Isotope-Based Techniques to Investigate Factors Influencing Water Use Efficiency in Pinus koraiensis Leaves during Plant Growth
Abstract
1. Introduction
2. Results
2.1. Trends in Leaf δ13C and δ18O as a Function of Plant Size
2.2. Relationship between δ13C in P. koraiensis Leaves and Related Leaf Functional Traits and Abiotic Factors
2.3. Influencing Factors of δ13C in P. koraiensis Leaves
3. Discussion
3.1. Variation in the Water Use Efficiency of P. koraiensis According to Plant Size
3.2. Strategies for Water Use Efficiency at Different Stages of P. koraiensis Growth
3.3. Factors Influencing δ13C in P. koraiensis Leaves
4. Materials and Methods
4.1. Site Profile
4.2. Sample Collection
4.3. Determination of Leaf Traits
4.4. Determination of Abiotic Factors
4.5. Data Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Flanagan, L.B.; Farquhar, G.D. Variation in the carbon and oxygen isotope composition of plant biomass and its relationship to water-use efficiency at the leaf- and ecosystem-scales in a northern Great Plains grassland. Plant Cell Environ. 2014, 37, 425–438. [Google Scholar] [CrossRef] [PubMed]
- Bohn, B.A.; Kershner, J.L. Establishing aquatic restoration priorities using a watershed approach. J. Environ. Manag. 2002, 64, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Guerrieri, R.; Lepine, L.; Asbjornsen, H.; Xiao, J.F.; Ollinger, S.V. Evapotranspiration and water use efficiency in relation to climate and canopy nitrogen in US forests. J. Geophys. Res. Biogeosciences 2016, 121, 2610–2629. [Google Scholar] [CrossRef]
- Blonder, B.; Violle, C.; Bentley, L.P.; Enquist, B.J. Venation networks and the origin of the leaf economics spectrum. Ecol. Lett. 2011, 14, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Baird, A.S.; Taylor, S.H.; Pasquet-Kok, J.; Vuong, C.; Zhang, Y.; Watcharamongkol, T.; Scoffoni, C.; Edwards, E.J.; Christin, P.A.; Osborne, C.P.; et al. Developmental and biophysical determinants of grass leaf size worldwide. Nature 2021, 592, 242–247. [Google Scholar] [CrossRef] [PubMed]
- Gspaltl, M.; Bauerle, W.; Binkley, D.; Sterba, H. Leaf area and light use efficiency patterns of Norway spruce under different thinning regimes and age classes. For. Ecol. Manag. 2013, 288, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Osnas, J.L.D.; Katabuchi, M.; Kitajima, K.; Wright, S.J.; Reich, P.B.; Van Bael, S.A.; Kraft, N.J.B.; Samaniego, M.J.; Pacala, S.W.; Lichstein, J.W. Divergent drivers of leaf trait variation within species, among species, and among functional groups. Proc. Natl. Acad. Sci. USA 2018, 115, 5480–5485. [Google Scholar] [CrossRef]
- Wright, I.J.; Reich, P.B.; Westoby, M.; Ackerly, D.D.; Baruch, Z.; Bongers, F.; Cavender-Bares, J.; Chapin, T.; Cornelissen, J.H.C.; Diemer, M.; et al. The worldwide leaf economics spectrum. Nature 2004, 428, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xu, Z. Review on research of leaf economics spectrum. Chin. J. Plant Ecol. 2014, 38, 1135–1153. [Google Scholar]
- Blackman, C.J.; Aspinwall, M.J.; Resco de Dios, V.; Smith, R.A.; Tissue, D.T.; Whitehead, D. Leaf photosynthetic, economics and hydraulic traits are decoupled among genotypes of a widespread species of eucalypt grown under ambient and elevated CO2. Funct. Ecol. 2016, 30, 1491–1500. [Google Scholar] [CrossRef]
