Predicting Field Effectiveness of Endophytic Bacillus subtilis Inoculants for Common Bean Using Morphometric and Biochemical Markers
Abstract
:1. Introduction
2. Results
2.1. The Influence of Bean Seed Inoculation with Endophytic Bacterial Strains on the Physiological Characteristics and Productivity of Plants under Field Conditions
2.2. The Influence of Bean Inoculation with Strains of Endophytic Bacteria on the Growth and Antioxidant Status of 7-d-Old Plants in Laboratory Conditions (In Vitro)
2.3. Analysis of the Correlation Relationships between the Activity of the Antioxidant System of 7-d-Old Plants In Vitro and the Final Productivity of Bean Plants Inoculated with Appropriate Strain-Dose Combinations of Endophytic Bacteria
3. Discussion
4. Materials and Methods
4.1. Plant Material and Bacterial Strains
4.2. Bacterial Inoculants Preparation
4.3. Seed Inoculation
4.4. Small-Scale Field Experiments
4.4.1. Determination of Plant Growth and Productivity Parameters
4.4.2. Determination of Water Content in Plant Leaves
4.5. Laboratory Experiments
4.5.1. Determination of Seedlings Growth
4.5.2. Determination of Catalase (CAT) Activity
4.5.3. Determination of Peroxidase (POD) Activity
4.5.4. Determination of Superoxide Dismutase (SOD) Activity
4.5.5. Determination of Hydrogen Peroxide (H2O2) Content
4.5.6. Determination of Malondialdehyde (MDA) Content
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Uebersax, M.A.; Cichy, K.A.; Gomez, F.E.; Porch, T.G.; Heitholt, J.; Osorno, J.M.; Kamfwa, K.; Snapp, S.S.; Bales, S. Dry beans (Phaseolus vulgaris L.) as a vital component of sustainable agriculture and food security—A review. Legume Sci. 2022, 5, e155. [Google Scholar] [CrossRef]
- FAO. Crop Production and Trade Data. 2022. Available online: http://www.fao.org/faostat/en/#data (accessed on 10 November 2022).
- Celmeli, T.; Sari, H.; Canci, H.; Sari, D.; Adak, A.; Eker, T.; Toker, C. The Nutritional Content of Common Bean (Phaseolus vulgaris L.) Landraces in Comparison to Modern Varieties. Agronomy 2018, 8, 166. [Google Scholar] [CrossRef]
- Assefa, T.; Mahama, A.A.; Brown, A.V.; Cannon, E.K.S.; Rubyogo, J.C.; Rao, I.M.; Blair, M.W.; Cannon, S.B. A review of breeding objectives, genomic resources, and marker-assisted methods in common bean (Phaseolus vulgaris L.). Mol. Breed. 2019, 39, 20. [Google Scholar] [CrossRef]
- Beshir, H.M.; Walley, F.L.; Bueckert, R.; Tar’an, B. Response of Snap Bean Cultivars to Rhizobium Inoculation under Dry-land Agriculture in Ethiopia. Agronomy 2015, 5, 291–308. [Google Scholar] [CrossRef]
- Rana, K.L.; Kour, D.; Kaur, T.; Negi, R.; Devi, R.; Yadav, N.; Rai, P.K.; Singh, S.; Rai, A.K.; Yadav, A.; et al. Endophytic nitrogen-fixing bacteria: Untapped treasurer for agricultural sustainability. J. Appl. Biol. Biotechnol. 2023, 11, 75–93. [Google Scholar] [CrossRef]
- Duarte, R.D.C.; Iannetta, P.P.M.; Gomes, A.M.; Vasconcelos, M.W. More than a meat- or synthetic nitrogen fertiliser-substitute: A review of legume phytochemicals as drivers of ‘One Health’ via their influence on the functional diversity of soil- and gut-microbes. Front. Plant Sci. 2024, 15, 1337653. [Google Scholar] [CrossRef] [PubMed]
