forêt Du Pin d’Alep. In Le Pin d’Alep en Tunisie: Ecologie, Gestion et Usages; INRGREF: Tunis, Tunisia, 2017. [Google Scholar]
- Hassan, S. Le-Pin-Pignon: Une Espèce de Choix Dans Le Contexte Des Changements Climatiques; Forest Research Centre: Rabat, Morocco, 2016; ISBN 978-9954-38-361-2. [Google Scholar]
- Latos-Brozio, M.; Masek, A.; Chrzescijanska, E.; Podsędek, A.; Kajszczak, D. Characteristics of the Polyphenolic Profile and Antioxidant Activity of Cone Extracts from Conifers Determined Using Electrochemical and Spectrophotometric Methods. Antioxidants 2021, 10, 1723. [Google Scholar] [CrossRef] [PubMed]
- Micales, J.A.; Han, J.S.; Davis, J.L.; Young, R.A. Chemical Composition and Fungitoxic Activities of Pine Cone Extractives. In Mycotoxins, Wood Decay, Plant Stress, Biocorrosion, and General Biodeterioration; Llewellyn, G.C., Dashek, W.V., O’Rear, C.E., Eds.; Biodeterioration Research; Springer: Boston, MA, USA, 1994; pp. 317–332. ISBN 978-1-4757-9450-2. [Google Scholar]
- Subbiah, K.; Lee, H.-S.; Mandal, S.; Park, T. Conifer Cone (Pinus resinosa) as a Green Corrosion Inhibitor for Steel Rebar in Chloride-Contaminated Synthetic Concrete Pore Solutions. ACS Appl. Mater. Interfaces 2021, 13, 43676–43695. [Google Scholar] [CrossRef] [PubMed]
- Bakrim, S.; Machate, H.; Benali, T.; Sahib, N.; Jaouadi, I.; Omari, N.E.; Aboulaghras, S.; Bangar, S.P.; Lorenzo, J.M.; Zengin, G.; et al. Natural Sources and Pharmacological Properties of Pinosylvin. Plants 2022, 11, 1541. [Google Scholar] [CrossRef] [PubMed]
- Verkasalo, E.; Möttönen, V.; Roitto, M.; Vepsäläinen, J.; Kumar, A.; Ilvesniemi, H.; Siwale, W.; Julkunen-Tiitto, R.; Raatikainen, O.; Sikanen, L. Extractives of Stemwood and Sawmill Residues of Scots Pine (Pinus sylvestris L.) for Biorefining in Four Climatic Regions in Finland—Phenolic and Resin Acid Compounds. Forests 2021, 12, 192. [Google Scholar] [CrossRef]
- Rabizadeh, F.; Mirian, M.S.; Doosti, R.; Kiani-Anbouhi, R.; Eftekhari, E. Phytochemical Classification of Medicinal Plants Used in the Treatment of Kidney Disease Based on Traditional Persian Medicine. Evid.-Based Complement. Altern. Med. 2022, 2022, 8022599. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-H.; Jang, T.-W.; Choi, J.-S.; Mun, J.-Y.; Park, J.-H. Inhibitory Effects of Pine Cone (Pinus densiflora) on Melanogenesis in B16F10 Melanoma Cells. Korean J. Plant Resour. 2019, 32, 275–281. [Google Scholar] [CrossRef]
- Choi, J.H.; Sung, S.W.; Lee, E.S.; Nam, J.H.; Choi, Y.W. Topical Formulation of Carbonized Pine Cones: Physical Stability Assessment and Sensory Evaluation: Physical Stability Assessment and Sensory Evaluation. Polym. Korea 2018, 42, 1005–1013. [Google Scholar] [CrossRef]
- Kim, J.; Park, J.-G.; Lee, C.-M.; Kim, S.-G. Effect of the Pine Cone Extract Phytochemical and Physiological activity on HaCaT Cells. Asian J. Beauty Cosmetol. 2019, 17, 353–363. [Google Scholar] [CrossRef]
- Dasari, R.K.; Berson, R.E. The Effect of Particle Size on Hydrolysis Reaction Rates and Rheological Properties in Cellulosic Slurries. In Applied Biochemistry and Biotecnology: The Twenty-Eighth Symposium Proceedings of the Twenty-Eight Symposium on Biotechnology for Fuels and Chemicals, Nashville, TN, USA, 30 April–3 May 2006; Mielenz, J.R., Klasson, K.T., Adney, W.S., McMillan, J.D., Eds.; Humana Press: Totowa, NJ, USA, 2007; pp. 289–299. ISBN 978-1-60327-181-3. [Google Scholar]