- Li, L.; McCormack, M.L.; Ma, C.G.; Kong, D.L.; Zhang, Q.; Chen, X.Y.; Zeng, H.; Niinemets, Ü.; Guo, D.L. Leaf economics and hydraulic traits are decoupled in five species-rich tropical-subtropical forests. Ecol. Lett. 2015, 18, 899–906. [Google Scholar] [CrossRef] [PubMed]
- Conti, G.; Kowaljow, E.; Baptist, F.; Rumpel, C.; Cuchietti, A.; Harguindeguy, N.P.; Díaz, S. Altered soil carbon dynamics under different land-use regimes in subtropical seasonally-dry forests of central Argentina. Plant Soil. 2016, 403, 375–387. [Google Scholar] [CrossRef]
- Farquhar, G.D.; Ehleringer, J.R.; Hubick, K.T. Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Biol. 1989, 40, 503–537. [Google Scholar] [CrossRef]
- Dawson, T.E.; Mambelli, S.; Plamboeck, A.H.; Templer, P.H.; Tu, K.P. Stable isotopes in plant ecology. Annu. Rev. Ecol. Syst. 2002, 33, 507–559. [Google Scholar] [CrossRef]
- Keitel, C.; Matzarakis, A.; Rennenberg, H.; Gessler, A. Carbon isotopic composition and oxygen isotopic enrichment in phloem and total leaf organic matter of European beech (Fagus sylvatica L.) along a climate gradient. Plant Cell Environ. 2006, 29, 1492–1507. [Google Scholar] [CrossRef] [PubMed]
- Prieto, I.; Querejeta, J.I.; Segrestin, J.; Volaire, F.; Roumet, C. Leaf carbon and oxygen isotopes are coordinated with the leaf economics spectrum in Mediterranean rangeland species. Funct. Ecol. 2018, 32, 612–625. [Google Scholar] [CrossRef]
- Mathias, J.M.; Thomas, R.B. Global tree intrinsic water use efficiency is enhanced by increased atmospheric CO2 and modulated by climate and plant functional types. Proc. Natl. Acad. Sci. USA 2021, 118, e2014286118. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wen, X.; Lyu, S.; Zhang, X.; Li, S.; Guo, Q. Vegetation recovery alters soil N status in subtropical karst plateau area: Evidence from natural abundance δ15N and δ18O. Plant Soil. 2021, 460, 609–623. [Google Scholar] [CrossRef]
- Wang, J.; Wen, X.F.; Lyu, S.; Guo, Q.J. Soil properties mediate ecosystem intrinsic water use efficiency and stomatal conductance via taxonomic diversity and leaf economic spectrum. Sci. Total Environ. 2021, 783, 146968. [Google Scholar] [CrossRef]
- Wang, J.; Wen, X.F.; Lyu, S.D.; Guo, Q.J. Transition in multi-dimensional leaf traits and their controls on water use strategies of co-occurring species along a soil limiting-resource gradient. Ecol. Indic. 2021, 128, 107838. [Google Scholar] [CrossRef]
- Trueba, S.; Théroux-Rancourt, G.; Earles, J.M.; Buckley, T.N.; Love, D.; Johnson, D.M.; Brodersen, C. The three-dimensional construction of leaves is coordinated with water use efficiency in conifers. New Phytol. 2021, 233, 851–861. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Jin, G.; Liu, Z. Plant size, branch age and environment factors co-drive variations of branch traits of Pinus koraiensis. Chin. J. Plant Ecol. 2020, 44, 939–950. [Google Scholar] [CrossRef]
- Kuusk, V.; Niinemets, Ü.; Valladares, F. A major trade-off between structural and photosynthetic investments operative across plant and needle ages in three Mediterranean pines. Tree Physiol. 2018, 38, 543–557. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.C. Photosynthetic capacity peaks at intermediate size in temperate deciduous trees. Tree Physiol. 2010, 30, 555–573. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.C.; Liu, Y.H. Response of Korean pine’s functional traits to geography and climate. PLoS ONE 2017, 12, 15. [Google Scholar] [CrossRef] [PubMed]
