From Genes to Stress Response: Genomic and Transcriptomic Data Suggest the Significance of the Inositol and Raffinose Family Oligosaccharide Pathways in Stylosanthes scabra, Adaptation to the Caatinga Environment
Abstract
:1. Introduction
2. Material and Methods
2.1. Maps for INS and RFO Metabolic Pathways
2.2. Genomic Approach
2.2.1. S. scabra Genomic Resource
2.2.2. INS and RFO Gene/Transcripts Mining
2.2.3. Orthogroups Identification and Respective Expansion/Contraction Analysis
2.2.4. Cis-Regulatory Elements Mining and Respective Transcription Factors Identification
2.2.5. GO Enrichment Analysis
2.3. Transcriptomic Approach
2.3.1. S. scabra Transcriptomic Resource
2.3.2. Plant Material, Growing Conditions, and Stress Application
2.3.3. RNA-Seq Libraries: Synthesis and Sequencing
2.3.4. RNA-Seq Library Assembly, Transcriptome Annotation, and Differential Expression Analysis
2.3.5. Metabolic Pathway Analyses Using the “KEGG Mapper-Search & Color Pathway” Tool
2.3.6. RNA-Seq Data Validation
2.4. Artificial Intelligence Use
3. Results
3.1. INS and RFO Pathways in S. scabra
3.2. Gene Mining and Phylogenomic Dynamics of INS and RFO Synthesizing Gene Families
3.3. Bona Fide CCRE and Associated Transcription Factors
3.4. Enriched Biological Processes for the INS and RFO Pathways in S. scabra
3.5. Transcriptomics of the INS and RFO Pathways under WD.24h Treatment
4. Discussion
4.1. INS and RFO Pathways in S. scabra: General Importance and Genomic Content Aspects
4.2. Phylogenomic Dynamics of INS and RFO Synthesizing Gene Families
4.3. Transcription Factors with Potential Regulatory Roles in the INS and RFO Pathways in S. scabra
4.4. In Silico Prediction of Potential Functions of the INS and RFO Pathways
4.5. The S. scabra Transcriptional Orchestration of INS and RFO Pathways under Water Deprivation
4.5.1. UR INS-Enzymes in S. scabra Response to Water Deprivation
4.5.2. UR RFO-Enzymes in S. scabra Response to Water Deprivation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sampaio, E.V.S.B. Uso Sustentável e Conservação dos Recursos Florestais da Caatinga; Ministério do Meio Ambiente, Serviço Florestal Brasileiro: Brasília, Brazil, 2010; pp. 29–48.
- Ferreira-Neto, J.R.C.; de Araújo, F.C.; de Oliveira Silva, R.L.; de Melo, N.F.; Pandolfi, V.; Frosi, G.; de Lima Morais, D.A.; da Silva, M.D.; Rivas, R.; Santos, M.G.; et al. Dehydration Response in Stylosanthes scabra: Transcriptional, Biochemical, and Physiological Modulations. Physiol. Plant. 2022, 174, e13821. [Google Scholar] [CrossRef]
- Chandra, A.; Pathak, P.S.; Bhatt, R.K. Stylosanthes Research in India: Prospects and Challenges Ahead. Curr. Sci. 2006, 90, 915–921. [Google Scholar]
- Ferreira-Neto, J.R.C.; Da Silva, M.D.; Binneck, E.; De Melo, N.F.; Da Silva, R.H.; De Melo, A.L.T.M.; Pandolfi, V.; Bustamante, F.D.O.; Brasileiro-Vidal, A.C.; Benko-Iseppon, A.M. Bridging the Gap: Combining Genomics and Transcriptomics Approaches to Understand Stylosanthes scabra, an Orphan Legume from the Brazilian Caatinga. Plants 2023, 12, 3246. [Google Scholar] [CrossRef]
- Sprenger, N.; Keller, F. Allocation of Raffinose Family Oligosaccharides to Transport and Storage Pools in Ajuga Reptans: The Roles of Two Distinct Galactinol Synthases. Plant J. 2000, 21, 249–258. [Google Scholar] [CrossRef]