- Salim, H.; Rimawi, W.; Shaheen, S.; Mjahed, A. Phytochemical Analysis and Antibacterial Activity of Extracts from Palestinian Aleppo Pine Seeds, Bark and Cones. Asian J. Chem. 2019, 31, 143–147. [Google Scholar] [CrossRef]
- Dhibi, M.; Mechri, B.; Brahmi, F.; Skhiri, F.; Alsaif, M.A.; Hammami, M. Fatty Acid Profiles, Antioxidant Compounds and Antiradical Properties of Pinus halepensis Mill. Cones and Seeds. J. Sci. Food Agric. 2012, 92, 1702–1708. [Google Scholar] [CrossRef]
- Gamli, Ö.F. Physicochemical Properties of Pine Cone Molasses (Pekmez) from Pinus nigra and Pinus brutia in Osmaniye. J. Food Process. Preserv. 2022, 46, e17264. [Google Scholar] [CrossRef]
- Wong, S.; Lim, Y.; Chan, E. Antioxidant Properties of Hibiscus: Species Variation, Altitudinal Change, Coastal Influence and Floral Colour Change. J. Trop. Sci. 2009, 21, 307–315. [Google Scholar]
- Semerci, A.B.; Inceçayir, D.; Konca, T.; Tunca, H.; Tunç, K. Phenolic Constituents, Antioxidant and Antimicrobial Activities of Methanolic Extracts of Some Female Cones of Gymnosperm Plant. Indian J. Biochem. Biophys. 2020, 57, 298–303. [Google Scholar]
- Meziti, H.; Bouriche, H.; Kada, S.; Demirtas, I.; Kizil, M.; Senator, A.; Garrido, G. Phytochemical Analysis, and Antioxidant, Anti-Hemolytic and Genoprotective Effects of Quercus ilex L. and Pinus halepensis Mill. Methanolic Extracts. J. Pharm. Pharmacogn. Res. 2019, 7, 260–272. [Google Scholar] [CrossRef]
- Costa, R.A.; Lourenço, A.; Patrício, H.; Quilhó, T.; Gominho, J. Valorization of Pine Nut Industry Residues on a Biorefinery Concept. Waste Biomass Valor. 2023, 14, 4081–4099. [Google Scholar] [CrossRef]
- Faujan, N.H.; Abdullah, N.; Abdullah Sani, N.; Babji, A. Antioxidant Activity of Plant Methanolic Extracts Containing Phenolic Compounds. Afr. J. 2009, 8, 484–489. [Google Scholar]
- Kim, J.-H.; Kim, B.-J.; Seok, C.-H.; Won, I.; Kim, J.-H.; Kim, H.-P.; Heo, M.-Y. Biological Screening of 100 Plant Extracts for Cosmetic Use (1) Antioxidative Activity and Free Radical Scavenging Activity. J. Soc. Cosmet. Sci. Korea 1996, 22, 115–123. [Google Scholar]
- Sadeghi-aliabadi, H.; Emami, A.; Saidi, M.; Sadeghi, B.; Jafarian, A. Evaluation of In Vitro Cytotoxic Effects of Juniperus Foetidissima andJuniperus Sabina Extracts Against a Panel of Cancer Cells. Iran J. Pharm. Res. 2009, 8, 281–286. [Google Scholar] [CrossRef]
- Sarvmeili, N.; Jafarian-Dehkordi, A.; Zolfaghari, B. Cytotoxic Effects of Pinus eldarica Essential Oil and Extracts on HeLa and MCF-7 Cell Lines. Res. Pharm. Sci. 2016, 11, 476. [Google Scholar] [CrossRef]
- Jafarian, A.; Ghannadi, A.; Mohebi, B. Cytotoxic Effects of Chloroform and Hydroalcoholic Extracts of Aerial Parts of Cuscuta chinensis and Cuscuta epithymum on Hela, HT29 and MDA-MB-468 Tumor Cells. Res. Pharm. Sci. 2014, 9, 115. [Google Scholar] [PubMed]
- Li, C.; Liu, X.; Li, D.; Yu, D.; Peng, Y.; Shi, G.; Yang, M.; Zhang, L.; Wu, X. Pine Cone Extract of the Genus Yunnan Pinus and Its Preparation Method and Medicinal Use. Available online: https://patentimages.storage.googleapis.com/cb/a6/0c/1975487162d72d/CN104398540B.pdf (accessed on 26 June 2024).