- Li, J. The pattern and dynamics of Pinus koraiensis population. J. Northeast. Forestry Univ. 1986, 14, 33–38. [Google Scholar]
- Liu, Z.L.; Chen, J.M.; Jin, G.Z.; Qi, Y.J. Estimating seasonal variations of leaf area index using litterfall collection and optical methods in four mixed evergreen-deciduous forests. Agric. Forest Meteorol. 2015, 209, 36–48. [Google Scholar] [CrossRef]
- Liu, Z.L.; Hikosaka, K.; Li, F.R.; Zhu, L.J.; Jin, G.Z. Plant size, Environment factors and functional traits jointly shape the stem radius growth rate in an evergreen coniferous species across ontogenetic stages. J. Plant Ecol. 2021, 14, 257–269. [Google Scholar] [CrossRef]
- Ji, M.; Jin, G.; Liu, Z. Effects of ontogenetic stage and leaf age on leaf functional traits and the relationships between traits in Pinus koraiensis. J. For. Res. 2021, 32, 2459–2471. [Google Scholar] [CrossRef]
- Mencuccini, M.; Martínez-Vilalta, J.; Hamid, H.A.; Korakaki, E.; Vanderklein, D. Evidence for age- and size-mediated controls of tree growth from grafting studies. Tree Physiol. 2007, 27, 463–473. [Google Scholar] [CrossRef]
- Ambrose, A.R.; Sillett, S.C.; Dawson, T.E. Effects of tree height on branch hydraulics, leaf structure and gas exchange in California redwoods. Plant Cell Environ. 2009, 32, 743–757. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, T.M.; Silva, L.C.R.; Horwath, W.R. Integrating effects of species composition and soil properties to predict shifts in montane forest carbon-water relations. Proc. Natl. Acad. Sci. USA 2018, 115, E4219–E4226. [Google Scholar] [CrossRef] [PubMed]
- Tomás, M.; Flexas, J.; Copolovici, L.; Galmés, J.; Hallik, L.; Medrano, H.; Ribas-Carbó, M.; Tosens, T.; Vislap, V.; Niinemets, Ü. Importance of leaf anatomy in determining mesophyll diffusion conductance to CO2 across species: Quantitative limitations and scaling up by models. J. Exp. Bot. 2013, 64, 2269–2281. [Google Scholar] [CrossRef] [PubMed]
- Veromann-Jürgenson, L.L.; Tosens, T.; Laanisto, L.; Niinemets, Ü. Extremely thick cell walls and low mesophyll conductance: Welcome to the world of ancient living! J. Exp. Bot. 2017, 68, 1639–1653. [Google Scholar] [CrossRef] [PubMed]
- Terashima, I.; Hanba, Y.T.; Tholen, D.; Niinemets, Ü. Leaf functional anatomy in relation to photosynthesis. Plant Physiol. 2011, 155, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.Y.; Sun, W.; Sun, H.L.; Wang, S.M. Stable carbon isotope characteristics of desert plants in the Junggar Basin, China. Ecol. Res. 2012, 27, 115–124. [Google Scholar] [CrossRef]
- Zhou, Y.C.; Fan, J.W.; Harris, W.; Zhong, H.P.; Zhang, W.Y.; Cheng, X.L. Relationships between C3 Plant foliar carbon isotope composition and element contents of grassland species at high altitudes on the Qinghai-Tibet Plateau, China. PLoS ONE 2013, 8, e60794. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.B.; Zeng, S.M.; Qin, H.L.; Zhou, K.X.; Yang, H.; Lan, F.N.; Huang, F.; Cao, J.H.; Müller, C. Low nitrate retention capacity in calcareous soil under woodland in the karst region of southwestern China. Soil. Biol. Biochem. 2016, 97, 99–101. [Google Scholar] [CrossRef]