- de Lima, B.C.; Moro, A.L.; Santos, A.C.P.; Bonifacio, A.; Araujo, A.S.F.; de Araujo, F.F. Bacillus subtilis ameliorates water stress tolerance in maize and common bean. J. Plant Interact. 2019, 14, 432–439. [Google Scholar] [CrossRef]
- Rosales, A.M.; Ocampo, E.; Rodríguez-Valentín, R.; Olvera-Carrillo, Y.; Acosta-Gallegos, J.; Covarrubias, A.A. Physiological analysis of common bean (Phaseolus vulgaris L.) cultivars uncovers characteristics related to terminal drought resistance. Plant Physiol. Biochem. 2012, 56, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Hageman, A.; Van Volkenburgh, E. Sink Strength Maintenance Underlies Drought Tolerance in Common Bean. Plants 2021, 10, 489. [Google Scholar] [CrossRef]
- Polania, J.; Rao, I.M.; Cajiao, C.; Rivera, M.; Raatz, B.; Beebe, S. Physiological traits associated with drought resistance in Andean and Mesoamerican genotypes of common bean (Phaseolus vulgaris L.). Euphytica 2016, 210, 17–29. [Google Scholar] [CrossRef]
- Arriagada, O.; Arévalo, B.; Cabeza, R.A.; Carrasco, B.; Schwember, A.R. Meta-QTL Analysis for Yield Components in Common Bean (Phaseolus vulgaris L.). Plants 2022, 12, 117. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Markova, O.V.; Garipova, S.R. Selection of perspective lines of Elsa variety of common bean (Phaseolus vulgaris L.) and characteristics of their symbiotrophic nutrition in different soil and climatic conditions of the Urals. Vestn. Bashkirskogo Univ. 2013, 18, 709–712. [Google Scholar]
- Garipova, S.R.; Markova, O.V.; Samigullin, S.N. Productiveness and nodule ability of different varieties of common bean (Phaseolus vulgaris L.) in Urals conditions. Agric. Biol. 2015, 50, 55–62. [Google Scholar] [CrossRef]
- Ullah, A.; Nisar, M.; Ali, H.; Hazrat, A.; Hayat, K.; Keerio, A.A.; Ihsan, M.; Laiq, M.; Ullah, S.; Fahad, S.; et al. Drought tolerance improvement in plants: An endophytic bacterial approach. Appl. Microbiol. Biotechnol. 2019, 103, 7385–7397. [Google Scholar] [CrossRef] [PubMed]
- Verma, H.; Kumar, D.; Kumar, V.; Kumari, M.; Singh, S.K.; Sharma, V.K.; Droby, S.; Santoyo, G.; White, J.F.; Kumar, A. The Potential Application of Endophytes in Management of Stress from Drought and Salinity in Crop Plants. Microorganisms 2021, 9, 1729. [Google Scholar] [CrossRef] [PubMed]
- Kaur, G.; Patel, A.; Dwibedi, V.; Rath, S.K. Harnessing the action mechanisms of microbial endophytes for enhancing plant performance and stress tolerance: Current understanding and future perspectives. Arch. Microbiol. 2023, 205, 303. [Google Scholar] [CrossRef]
- Pandey, S.S.; Jain, R.; Bhardwaj, P.; Thakur, A.; Kumari, M.; Bhushan, S.; Kumar, S. Plant probiotics—Endophytes pivotal to plant health. Microbiol. Res. 2022, 263, 127148. [Google Scholar] [CrossRef]
- Dudeja, S.S.; Suneja-Madan, P.; Paul, M.; Maheswari, R.; Kothe, E. Bacterial endophytes: Molecular interactions with their hosts. J. Basic Microbiol. 2021, 61, 475–505. [Google Scholar] [CrossRef]
- Ismail, M.A.; Amin, M.A.; Eid, A.M.; Hassan, S.E.-D.; Mahgoub, H.A.M.; Lashin, I.; Abdelwahab, A.T.; Azab, E.; Gobouri, A.A.; Elkelish, A.; et al. Comparative Study between Exogenously Applied Plant Growth Hormones versus Metabolites of Microbial Endophytes as Plant Growth-Promoting for Phaseolus vulgaris L. Cells 2021, 10, 1059. [Google Scholar] [CrossRef]