- Li, K.; Li, Q.; Zhang, T.; Han, Z.; Li, J.; Liu, Z.; Zheng, F. Procyanidins from Pinus koraiensis Bark Inhibits HeLa Cell Growth by Inducing Apoptosis and Reducing Survivin Protein Expression. Afr. J. Biotechnol. 2011, 10, 7766–7771. [Google Scholar] [CrossRef]
- Shaw, G.; Morse, S.; Ararat, M.; Graham, F.L. Preferential Transformation of Human Neuronal Cells by Human Adenoviruses and the Origin of HEK 293 Cells. FASEB J. 2002, 16, 869–871. [Google Scholar] [CrossRef]
- Pulix, M.; Lukashchuk, V.; Smith, D.C.; Dickson, A.J. Molecular Characterization of HEK293 Cells as Emerging Versatile Cell Factories. Curr. Opin. Biotechnol. 2021, 71, 18–24. [Google Scholar] [CrossRef]
- Yuan, F.; Yu, R.; Yin, Y.; Shen, J.; Dong, Q.; Zhong, L.; Song, L. Structure Characterization and Antioxidant Activity of a Novel Polysaccharide Isolated from Ginkgo biloba. Int. J. Biol. Macromol. 2010, 46, 436–439. [Google Scholar] [CrossRef]
- Zhang, H.; Zou, P.; Zhao, H.; Qiu, J.; Regenstein, J.M.; Yang, X. Isolation, Purification, Structure and Antioxidant Activity of Polysaccharide from Pinecones of Pinus koraiensis. Carbohydr. Polym. 2021, 251, 117078. [Google Scholar] [CrossRef] [PubMed]
- Sahin, H.; Yalcin, O. Conifer Cones: An Alternative Raw Material for Industry. Br. J. Pharm. Res. 2017, 17, 1–9. [Google Scholar] [CrossRef]
- Santos, P.; Genisheva, Z.; Rocha, C.; Teixeira, J. Green and Sustainable Valorization of Bioactive Phenolic Compounds from Pinus By-Products. Molecules 2020, 25, 2931. [Google Scholar] [CrossRef] [PubMed]
- Myo, H.; Khat-udomkiri, N. Optimization of Ultrasound-Assisted Extraction of Bioactive Compounds from Coffee Pulp Using Propylene Glycol as a Solvent and Their Antioxidant Activities. Ultrason. Sonochem. 2022, 89, 106127. [Google Scholar] [CrossRef]
- Burda, S.; Oleszek, W. Antioxidant and Antiradical Activities of Flavonoids. J. Agric. Food Chem. 2001, 49, 2774–2779. [Google Scholar] [CrossRef]
- Patrick, L. Beta-Carotene: The Controversy Continues. Altern. Med. Rev. 2000, 5, 530. [Google Scholar] [PubMed]
- Mahdhi, A.; Ghazghazi, H.; El Aloui, M.; Ben Salem, R.; Rigane, G. Identification and Quantification of Phenolic and Fatty Acid Profiles in Pinus halepensis Mill. Seeds by LC-ESI-MS and GC: Effect of Drying Methods on Chemical Composition. Food Sci. Nutr. 2021, 9, 1907–1916. [Google Scholar] [CrossRef] [PubMed]
- Lodhi, M.A.K.; Killingbeck, K.T. Effects of Pine-Produced Chemicals on Selected Understory Species in a Pinus ponderosa Community. J. Chem. Ecol. 1982, 8, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Sarria Villa, R.A.; Gallo Corredor, J.; Páez, M. Isolation of Catechin and Gallic Acid from Colombian Bark of Pinus patula. Chem. Sci. J. 2017, 8, 174. [Google Scholar] [CrossRef]
- Zhang, S.; Gai, Z.; Gui, T.; Chen, J.; Chen, Q.; Li, Y. Antioxidant Effects of Protocatechuic Acid and Protocatechuic Aldehyde: Old Wine in a New Bottle. Evid. Based Complement. Altern. Med. 2021, 2021, 6139308. [Google Scholar] [CrossRef] [PubMed]