- Niinemets, Ü.; Lukjanova, A. Needle longevity, shoot growth and branching frequency in relation to site fertility and within-canopy light conditions in Pinus sylvestris. Ann. For. Sci. 2003, 60, 195–208. [Google Scholar] [CrossRef]
- Terashima, I.; Hanba, Y.T.; Tazoe, Y.; Vyas, P.; Yano, S. Irradiance and phenotype: Comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion. J. Exp. Bot. 2006, 57, 343–354. [Google Scholar] [CrossRef]
- Cavaleri, M.A.; Oberbauer, S.F.; Clark, D.B.; Clark, D.A.; Ryan, M.G. Height is more important than light in determining leaf morphology in a tropical forest. Ecology 2010, 91, 1730–1739. [Google Scholar] [CrossRef] [PubMed]
- Lusk, C.H.; Warton, D.I. Global meta-analysis shows that relationships of leaf mass per area with species shade tolerance depend on leaf habit and ontogeny. New Phytol. 2007, 176, 764–774. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Song, X.Y.; Cao, M.; Deng, X.B.; Zhang, W.F.; Yang, X.F.; Swenson, N.G. On the modelling of tropical tree growth: The importance of intra-specific trait variation, non-linear functions and phenotypic integration. Ann. Bot. 2021, 127, 533–542. [Google Scholar] [CrossRef] [PubMed]
- Lusk, C.H. Leaf area and growth of juvenile temperate evergreens in low light: Species of contrasting shade tolerance change rank during ontogeny. Funct. Ecol. 2004, 18, 820–828. [Google Scholar] [CrossRef]
- Hu, Q.P.; Guo, Z.H.; Li, C.Y.; Ma, L.Y. Leaf morphology and photosynthetic characteristics of seedlings of a deciduous and an evergreen broad-leaved species under different light regimes in subtropical forests. Sheng Tai Xue Bao 2008, 28, 3262–3270. [Google Scholar]
- Farquhar, G.D.; Sharkey, T.D. Stomatal conductance and photosynthesis. Annu. Rev. Plant Physiol. 1982, 33, 317–345. [Google Scholar] [CrossRef]
- Niinemets, Ü.; Al Afas, N.; Cescatti, A.; Pellis, A.; Ceulemans, R. Petiole length and biomass investment in support modify light-interception efficiency in dense poplar plantations. Tree Physiol. 2004, 24, 141–154. [Google Scholar] [CrossRef] [PubMed]
- Santiago, L.S.; Wright, S.J.; Harms, K.E.; Yavitt, J.B.; Korine, C.; Garcia, M.N.; Turner, B.L. Tropical tree seedling growth responses to nitrogen, phosphorus and potassium addition. J. Ecol. 2012, 100, 309–316. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, W.C.; Xu, M.P.; Deng, J.; Han, X.H.; Yang, G.H.; Feng, Y.Z.; Ren, G.X. Response of forest growth to C:N:P stoichiometry in plants and soils during Robinia pseudoacacia afforestation on the Loess Plateau, China. Geoderma 2019, 337, 280–289. [Google Scholar] [CrossRef]
- Liu, F.D.; Yang, W.J.; Wang, Z.S.; Xu, Z.; Liu, H.; Zhang, M.; Liu, Y.H.; An, S.Q.; Sun, S.C. Plant size effects on the relationships among specific leaf area, leaf nutrient content, and photosynthetic capacity in tropical woody species. Acta Oecol. 2010, 36, 149–159. [Google Scholar] [CrossRef]
- Yang, D.X.; Song, L.; Jin, G.Z. The soil C:N:P stoichiometry is more sensitive than the leaf C:N:P stoichiometry to nitrogen addition: A four-year nitrogen addition experiment in a Pinus koraiensis plantation. Plant Soil 2019, 442, 183–198. [Google Scholar] [CrossRef]