- Sheveleva, E.; Chmara, W.; Bohnert, H.J.; Jensen, R.G. Increased Salt and Drought Tolerance by D-Ononitol Production in Transgenic Nicotiana tabacum L. Plant Physiol. 1997, 115, 1211–1219. [Google Scholar] [CrossRef]
- Sengupta, S.; Mukherjee, S.; Basak, P.; Majumder, A.L. Significance of Galactinol and Raffinose Family Oligosaccharide Synthesis in Plants. Front. Plant Sci. 2015, 6, 656. [Google Scholar] [CrossRef]
- Khodakovskaya, M.; Sword, C.; Wu, Q.; Perera, I.Y.; Boss, W.F.; Brown, C.S.; Winter Sederoff, H. Increasing Inositol (1,4,5)-trisphosphate Metabolism Affects Drought Tolerance, Carbohydrate Metabolism and Phosphate-sensitive Biomass Increases in Tomato. Plant Biotechnol. J. 2010, 8, 170–183. [Google Scholar] [CrossRef]
- Rodas-Junco, B.A.; Racagni-Di-Palma, G.E.; Canul-Chan, M.; Usorach, J.; Hernández-Sotomayor, S.M.T. Link between Lipid Second Messengers and Osmotic Stress in Plants. Int. J. Mol. Sci. 2021, 22, 2658. [Google Scholar] [CrossRef]
- Li, T.; Zhang, Y.; Liu, Y.; Li, X.; Hao, G.; Han, Q.; Dirk, L.M.A.; Downie, A.B.; Ruan, Y.-L.; Wang, J.; et al. Raffinose Synthase Enhances Drought Tolerance through Raffinose Synthesis or Galactinol Hydrolysis in Maize and Arabidopsis Plants. J. Biol. Chem. 2020, 295, 8064–8077. [Google Scholar] [CrossRef]
- Yan, S.; Liu, Q.; Li, W.; Yan, J.; Fernie, A.R. Raffinose Family Oligosaccharides: Crucial Regulators of Plant Development and Stress Responses. Crit. Rev. Plant Sci. 2022, 41, 286–303. [Google Scholar] [CrossRef]
- López-Moreno, M.; Garcés-Rimón, M.; Miguel, M. Antinutrients: Lectins, Goitrogens, Phytates and Oxalates, Friends or Foe? J. Funct. Foods 2022, 89, 104938. [Google Scholar] [CrossRef]
- Elango, D.; Rajendran, K.; Van Der Laan, L.; Sebastiar, S.; Raigne, J.; Thaiparambil, N.A.; El Haddad, N.; Raja, B.; Wang, W.; Ferela, A.; et al. Raffinose Family Oligosaccharides: Friend or Foe for Human and Plant Health? Front. Plant Sci. 2022, 13, 829118. [Google Scholar] [CrossRef]
- Ferreira-Neto, J.; Silva, M.; Iseppon, A.; Pandolfi, V.; Binneck, E.; Nepomuceno, A.; Abdelnoor, R.; Kido, E. Inositol Phosphates and Raffinose Family Oligosaccharides Pathways: Structural Genomics and Transcriptomics in Soybean under Root Dehydration. Plant Gene 2019, 20, 100202. [Google Scholar] [CrossRef]
- Ferreira-Neto, J.R.C.; Silva, M.D.; Rodrigues, F.A.; Nepomuceno, A.L.; Pandolfi, V.; Lima Morais, D.A.; Kido, E.A.; Benko-Iseppon, A.M. Importance of Inositols and Their Derivatives in Cowpea under Root Dehydration: An Omics Perspective. Physiol. Plant. 2021, 172, 441–462. [Google Scholar] [CrossRef] [PubMed]
- Emms, D.M.; Kelly, S. OrthoFinder: Phylogenetic Orthology Inference for Comparative Genomics. Genome Biol. 2019, 20, 238. [Google Scholar] [CrossRef]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and Sensitive Protein Alignment Using DIAMOND. Nat. Methods 2015, 12, 59–60. [Google Scholar] [CrossRef] [PubMed]
- Mendes, F.K.; Vanderpool, D.; Fulton, B.; Hahn, M.W. CAFE 5 Models Variation in Evolutionary Rates among Gene Families. Bioinformatics 2021, 36, 5516–5518. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Suleski, M.; Hedges, S.B. TimeTree: A Resource for Timelines, Timetrees, and Divergence Times. Mol. Biol. Evol. 2017, 34, 1812–1819. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.; Yang, D.-C.; Meng, Y.-Q.; Jin, J.; Gao, G. PlantRegMap: Charting Functional Regulatory Maps in Plants. Nucleic Acids Res. 2020, 48, D1104–D1113. [Google Scholar] [CrossRef]