- Iravani, S.; Zolfaghari, B. Phytochemical Analysis of Pinus eldarica Bark. Res. Pharm. Sci. 2014, 9, 243–250. [Google Scholar] [PubMed]
- Fernandez, C.; Lelong, B.; Vila, B.; Mévy, J.-P.; Robles, C.; Greff, S.; Dupouyet, S.; Bousquet-Mélou, A. Potential Allelopathic Effect of Pinus halepensis in the Secondary Succession: An Experimental Approach. Chemoecology 2006, 16, 97–105. [Google Scholar] [CrossRef]
- Nuopponen, M.; Willför, S.; Jääskeläinen, A.-S.; Vuorinen, T. A UV Resonance Raman (UVRR) Spectroscopic Study on the Extractable Compounds in Scots Pine (Pinus sylvestris) Wood: Part II. Hydrophilic Compounds. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2004, 60, 2963–2968. [Google Scholar] [CrossRef]
- Gabaston, J.; Richard, T.; Cluzet, S.; Palos Pinto, A.; Dufour, M.-C.; Corio-Costet, M.-F.; Mérillon, J.-M. Pinus pinaster Knot: A Source of Polyphenols against Plasmopara Viticola. J. Agric. Food Chem. 2017, 65, 8884–8891. [Google Scholar] [CrossRef]
- Kumar, N.; Goel, N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep. 2019, 24, e00370. [Google Scholar] [CrossRef]
- Pei, K.; Ou, J.; Huang, J.; Ou, S. P-Coumaric Acid and Its Conjugates: Dietary Sources, Pharmacokinetic Properties and Biological Activities. J. Sci. Food Agric. 2016, 96, 2952–2962. [Google Scholar] [CrossRef]
- Ghareib, H.R.A.; Abdelhamed, M.S.; Ibrahim, O.H. Antioxidative Effects of the Acetone Fraction and Vanillic Acid from Chenopodium Murale on Tomato Plants. Weed Biol. Manag. 2010, 10, 64–72. [Google Scholar] [CrossRef]
- Kaur, J.; Gulati, M.; Singh, S.K.; Kuppusamy, G.; Kapoor, B.; Mishra, V.; Gupta, S.; Arshad, M.F.; Porwal, O.; Jha, N.K. Discovering Multifaceted Role of Vanillic Acid beyond Flavours: Nutraceutical and Therapeutic Potential. Trends Food Sci. Technol. 2022, 122, 187–200. [Google Scholar] [CrossRef]
- Fekih, N.; Allali, H.; Merghache, S.; Chaïb, F.; Merghache, D.; El Amine, M.; Djabou, N.; Muselli, A.; Tabti, B.; Costa, J. Chemical Composition and Antibacterial Activity of Pinus halepensis Miller Growing in West Northern of Algeria. Asian Pac. J. Trop. Dis. 2014, 4, 97–103. [Google Scholar] [CrossRef]
- Pasqualini, V.; Robles, C.; Garzino, S.; Greff, S.; Bousquet-Melou, A.; Bonin, G. Phenolic Compounds Content in Pinus halepensis Mill. Needles: A Bioindicator of Air Pollution. Chemosphere 2003, 52, 239–248. [Google Scholar] [CrossRef]
- Mohamed, A.A.; Behiry, S.I.; Ali, H.M.; EL-Hefny, M.; Salem, M.Z.M.; Ashmawy, N.A. Phytochemical Compounds of Branches from P. halepensis Oily Liquid Extract and S. terebinthifolius Essential Oil and Their Potential Antifungal Activity. Processes 2020, 8, 330. [Google Scholar] [CrossRef]
- Ashmawy, N.; Farraj, D.; Salem, M.; Elshikh, M.; Al-Kufaidy, R.; Alshammari, M.; Salem, A.Z. Potential Impacts of Pinus halepensis Miller Trees as a Source of Phytochemical Compounds: Antibacterial Activity of the Cones Essential Oil and n-Butanol Extract. Agrofor. Syst. 2020, 94. [Google Scholar] [CrossRef]
- Serin, Z.; Kilic Pekgözlü, A.; Ünaldı, E. Chemical Composition of Pinus brutia Ten. Turpentine. In Proceedings of the International Forest Products Congress, Trabzon, Turkey, 26–29 September 2018; pp. 318–321. [Google Scholar]