- Ek-Ramos, M.J.; Gomez-Flores, R.; Orozco-Flores, A.A.; Rodríguez-Padilla, C.; González-Ochoa, G.; Tamez-Guerra, P. Bioactive Products from Plant-Endophytic Gram-Positive Bacteria. Front. Microbiol. 2019, 10, 463. [Google Scholar] [CrossRef]
- Godara, H.; Ramakrishna, W. Endophytes as nature’s gift to plants to combat abiotic stresses. Lett. Appl. Microbiol. 2023, 76, ovac067. [Google Scholar] [CrossRef] [PubMed]
- Lubyanova, A.R.; Bezrukova, M.V.; Shakirova, F.M. Interaction between signal pathways upon formation of plant defense in response to environmental stress factors. Russ. J. Plant Physiol. 2021, 68, 989–1002. [Google Scholar] [CrossRef]
- Das, P.P.; Singh, K.R.B.; Nagpure, G.; Mansoori, A.; Singh, R.P.; Ghazi, I.A.; Kumar, A.; Singh, J. Plant-soil-microbes: A tripartite interaction for nutrient acquisition and better plant growth for sustainable agricultural practices. Environ. Res. 2022, 214, 113821. [Google Scholar] [CrossRef] [PubMed]
- Ameen, M.; Mahmood, A.; Sahkoor, A.; Zia, M.A.; Ullah, M.S. The role of endophytes to combat abiotic stress in plants. Plant Stress 2024, 12, 100435. [Google Scholar] [CrossRef]
- Gorai, P.S.; Gond, S.K.; Mandal, N.C. Endophytic microbes and their role to overcome abiotic stress in crop plants. In Microbial Services in Restoration Ecology; Elsevier: Amsterdam, The Netherlands, 2020; pp. 109–122. [Google Scholar] [CrossRef]
- Steiner, F.; da Silva Oliveira, C.E.; Zoz, T.; Zuffo, A.M.; de Freitas, R.S. Co-inoculation of Common Bean with Rhizobium and Azospirillum enhance the drought tolerance. Russ. J. Plant Physiol. 2020, 67, 923–932. [Google Scholar] [CrossRef]
- Stengel, A.; Drijber, R.A.; Egreja, T.; Hillman, E.; Krause, T.; Reese, S.; Herr, J.R. Rethinking the roles of pathogens and mutualists: Exploring the continuum of symbiosis in the context of microbial ecology and evolution. Phytobiomes 2022, 6, 108–117. [Google Scholar] [CrossRef]
- Irizarry, I.; White, J.F. Bacillus amyloliquefaciens alters gene expression, ROS production and lignin synthesis in cotton seedling roots. J. Appl. Microbiol. 2018, 124, 1589–1603. [Google Scholar] [CrossRef] [PubMed]
- Rybakova, D.; Schmuck, M.; Wetzlinger, U.; Varo-Suarez, A.; Murgu, O.; Muller, H.; Berg, G. Kill or cure? The interaction between endophytic Paenibacillus and Serratia strains and the host plant is shaped by plant growth conditions. Plant Soil 2016, 405, 65–79. [Google Scholar] [CrossRef]
- Mengistu, A.A. Endophytes: Colonization, behaviour and their role in defense mechanism. Int. J. Microbiol. 2020, 2020, 6927219. [Google Scholar] [CrossRef]
- Thoms, D.; Liang, Y.; Haney, C.H. Maintaining symbiotic homeostasis: How do plants engage with beneficial microorganisms while at the same time restricting pathogens? MPMI 2021, 34, 462–469. [Google Scholar] [CrossRef]
- Garipova, S.R.; Shayakhmetova, A.S.; Lastochkina, O.V.; Fedorova, K.A.; Pusenkova, L.I. Influence of bean plants inoculation by endophyte bacteria Bacillus subtilis on seedlings growth in model experiment and it’s yield in conditions of the Southern Pre-Ural territory. Agrochem. Her. 2020, 6, 48–63. [Google Scholar]