- Supek, F.; Bošnjak, M.; Škunca, N.; Šmuc, T. REVIGO Summarizes and Visualizes Long Lists of Gene Ontology Terms. PLoS ONE 2011, 6, e21800. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Bourgey, M.; Dali, R.; Eveleigh, R.; Chen, K.C.; Letourneau, L.; Fillon, J.; Michaud, M.; Caron, M.; Sandoval, J.; Lefebvre, F.; et al. GenPipes: An Open-Source Framework for Distributed and Scalable Genomic Analyses. Gigascience 2019, 8, giz037. [Google Scholar] [CrossRef]
- Haas, B.J.; Papanicolaou, A.; Yassour, M.; Grabherr, M.; Blood, P.D.; Bowden, J.; Couger, M.B.; Eccles, D.; Li, B.; Lieber, M.; et al. De Novo Transcript Sequence Reconstruction from RNA-Seq Using the Trinity Platform for Reference Generation and Analysis. Nat. Protoc. 2013, 8, 1494–1512. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, O.; Hara, Y.; Kuraku, S. gVolante for Standardizing Completeness Assessment of Genome and Transcriptome Assemblies. Bioinformatics 2017, 33, 3635–3637. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor Package for Differential Expression Analysis of Digital Gene Expression Data. Bioinformatics 2009, 26, 139–140. [Google Scholar] [CrossRef]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef] [PubMed]
- Pfaffl, M.W.; Horgan, G.W.; Dempfle, L. Relative Expression Software Tool (REST) for Group-Wise Comparison and Statistical Analysis of Relative Expression Results in Real-Time PCR. Nucleic Acids Res. 2002, 30, e36. [Google Scholar] [CrossRef]
- Sanyal, R.; Kumar, S.; Pattanayak, A.; Kar, A.; Bishi, S.K. Optimizing Raffinose Family Oligosaccharides Content in Plants: A Tightrope Walk. Front. Plant Sci. 2023, 14, 1134754. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, T.; Hameed, T.; Hasnain, S.; Ali, S.; Qayyum, A.; Mehmood, A.; Liaquat, M.; Khan, S.U.; Saeed, M.; Khan, A. Assessment of Flatulence Causing Agents in Chickpea (Cicer arietinum L.) and Their Possible Removal. Food Sci. Technol 2017, 38, 120–125. [Google Scholar] [CrossRef]
- Ende, W.V.D. Multifunctional Fructans and Raffinose Family Oligosaccharides. Front. Plant Sci. 2013, 4, 247. [Google Scholar] [CrossRef]
- Ferreira-Neto, J.R.C.; Souza, A.C.M.; Silva, M.D.; Benko-Iseppon, A.M.; Pandolfi, V.; Costa, A.F.; Kido, E.A. The Transcriptional Modulation of Inositols and Raffinose Family Oligosaccharides Pathways in Plants—An (A)Biotic Stress Perspective. In Abiotic and Biotic Stress in Plants; Shanker, A.K., Shanker, C., Eds.; IntechOpen: Rijeka, Croatia, 2016; Chapter 4. [Google Scholar]
- Negishi, O.; Mun’im, A.; Negishi, Y. Content of Methylated Inositols in Familiar Edible Plants. J. Agric. Food Chem. 2015, 63, 2683–2688. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, R.; Kato, M.; Tsuge, T.; Aoyama, T. Arabidopsis Phosphatidylinositol 4-phosphate 5-kinase Genes PIP5K7, PIP5K8, and PIP5K9 Are Redundantly Involved in Root Growth Adaptation to Osmotic Stress. Plant J. 2021, 106, 913–927. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wu, X.; Sun, W.; Yu, X.; Demura, T.; Li, D.; Zhuge, Q. Galactinol Synthase Confers Salt-Stress Tolerance by Regulating the Synthesis of Galactinol and Raffinose Family Oligosaccharides in Poplar. Ind. Crops Prod. 2021, 165, 113432. [Google Scholar] [CrossRef]