- Ameur, E.; Sarra, M.E.; Khtatfa, T.; Mariem, K.; Nabil, A.; Lynen, F.; Larbi, K.M. Chemical Composition of Five Tunisian Pinus Species’ Essential Oils and Effect of Their Blends on Otitis Infection. Ind. Crops Prod. 2022, 180, 114688. [Google Scholar] [CrossRef]
- Fox, T.R.; Comerford, N.B. Low-Molecular-Weight Organic Acids in Selected Forest Soils of the Southeastern USA. Soil Sci. Soc. Am. J. 1990, 54, 1139–1144. [Google Scholar] [CrossRef]
- Abd-ElGawad, A.M.; Elshamy, A.I.; Al-Rowaily, S.L.; El-Amier, Y.A. Habitat Affects the Chemical Profile, Allelopathy, and Antioxidant Properties of Essential Oils and Phenolic Enriched Extracts of the Invasive Plant Heliotropium curassavicum. Plants 2019, 8, 482. [Google Scholar] [CrossRef]
- El Omari, N.; Ezzahrae Guaouguaou, F.; El Menyiy, N.; Benali, T.; Aanniz, T.; Chamkhi, I.; Balahbib, A.; Taha, D.; Shariati, M.A.; Zengin, G.; et al. Phytochemical and Biological Activities of Pinus halepensis Mill., and Their Ethnomedicinal Use. J. Ethnopharmacol. 2021, 268, 113661. [Google Scholar] [CrossRef] [PubMed]
- Salem, M.Z.M.; Nasser, R.A.; Zeidler, A.; Elansary, H.O.; Aref, I.M.; Böhm, M.; Ali, H.M.; Ahmed, A.I. Methylated Fatty Acids from Heartwood and Bark of Pinus sylvestris, Abies alba, Picea abies, and Larix decidua: Effect of Strong Acid Treatment. BioResources 2015, 10, 7715–7724. [Google Scholar] [CrossRef]
- Ait Atmane, S.; Aksoylu Özbek, Z.; Günç Ergönül, P.; Khettal, B. Valorization of Pinus halepensis Mill. Seed Oil: Physicochemical Characteristics, Bioactive Compounds, and Antioxidant Activity as Affected by Location and Extraction Method. J. Food Process. Preserv. 2021, 45, e15548. [Google Scholar] [CrossRef]
- Ayadi, J.; Debouba, M.; Rahmani, R.; Bouajila, J. The Phytochemical Screening and Biological Properties of Brassica napus L. Var. Napobrassica (Rutabaga) Seeds. Molecules 2023, 28, 6250. [Google Scholar] [CrossRef]
- Ben Khadher, T.; Sassi-Aydi, S.; Aydi, S.; Mars, M.; Bouajila, J. Phytochemical Profiling and Biological Potential of Prunus Dulcis Shell Extracts. Plants 2023, 12, 2733. [Google Scholar] [CrossRef]
- Kusch, P. Gas Chromatography: Derivatization, Sample Preparation, Application; BoD—Books on Demand; IntechOpen: London, UK, 2019; ISBN 978-1-83881-865-4. [Google Scholar]
Yields (%) | |||
---|---|---|---|
Fractional Extraction | 1SV | 2SV | 3SV |
PA-P | 4.30 | 5.50 | 12.52 |
PA-C | 2.30 | 1.90 | 3.87 |
PB-P | 1.20 | 4.59 | 8.47 |
PB-C | 0.50 | 2.54 | 2.84 |
PP-P | 1.13 | 3.00 | 3.08 |
PP-C | 0.70 | 1.60 | 1.18 |
RSC (mg GE/g DW) | |||
---|---|---|---|
Fractional Extraction | 1SV | 2SV | 3SV |
PA-P | 10.86 ± 2.09 aC | 70.93 ± 2.37 aB | 367.24 ± 1.48 aA |
PA-C | 21.84 ± 1.62 aC | 82.59 ± 3.97 aB | 594.17 ± 5.08 aA |
PB-P | 19.09 ± 2.72 bC | 90.69 ± 9.70 bB | 282.55 ± 9.31 bA |
PB-C | 25.34 ± 4.79 bC | 87.02 ± 3.88 bB | 144.18 ± 9.01 bA |
PP-P | 7.96 ± 1.14 cC | 70.72 ± 3.85 cB | 201.32 ± 8.93 cA |
PP-C | 21.77 ± 4.30 cC | 80.87 ± 4.08 cB | 231.37 ± 7.94 cA |