- Iksanova, M.A.; Garipova, S.R. Analysis of the phenology, growth and productivity of Ufimskaya and Zolotistaya bean varieties upon inoculation with endophytic bacteria Bacillus subtilis under the conditions of the Urals. Dokl. Bashkirskogo Univ. 2021, 6, 152–157. [Google Scholar] [CrossRef]
- Markova, O.V.; Garipova, S.R. Adaptive potential of bean (Phaseolus vulgaris L.) varieties cultivated in the conditions of Southern Urals. Agrochem. Ecol. Probl. 2020, 4, 40–43. [Google Scholar] [CrossRef]
- Markova, O.V.; Garipova, S.R.; Pusenkova, L.I. Variety-strain interaction specificity of Bacillus subtilis with salt-stressed Phaseolus vulgaris L. plants. Proc. Univ. Appl. Chem. Biotechnol. 2023, 13, 350–358. [Google Scholar] [CrossRef]
- Kuramshina, Z.M.; Khairullin, R.M.; Smirnova, Y.V. The responsiveness of Triticum aestivum L. variety for inoculation by cells of endophytic strains Bacillus subtilis. Ross. Selskokhoziaistvennaia Nauka 2019, 6, 3–6. [Google Scholar] [CrossRef]
- Pusenkova, L.I.; Garipova, S.R.; Lastochkina, O.V.; Yuldashev, R.A. Efficiency of spring wheat seed inoculation with endophytic bacteria Bacillus subtilis. Agrochem. Ecol. Probl. 2020, 3, 56–64. [Google Scholar] [CrossRef]
- Kuramshina, Z.M.; Khairullin, R.M. Endophytic strains of Bacillus subtilis promote drought resistance of plants. Russ. J. Plant Physiol. 2023, 70, 45. [Google Scholar] [CrossRef]
- Lastochkina, O.; Allagulova, C.; Fedorova, K.; Baymiev, A.; Korykov, I.; Aliniaeifard, S.; Sobhani, M.; Garshina, D.; Garipova, S.; Pusenkova, L. Seed priming with endophytic Bacillus subtilis strain-specifically improves growth of Phaseolus vulgaris plants under normal and salinity conditions and exerts anti-stress effect through induced lignin deposition in roots and decreased oxidative and osmotic damages. J. Plant Physiol. 2021, 63, 153462. [Google Scholar] [CrossRef]
- Pusenkova, L.I.; Garipova, S.R.; Lastochkina, O.V.; Fedorova, K.A.; Mardanshin, I.S. Influence of endophytic bacteria Bacillus subtilison harvest, quality of tubes and post-harvest diseases of potato. Agrochem. Her. 2021, 5, 73–79. [Google Scholar] [CrossRef]
- Lastochkina, O.V.; Pusenkova, L.I.; Yuldashev, R.A.; Ilyasova, E.Y.; Aliniaeifard, S. Effect of Bacillus subtilis based microbials on physiological and biochemical parameters of sugar beet (Beta vulgaris L.) plants infected with Alternaria alternate. Agric. Biol. 2018, 52, 958–968. [Google Scholar]
- Ghimire, K.; Peta, V.; Bücking, H.; Caffe, M. Effect of Non-Native Endophytic Bacteria on Oat (Avena sativa L.) Growth. Int. J. Plant Biol. 2023, 14, 827–844. [Google Scholar] [CrossRef]
- Ivanchina, N.V.; Garipova, S.R.; Khairullin, R.M. Effect of cell doses of Bacillus subtilis endophytic strains producing indolyl-3-acetic acid on growth and productivity of pea (Pisum sativum L.). Agrochimia 2018, 4, 39–44. [Google Scholar] [CrossRef]
- Garipova, S.R.; Markova, O.V.; Irgalina, R.S.; Vakhitova, R.K. Productivity, growth dynamics and the symbiotic activity of different varieties of bean under Urals depending on the sowing terms. Agrar. Bull. Ural. 2015, 8, 10–14. [Google Scholar]
- Al-Amri, S.M. Application of bio-fertilizers for enhancing growth and yield of common bean plants grown under water stress conditions. Saudi J. Biol. Sci. 2021, 28, 3901–3908. [Google Scholar] [CrossRef] [PubMed]