- Vladejić, J.; Yang, F.; Dvořák Tomaštíková, E.; Doležel, J.; Palecek, J.J.; Pecinka, A. Analysis of BRCT5 Domain-Containing Proteins Reveals a New Component of DNA Damage Repair in Arabidopsis. Front. Plant Sci. 2022, 13, 1023358. [Google Scholar] [CrossRef] [PubMed]
- Sahu, A.; Singh, R.; Verma, P.K. Plant BBR/BPC Transcription Factors: Unlocking Multilayered Regulation in Development, Stress and Immunity. Planta 2023, 258, 31. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Sun, H. DOF Transcription Factors: Specific Regulators of Plant Biological Processes. Front. Plant Sci. 2023, 14, 1044918. [Google Scholar] [CrossRef] [PubMed]
- Han, G.; Lu, C.; Guo, J.; Qiao, Z.; Sui, N.; Qiu, N.; Wang, B. C2H2 Zinc Finger Proteins: Master Regulators of Abiotic Stress Responses in Plants. Front. Plant Sci. 2020, 11, 115. [Google Scholar] [CrossRef] [PubMed]
- Tuteja, N. Abscisic Acid and Abiotic Stress Signaling. Plant Signal. Behav. 2007, 2, 135–138. [Google Scholar] [CrossRef]
- Li, Z.; Fu, J.; Shi, D.; Peng, Y. Myo-inositol Enhances Drought Tolerance in Creeping Bentgrass through Alteration of Osmotic Adjustment, Photosynthesis, and Antioxidant Defense. Crop Sci. 2020, 60, 2149–2158. [Google Scholar] [CrossRef]
- Pluskota, W.E.; Szablińska, J.; Obendorf, R.L.; Górecki, R.J.; Lahuta, L.B. Osmotic Stress Induces Genes, Enzymes and Accumulation of Galactinol, Raffinose and Stachyose in Seedlings of Pea (Pisum sativum L.). Acta Physiol. Plant. 2015, 37, 156. [Google Scholar] [CrossRef]
- Nishizawa-Yokoi, A.; Yabuta, Y.; Shigeoka, S. The Contribution of Carbohydrates Including Raffinose Family Oligosaccharides and Sugar Alcohols to Protection of Plant Cells from Oxidative Damage. Plant Signal. Behav. 2008, 3, 1016–1018. [Google Scholar] [CrossRef] [PubMed]
- Sagar, S.; Singh, A. Emerging Role of Phospholipase C Mediated Lipid Signaling in Abiotic Stress Tolerance and Development in Plants. Plant Cell Rep. 2021, 40, 2123–2133. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Van Wijk, R.; Shahbaz, M.; Roels, W.; Schooten, B.V.; Vermeer, J.E.M.; Zarza, X.; Guardia, A.; Scuffi, D.; Garcia-Mata, C.; et al. Arabidopsis Phospholipase C3 Is Involved in Lateral Root Initiation and ABA Responses in Seed Germination and Stomatal Closure. Plant Cell Physiol. 2018, 59, 469–486. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Van Wijk, R.; Zarza, X.; Shahbaz, M.; Van Hooren, M.; Guardia, A.; Scuffi, D.; García-Mata, C.; Van Den Ende, W.; Hoffmann-Benning, S.; et al. Knock-Down of Arabidopsis PLC5 Reduces Primary Root Growth and Secondary Root Formation While Overexpression Improves Drought Tolerance and Causes Stunted Root Hair Growth. Plant Cell Physiol. 2018, 59, 2004–2019. [Google Scholar] [CrossRef] [PubMed]
- Van Wijk, R.; Zhang, Q.; Zarza, X.; Lamers, M.; Marquez, F.R.; Guardia, A.; Scuffi, D.; García-Mata, C.; Ligterink, W.; Haring, M.A.; et al. Role for Arabidopsis PLC7 in Stomatal Movement, Seed Mucilage Attachment, and Leaf Serration. Front. Plant Sci. 2018, 9, 1721. [Google Scholar] [CrossRef]
- Oguchi, K.; Tanaka, N.; Komatsu, S.; Akao, S. Methylmalonate-Semialdehyde Dehydrogenase Is Induced in Auxin-Stimulated and Zinc-Stimulated Root Formation in Rice. Plant Cell Rep. 2004, 22, 848–858. [Google Scholar] [CrossRef]
- Wang, F.; Latifi, A.; Chen, W.; Zhang, C. The Inositol Monophosphatase ALL 2917 (IMPA 1) Is Involved in Osmotic Adaptation in A nabaena Sp. PCC 7120. Environ. Microbiol. Rep. 2012, 4, 622–632. [Google Scholar] [CrossRef]