- Yang, L.; Li, W. Fine root distribution and turnover in a broad-leaved and Korean pine climax forest of the Changbai Mountain in China. For. Stud. China 2005, 27, 1–5. [Google Scholar]
- Chen, J.M.; Govind, A.; Sonnentag, O.; Zhang, Y.Q.; Barr, A.; Amiro, B. Leaf area index measurements at Fluxnet-Canada forest sites. Agric. Forest Meteorol. 2006, 140, 257–268. [Google Scholar] [CrossRef]
- Frazer, G.W.; Canham, C.D.; Lertzman, K.P. Gap light analyzer (GLA), Version 2.0: Image-processing software to analyze true-color, hemispherical canopy photographs. Bull. Ecol. Soc. Am. 2000, 81, 191–197. [Google Scholar]
DBH | |δ13C| | δ18O | LN | LP | LC | LD | |
---|---|---|---|---|---|---|---|
|δ13C| | −0.76 *** | ||||||
δ18O | −0.67 *** | 0.62 *** | |||||
LN | 0.01 | −0.19 | −0.033 | ||||
LP | −0.47 ** | 0.46 ** | 0.46 ** | −0.18 | |||
LC | −0.26 | 0.20 | −0.01 | 0.06 | 0.05 | ||
LD | 0.40 * | −0.37 * | −0.24 | 0.09 | −0.32 * | −0.01 | |
LMA | 0.71 *** | −0.59 *** | −0.49 ** | 0.18 | −0.30 | −0.01 | 0.72 *** |
|δ13C| | δ18O | Soil pH | Water | Soil C | Soil P | Soil N | |
---|---|---|---|---|---|---|---|
δ18O | 0.62 *** | ||||||
Soil pH | 0.22 | 0.01 | |||||
Water | 0.01 | 0.01 | 0.34 * | ||||
Soil C | −0.21 | −0.14 | 0.26 | 0.73 *** | |||
Soil P | −0.22 | −0.05 | 0.17 | 0.63 *** | 0.78 *** | ||
Soil N | −0.22 | −0.05 | 0.17 | 0.63 *** | 0.78 *** | 1 *** | |
Light | −0.23 | 0.07 | −0.07 | −0.10 | 0.18 *** | 0.13 | 0.13 |
DBH | |δ13C| | δ18O | LC | LN | LP | LD | |
---|---|---|---|---|---|---|---|
|δ13C| | 0.16 | ||||||
δ18O | 0.51 ** | −0.18 | |||||
LC | −0.07 | 0.071 | −0.35 * | ||||
LN | 0.02 | 0.28 | −0.10 | 0.21 | |||
LP | −0.17 | 0.18 | −0.36 * | 0.64 *** | 0.45 ** | ||
LD | 0.30 | 0.11 | −0.17 | 0.36 * | −0.30 | 0.17 | |
LMA | 0.17 | 0.22 | −0.16 | 0.10 | −0.26 | −0.01 | 0.72 *** |
|δ13C| | δ18O | Soil pH | Water | Soil C | Soil P | Soil N | |
---|---|---|---|---|---|---|---|
δ18O | 0.17 | ||||||
Soil pH | 0.15 | 0.46 ** | |||||
Water | −0.12 | −0.58 *** | −0.27 | ||||
Soil C | 0.14 | −0.43 ** | −0.23 | 0.65 *** | |||
Soil P | −0.22 | −0.29 | 0.05 | 0.41 * | 0.06 | ||
Soil N | 0.30 | −0.08 | 0.16 | 0.22 | 0.45 ** | −0.02 | |
Light | 0.25 | 0.23 | 0.08 | 0.01 | −0.09 | 0.27 | −0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, T.; Jin, G.; Liu, Z. Isotope-Based Techniques to Investigate Factors Influencing Water Use Efficiency in Pinus koraiensis Leaves during Plant Growth. Plants 2024, 13, 1771. https://doi.org/10.3390/plants13131771
Fang T, Jin G, Liu Z. Isotope-Based Techniques to Investigate Factors Influencing Water Use Efficiency in Pinus koraiensis Leaves during Plant Growth. Plants. 2024; 13(13):1771. https://doi.org/10.3390/plants13131771
Chicago/Turabian StyleFang, Tiantian, Guangze Jin, and Zhili Liu. 2024. "Isotope-Based Techniques to Investigate Factors Influencing Water Use Efficiency in Pinus koraiensis Leaves during Plant Growth" Plants 13, no. 13: 1771. https://doi.org/10.3390/plants13131771
APA StyleFang, T., Jin, G., & Liu, Z. (2024). Isotope-Based Techniques to Investigate Factors Influencing Water Use Efficiency in Pinus koraiensis Leaves during Plant Growth. Plants, 13(13), 1771. https://doi.org/10.3390/plants13131771