- Rubin, R.L.; Groenigen, K.J.; Hungate, B.A. Plant growth promoting rhizobacteria are more effective under drought: A meta-analysis. Plant Soil 2017, 416, 309–323. [Google Scholar] [CrossRef]
- Matyunina, V.D.; Chistoedova, A.V.; Markova, O.V.; Garipova, S.R. Influence of seed treatment with different doses of heteroauxin on the growth parameters of two bean varieties. Ecoboitech 2023, 6, 175–184. [Google Scholar] [CrossRef]
- Tzipilevich, E.; Russ, E.D.; Dangl, J.L.; Benfey, P.N. Plant immune system activation is necessary for efficient root colonization by auxin-secreting beneficial bacteria. Cell Host Microbe 2021, 29, 1507–1520. [Google Scholar] [CrossRef] [PubMed]
- Pasternak, T.; Palme, K.; Perez-Perez, J.M. Role of reactive oxygen species in the modulation of auxin flux and root development in Arabidopsis thaliana. Plant J. 2023, 114, 83–95. [Google Scholar] [CrossRef]
- White, J.F.; Kingsley, K.L.; Verma, S.K.; Kowalski, K.P. Rhizophagy Cycle: An Oxidative Process in Plants for Nutrient Extraction from Symbiotic Microbes. Microorganisms 2018, 6, 95. [Google Scholar] [CrossRef]
- White, J.F.; Kingsley, K.L.; Zhang, Q.; Verma, R.; Obi, N.; Dvinskikh, S.; Elmore, M.T.; Verma, S.K.; Gond, S.K.; Kowalski, K.P. Review: Endophytic microbes and their potential applications in crop management. Pest Manag. Sci. 2019, 75, 2558–2565. [Google Scholar] [CrossRef] [PubMed]
- White, J.F.; Chang, X.; Kingsley, K.L.; Zhang, Q.; Chiaranunt, P.; Micci, A.; Velazquez, F.; Elmore, M.; Crane, S.; Li, S.; et al. Endophytic bacteria in grass crop growth promotion and biostimulation. Grass Res. 2021, 1, 5. [Google Scholar] [CrossRef]
- Khare, E.; Mishra, J.; Arora, N.K. Multifaceted Interactions between Endophytes and Plant: Developments and Prospects. Front. Microbiol. 2018, 9, 2732. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, P.J.; Colaianni, N.R.; Fitzpatrick, C.R.; Dangl, J.L. Beyond pathogens: Microbiota interactions with the plant immune system. Curr. Opin. Microbiol. 2019, 49, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Entila, F.; Han, X.; Mine, A.; Schulze-Lefert, P.; Tsuda, K. Commensal lifestyle regulated by a negative feedback loop between Arabidopsis ROS and the bacterial T2SS. Nat. Commun. 2024, 15, 456. [Google Scholar] [CrossRef] [PubMed]
- Wippel, K. Plant and microbial features governing an endophytic lifestyle. Curr. Opin. Plant Biol. 2023, 76, 102483. [Google Scholar] [CrossRef] [PubMed]
- Plett, J.M.; Martin, F.M. Know your enemy, embrace your friend: Using omics to understand how plants respond differently to pathogenic and mutualistic microorganisms. Plant J. 2018, 93, 729–746. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.; Pieterse, C.M.J.; Bakker, P.A.H.M.; Berendsen, R.L. Beneficial microbes going underground of root immunity. Plant Cell Environ. 2019, 42, 2860–2870. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hu, C.H.; Wang, P.Q.; Zhang, P.P.; Nie, X.M.; Li, B.B.; Tai, L.; Liu, W.T.; Li, W.Q.; Chen, K.M. NADPH Oxidases: The vital performers and center hubs during plant growth and signaling. Cells 2020, 9, 437. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pfeilmeier, S.; Petti, G.C.; Bortfeld-Miller, M.; Daniel, B.; Field, C.M.; Sunagawa, S.; Vorholt, J.A. The plant NADPH oxidase RBOHD is required for microbiota homeostasis in leaves. Nat. Microbiol. 2021, 6, 852–864. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alquéres, S.; Meneses, C.; Rouws, L.; Rothballer, M.; Baldani, I.; Schmid, M.; Hartmann, A. The bacterial superoxide dismutase and glutathione reductase are crucial for endophytic colonization of rice roots by Gluconacetobacter diazotrophicus PAL5. Mol. Plant Microbe Interact. 2013, 8, 937–945. [Google Scholar] [CrossRef] [PubMed]
- Golovko, T.K.; Silina, E.V.; Lashmanova, E.A.; Kozlovskaya, A.V. Reactive oxygen species and antioxidants in living systems: An integrated overview. Theor. Appl. Ecol. 2022, 1, 17–26. [Google Scholar] [CrossRef]
- Smirnoff, N.; Arnaud, D. Hydrogen peroxide metabolism and functions in plants. New Phytol. 2019, 221, 1197–1214. [Google Scholar] [CrossRef] [PubMed]
- Sadki, I.; Taoufiq, K.; Aberchane, L.; El Biari, K.; Tahrouch, S.; Oufdou, K.; Faghire, M.; Hatimi, A. Effect of inoculation by indigenous endophytic bacteria from the arid region in Morocco (Tata-Akka) on the antioxidative responses of Phaseolus vulgaris L. J. Mater. Environ. Sci. 2021, 12, 205–216. [Google Scholar]
- Garipova, S.R.; Markova, O.V.; Fadorova, K.A.; Dedova, M.A.; Kamaletdinova, A.A.; Lastochkina, O.V.; Pusenkova, L.I. Malondialdehyde and proline content in bean cultivars following the inoculation with endophytic bacteria. Acta Physiol. Plant. 2022, 44, 89. [Google Scholar] [CrossRef]
- Reut, A.A.; Denisova, S.G. Resistance of decorative herbaceous plants to changing environmental conditions. Ecobiotech 2019, 2, 456–461. [Google Scholar] [CrossRef]
- Pardossi, A.; Vernieri, P.; Tognoni, F. Involvement of abscisic acid in regulating water status in Phaseolus vulgaris L. during chilling. Plant Physiol. 1992, 100, 1243. [Google Scholar] [CrossRef] [PubMed]
- Aebi, H. Catalase in vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar] [PubMed]
- Yusupova, Z.R.; Akhmetova, I.E.; Khairullin, R.M.; Maksimov, I.V. The Effect of Chitooligosaccharides on Hydrogen Peroxidase Production and Anionic Peroxidase Activity in Wheat Coleoptiles. Russ. J. Plant Physiol. 2005, 52, 209–213. [Google Scholar] [CrossRef]
- Beyer, Y.; Fridovich, I. Assaying for Superoxide Dismutase Activity: Some Large Consequences of Minor Changes in Conditions. Anal. Biochem. 1987, 161, 559–566. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Jiang, Z.Y.; Woollard, A.C.S.; Wolff, S.P. Hydrogen peroxide production during experimental protein glycation. FEBS Lett. 1990, 268, 69–71. [Google Scholar] [CrossRef] [PubMed]
- Heath, R.L.; Packer, L. Photoperoxidation in isolated chloroplasts. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 1968, 125, 189–198. [Google Scholar] [CrossRef] [PubMed]
Strain | Dose (Cells mL−1) | 2018 (HTC 0.63) | 2020 (HTC 1.14) | 2021 (HTC 0.95) | 2023 (HTC 0.47) | Average (% to Control) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 * | 2 ** | 1 * | 2 ** | 1 * | 2 ** | 1 * | 2 ** | 1 * | 2 ** | ||