- Das-Chatterjee, A.; Goswami, L.; Maitra, S.; Dastidar, K.G.; Ray, S.; Majumder, A.L. Introgression of a Novel Salt-tolerant L- Myo-inositol 1-phosphate Synthase from Porteresia coarctata (Roxb.) Tateoka (PcINO1) Confers Salt Tolerance to Evolutionary Diverse Organisms. FEBS Lett. 2006, 580, 3980–3988. [Google Scholar] [CrossRef]
- Phua, S.Y.; Yan, D.; Chan, K.X.; Estavillo, G.M.; Nambara, E.; Pogson, B.J. The Arabidopsis SAL1-PAP Pathway: A Case Study for Integrating Chloroplast Retrograde, Light and Hormonal Signaling in Modulating Plant Growth and Development? Front. Plant Sci. 2018, 9, 1171. [Google Scholar] [CrossRef]
- Vinson, C.C.; Mota, A.P.Z.; Porto, B.N.; Oliveira, T.N.; Sampaio, I.; Lacerda, A.L.; Danchin, E.G.J.; Guimaraes, P.M.; Williams, T.C.R.; Brasileiro, A.C.M. Characterization of Raffinose Metabolism Genes Uncovers a Wild Arachis Galactinol Synthase Conferring Tolerance to Abiotic Stresses. Sci. Rep. 2020, 10, 15258. [Google Scholar] [CrossRef]
- Ruan, Y.-L.; Jin, Y.; Yang, Y.-J.; Li, G.-J.; Boyer, J.S. Sugar Input, Metabolism, and Signaling Mediated by Invertase: Roles in Development, Yield Potential, and Response to Drought and Heat. Mol. Plant 2010, 3, 942–955. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.; Shah, A.N.; Shah, A.A.; Nadeem, M.A.; Alsaleh, A.; Javed, T.; Alotaibi, S.S.; Abdelsalam, N.R. Genome-Wide Analysis of Invertase Gene Family, and Expression Profiling under Abiotic Stress Conditions in Potato. Biology 2022, 11, 539. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira-Neto, J.R.C.; Silva, M.D.d.; Binneck, E.; Vilanova, E.C.R.; Melo, A.L.T.M.d.; Silva, J.B.d.; de Melo, N.F.; Pandolfi, V.; Benko-Iseppon, A.M. From Genes to Stress Response: Genomic and Transcriptomic Data Suggest the Significance of the Inositol and Raffinose Family Oligosaccharide Pathways in Stylosanthes scabra, Adaptation to the Caatinga Environment. Plants 2024, 13, 1749. https://doi.org/10.3390/plants13131749
Ferreira-Neto JRC, Silva MDd, Binneck E, Vilanova ECR, Melo ALTMd, Silva JBd, de Melo NF, Pandolfi V, Benko-Iseppon AM. From Genes to Stress Response: Genomic and Transcriptomic Data Suggest the Significance of the Inositol and Raffinose Family Oligosaccharide Pathways in Stylosanthes scabra, Adaptation to the Caatinga Environment. Plants. 2024; 13(13):1749. https://doi.org/10.3390/plants13131749
Chicago/Turabian StyleFerreira-Neto, José Ribamar Costa, Manassés Daniel da Silva, Eliseu Binneck, Elayne Cristina Ramos Vilanova, Ana Luíza Trajano Mangueira de Melo, Jéssica Barboza da Silva, Natoniel Franklin de Melo, Valesca Pandolfi, and Ana Maria Benko-Iseppon. 2024. "From Genes to Stress Response: Genomic and Transcriptomic Data Suggest the Significance of the Inositol and Raffinose Family Oligosaccharide Pathways in Stylosanthes scabra, Adaptation to the Caatinga Environment" Plants 13, no. 13: 1749. https://doi.org/10.3390/plants13131749
APA StyleFerreira-Neto, J. R. C., Silva, M. D. d., Binneck, E., Vilanova, E. C. R., Melo, A. L. T. M. d., Silva, J. B. d., de Melo, N. F., Pandolfi, V., & Benko-Iseppon, A. M. (2024). From Genes to Stress Response: Genomic and Transcriptomic Data Suggest the Significance of the Inositol and Raffinose Family Oligosaccharide Pathways in Stylosanthes scabra, Adaptation to the Caatinga Environment. Plants, 13(13), 1749. https://doi.org/10.3390/plants13131749