Fractional Extraction | |||||||
---|---|---|---|---|---|---|---|
3SV Extracts | |||||||
PA-P | PA-C | PB-P | PB-C | PP-P | PP-C | Ascorbic Acid | |
DPPH IC50 (µg/mL) | 14.16 ± 2.25 b | 16.63 ± 0.67 b | 26.57 ± 0.95 d | 50.01 ± 3.74 e | 10.54 ± 0.24 a | 22.46 ± 1.82 c | 3.56 ± 0.35 |
Extraits | % Inhibition Hela Cell a | % Inhibition HepG2 Cell b | % Inhibition HEK-293 Cell c |
---|---|---|---|
PA-P-1SV | 76.07 ± 6.81 | 50.99 ± 5.44 | 11.01 ± 3.96 |
PA-C-1SV | 67.64 ± 6.32 | 37.45 ± 4.72 | 11.05 ± 4.07 |
PA-P-2SV | 75.61 ± 3.88 | 57.59 ± 0.95 | 7.22 ± 2.09 |
PA-C-2SV | 50.77 ± 3.43 | 47.45 ± 3.23 | 5.27 ± 1.05 |
PA-P-3SV | 21.85 ± 1.51 | 41.11 ± 4.41 | 1.43 ± 0.60 |
PA-C-3SV | 21.29 ± 0.95 | 13.54 ± 4.53 | 5.34 ± 1.76 |
PB-P-1SV | 69.58 ± 5.25 | 30.99 ± 5.31 | 6.78 ± 1.14 |
PB-C-1SV | 65.07 ± 3.98 | 43.59 ± 3.33 | 8.99 ± 1.91 |
PB-P-2SV | 60.81 ± 4.44 | 33.44 ± 2.11 | 8.04 ± 3.78 |
PB-C-2SV | 56.22 ± 4.72 | 27.07 ± 3.27 | 5.05 ± 2.41 |
PB-P-3SV | 19.56 ± 0.78 | 16.11 ± 2.69 | 4.26 ± 1.33 |
PB-C-3SV | 22.54 ± 2.59 | 14.52 ± 3.66 | 4.83 ± 1.09 |
PP-P-1SV | 74.12 ±5.61 | 37.51 ± 2.16 | 5.73 ± 1.11 |
PP-C-1SV | 66.67 ± 5.78 | 50.08 ± 5.01 | 2.28 ± 0.76 |
PP-P-2SV | 66.64 ± 3.33 | 50.83 ± 3.03 | 9.28 ± 0.71 |
PP-C-2SV | 66.18 ± 3.02 | 35.18 ± 2.17 | 6.12 ± 2.19 |
PP-P-3SV | 42.06 ± 5.89 | 17.98 ± 1.25 | 2.19 ± 0.48 |
PP-C-3SV | 24.69 ± 1.23 | 15.57 ± 2.91 | 3.66 ± 1.17 |
Tamoxifen | 77.72 ± 4.12 | 70.33 ± 3.91 | 65.22 ± 2.46 |
Variables | TPC | RSC | % Inhibition DPPH | % Inhibition Hela | % Inhibition HepG2 |
---|---|---|---|---|---|
TPC | 1.00 | 0.92 | 0.86 | −0.84 | −0.54 |
RSC | 0.91 | 1.00 | 0.83 | −0.82 | −0.64 |
% inhibition DPPH | 0.86 | 0.83 | 1.00 | −0.83 | −0.74 |
% inhibition Hela | −0.84 | −0.82 | −0.82 | 1.00 | 0.76 |
% inhibition HepG2 | −0.55 | −0.64 | −0.74 | 0.76 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chammam, A.; Fillaudeau, L.; Romdhane, M.; Bouajila, J. Chemical Composition and In Vitro Bioactivities of Extracts from Cones of P. halepensis, P. brutia, and P. pinea: Insights into Pharmaceutical and Cosmetic Potential. Plants 2024, 13, 1802. https://doi.org/10.3390/plants13131802
Chammam A, Fillaudeau L, Romdhane M, Bouajila J. Chemical Composition and In Vitro Bioactivities of Extracts from Cones of P. halepensis, P. brutia, and P. pinea: Insights into Pharmaceutical and Cosmetic Potential. Plants. 2024; 13(13):1802. https://doi.org/10.3390/plants13131802
Chicago/Turabian StyleChammam, Amel, Luc Fillaudeau, Mehrez Romdhane, and Jalloul Bouajila. 2024. "Chemical Composition and In Vitro Bioactivities of Extracts from Cones of P. halepensis, P. brutia, and P. pinea: Insights into Pharmaceutical and Cosmetic Potential" Plants 13, no. 13: 1802. https://doi.org/10.3390/plants13131802
APA StyleChammam, A., Fillaudeau, L., Romdhane, M., & Bouajila, J. (2024). Chemical Composition and In Vitro Bioactivities of Extracts from Cones of P. halepensis, P. brutia, and P. pinea: Insights into Pharmaceutical and Cosmetic Potential. Plants, 13(13), 1802. https://doi.org/10.3390/plants13131802