Control | - | 103 ± 1.1 b | 4.0 ± 0.5 b | 566 ± 4.4 b | 12.3 ± 0.8 b | 187 ± 3.4 b | 8.4 ± 0.8 a | 200 ± 2.3 b | 3.6 ± 0.5 a | 100 ± 2.8 b | 100 ± 0.6 b |
26D | 105 | - | - | 450 ± 4.7 a | 9.0 ± 0.5 a | - | - | 155 ± 2.6 a | 3.6 ± 0.7 a | 79 ± 3.6 a | 87 ± 0.6 a |
26D | 108 | 83 ± 2.7 a | 3.4 ± 0.5 a | - | - | 164 ± 2.6 a | 7.7 ± 0.9 a | 143 ± 2.5 a | 3.1 ± 0.6 a | 80 ± 2.6 a | 88± 0.7 a |
10–4 | 105 | 123 ± 2.3 c | 5.2 ± 0.7 c | 516 ± 5.8 a | 11.0 ± 0.6 b | 181 ± 3.1 b | 7.8 ± 0.8 a | 240 ± 4.3 c | 5.1 ± 1.3 b | 107 ± 3.8 b | 114 ± 0.9 c |
10–4 | 108 | - | - | - | - | - | - | 204 ± 3.9 b | 5.7 ± 1.0 b | 102 ± 3.9 b | 158 ± 1.0 d |
Strain | Dose (Cells mL−1) | Germination (%) | Survival (%) | Height of Shoot (cm) | ||
---|---|---|---|---|---|---|
9th Day | 38th Day | 120th Day | 38th Day | 120th Day | ||
Control | - | 47 a | 67 a | 70 a | 14.0 a | 39.8 a |
26D | 105 | 58 ab | 80 b | 80 ab | 14.4 a | 38.8 a |
26D | 108 | 57 ab | 83 b | 75 a | 15.3 ab | 41.9 ab |
10–4 | 105 | 73 b | 90 c | 87 b | 16.4 b | 42.7 b |
10–4 | 108 | 68 b | 77 b | 80 ab | 14.6 a | 42.7 b |
Strain | Dose (Cells mL−1) | 38th Day of Growing Season | 120th Day of Growing Season | |||
---|---|---|---|---|---|---|
Budding | Flowering | Pods Appearance | Beginning of Maturation | Full Ripeness | ||
Control | - | 60 | 40 | 33 | 40 | 27 |
26D | 105 | 39 | 58 | 27 | 27 | 46 |
26D | 108 | 33 | 67 | 7 | 13 | 80 |
10–4 | 105 | 23 | 76 | 13 | 7 | 80 |
10–4 | 108 | 17 | 83 | 7 | 20 | 73 |
Strain | Dose (Cells mL−1) | W (%) | R (%) | RWC (%) |
---|---|---|---|---|
Control | - | 83.3 ± 1.2 a | 23.1 ± 1.1 a | 37.7 ± 3.2 b |
26D | 105 | 82.9 ± 0.7 a | 43.8 ± 2.0 d | 31.3 ± 2.8 a |
26D | 108 | 84.0 ± 0.4 a | 31.7 ± 2.5 b | 44.3 ± 0.9 c |
10–4 | 105 | 81.1 ± 0.7 a | 34.0 ± 1.4 bc | 41.2 ± 1.1 bc |
10–4 | 108 | 81.6 ± 0.8 a | 36.6 ± 2.2 c | 42.8 ± 1.4 c |
Strain | Dose (Cells mL−1) | Number of Pods per Plant (pcs) | Number of Seeds per Plant (pcs) | Seed Weight per Plant (g) | Weight of 1000 Seeds (g) |
---|---|---|---|---|---|
Control | - | 6.1 ± 0.7 b | 13.6 ± 2.0 a | 3.6 ± 0.5 a | 265 ± 0.7 b |
26D | 105 | 5.3 ± 0.7 a | 12.1 ± 2.2 a | 3.6 ± 0.7 a | 298 ± 1.1 c |
26D | 108 | 5.4 ± 0.9 a | 14.2 ±2.3 a | 3.1 ± 0.6 a | 218 ± 1.3 a |
10–4 | 105 | 8.1 ± 1.3 c | 18.3 ± 4.0 ab | 5.1 ± 1.3 b | 279 ± 0.9 bc |
10–4 | 108 | 8.5 ± 1.3 c | 22.5 ± 3.6 b | 5.7 ± 1.0 b | 253 ± 1.0 b |
Strain | Dose (Cells mL−1) | SOD/H2O2 | CAT/H2O2 | POD/H2O2 | |||
---|---|---|---|---|---|---|---|
Roots | Shoots | Roots | Shoots | Roots | Shoots | ||
Control | - | 2.76 b | 2.21 b | 0.15 b | 0.12 b | 0.29 b | 0.12 a |
26D | 105 | 1.42 a | 1.04 a | 0.15 b | 0.16 c | 0.25 a | 0.12 a |
26D | 108 | 3.86 c | 2.82 c | 0.23 b | 0.23 d | 0.34 c | 0.23 b |
10–4 | 105 | 1.78 a | 0.83 a | 0.10 a | 0.09 a | 0.24 a | 0.08 a |
10–4 | 108 | 3.12 b | 1.12 a | 0.11 a | 0.17 c | 0.23 a | 0.27 b |
LSD05 | 0.44 | 0.37 | 0.02 | 0.02 | 0.02 | 0.04 |
Plant Trait | 2018 | 2023 | 2020 | 2021 | Average in 4 Years |
---|---|---|---|---|---|
HTC 0.6–0.5 | HTC 1.1–0.9 | ||||
Shoot height | 0.98 | 0.62 | 0.55 | 0.07 | 0.90 |
Root length | 0.99 | 0.94 | 0.43 | −0.06 | 0.83 |
Number of adventitious roots | 0.99 | 0.30 | 0.37 | −0.14 | 0.79 |
Length of adventitious roots | −0.69 | 0.52 | −0.95 | −0.70 | −0.98 |
Plant weight | 0.99 | 0.49 | 0.33 | −0.17 | 0.76 |
Shoot mass (fresh weight) | 0.74 | 0.39 | −0.30 | −0.73 | 0.22 |
Root mass (fresh weight) | 0.88 | 0.56 | −0.07 | −0.55 | 0.44 |
POD activity in the roots | 0.03 | 0.32 | −0.89 | −0.99 | −0.55 |
POD activity in the shoots | 0.82 | 0.94 | −0.18 | −0.64 | 0.34 |
CAT activity in the root | −0.74 | −0.50 | −0.92 | −0.62 | −0.99 |
CAT activity in shoots | 0.86 | 0.60 | −0.10 | −0.58 | 0.41 |
H2O2 content in the roots | 0.89 | 0.77 | −0.04 | −0.52 | 0.47 |
H2O2 content in the shoots | 0.98 | 0.56 | 0.29 | −0.22 | 0.73 |
SOD activity in the root | −0.78 | 0.44 | −0.90 | −0.57 | −0.99 |
SOD activity in the shoot | 0.91 | 0.10 | 0.75 | 0.33 | 0.98 |
MDA content at the root | −0.71 | −0.84 | −0.94 | −0.65 | −0.98 |
MDA content at the shoot | −0.98 | −0.27 | −0.23 | 0.28 | −0.69 |
SOD activity/H2O2 in the root | −0.97 | −0.16 | −0.63 | −0.16 | −0.93 |
SOD activity/H2O2 in the shoot | −0.99 | −0.71 | −0.41 | 0.09 | −0.82 |
CAT activity/H2O2 in the root | −0.94 | −0.84 | −0.70 | −0.26 | −0.96 |
CAT activity/H2O2 in the shoot | −0.86 | −0.42 | −0.82 | −0.43 | −0.99 |
POD activity/H2O2 in the root | −0.98 | −0.81 | −0.60 | −0.13 | −0.92 |
POD activity/H2O2 in the shoot | −0.89 | 0.17 | −0.79 | −0.38 | −0.99 |
Indicators | 2018 | 2020 | 2021 | 2023 |
---|---|---|---|---|
Region of Bashkortostan Rupublic | Salavatsky | Ilishevsky | Arkhangelsky | Iglinsky |
HTC(VI–IX) | 0.63 | 1.14 | 0.95 | 0.47 |
Σ Teffect>15 (°C) | 414.3 | 351.5 | 491.4 | 371.9 |
R (ᴍᴍ) | 34.5 | 68 | 45 | 25.5 |
Soil type | Gray forest | Leached chernozem | Gray forest | Gray forest |
Humus (%) | 3.1 | 7.6 | 4.1 | 4.4 |
Alkaline hydrolyzable nitrogen (mg kg−1) | 93 | 156 | 105 | 122 |
Mobile phosphorus (mg kg−1) | 28 | 109 | 45 | 51 |
pH H2O | 5.8 | 6.8 | 5.2 | 5.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Markova, O.; Garipova, S.; Chistoedova, A.; Matyunina, V.; Lubyanova, A.; Lastochkina, O.; Garipov, A.; Shpirnaya, I.; Pusenkova, L. Predicting Field Effectiveness of Endophytic Bacillus subtilis Inoculants for Common Bean Using Morphometric and Biochemical Markers. Plants 2024, 13, 1769. https://doi.org/10.3390/plants13131769
Markova O, Garipova S, Chistoedova A, Matyunina V, Lubyanova A, Lastochkina O, Garipov A, Shpirnaya I, Pusenkova L. Predicting Field Effectiveness of Endophytic Bacillus subtilis Inoculants for Common Bean Using Morphometric and Biochemical Markers. Plants. 2024; 13(13):1769. https://doi.org/10.3390/plants13131769
Chicago/Turabian StyleMarkova, Oksana, Svetlana Garipova, Aelita Chistoedova, Viktoriia Matyunina, Alsu Lubyanova, Oksana Lastochkina, Arsenii Garipov, Irina Shpirnaya, and Lyudmila Pusenkova. 2024. "Predicting Field Effectiveness of Endophytic Bacillus subtilis Inoculants for Common Bean Using Morphometric and Biochemical Markers" Plants 13, no. 13: 1769. https://doi.org/10.3390/plants13131769
APA StyleMarkova, O., Garipova, S., Chistoedova, A., Matyunina, V., Lubyanova, A., Lastochkina, O., Garipov, A., Shpirnaya, I., & Pusenkova, L. (2024). Predicting Field Effectiveness of Endophytic Bacillus subtilis Inoculants for Common Bean Using Morphometric and Biochemical Markers. Plants, 13(13), 1769. https://doi.org/10.3390/plants13131769