Research Progress on Mechanical Strength of Rice Stalks
Abstract
:1. Introduction
2. Cell Wall of Rice Stalks
2.1. Cell Wall Structure of Rice Stalks
2.2. Cell Wall Components of Rice Stalks
2.2.1. Cellulose
2.2.2. Lignin
2.2.3. Hemicellulose
2.2.4. Other Components
2.3. Cell Wall of Rice Stalks and Mechanical Strength
3. Molecular Regulatory Mechanisms of Major Components of Rice Stalk Cell Wall
3.1. Mechanisms of Cellulose Synthesis Regulation
3.1.1. Cellulose Synthase
3.1.2. Transcriptional Regulation of Cellulose Synthesis
3.1.3. Other Regulation of Cellulose
3.2. Mechanisms of Lignin Synthesis Regulation
3.3. Mechanisms of Hemicellulose Synthesis Regulation
4. Research Progress on the Genetic Regulation Mechanism of Mechanical Strength of Rice Stems
4.1. QTL Related to Mechanical Strength of Rice Stems
4.2. Genes Related to Mechanical Strength of Rice Stalks
5. Breeding and Its Application Value
5.1. Breeding of Rice for Resistance to Lodging
5.2. Breeding of Brittle Rice
6. Summary and Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, C.; Li, L. Advances in Molecular Understanding of Rice Lodging Resistance. Chin. J. Rice Sci. 2016, 30, 216–222. [Google Scholar] [CrossRef]
- Shah, L.; Yahya, M.; Shah, S.M.A.; Nadeem, M.; Ali, A.; Ali, A.; Wang, J.; Riaz, M.W.; Rehman, S.; Wu, W.; et al. Improving Lodging Resistance: Using Wheat and Rice as Classical Examples. Int. J. Mol. Sci. 2019, 20, 4211. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Lu, Z.; Liu, W.; Lu, D.; Wang, S.; Wu, H.; Fang, Z.; He, X. Advances in Lodging Resistance of Rice Since the “Green Revolution”. Guangdong Agric. Sci. 2022, 49, 1–13. [Google Scholar] [CrossRef]
- Lin, Z.; Cao, L. Progress on Mapping and Cloning of Genes Related to Rice Plant Type. China Rice 2014, 20, 17–22. [Google Scholar] [CrossRef]
- Rao, Y.; Li, Y.; Dong, G.; Zeng, D.; Qian, Q. Progress of research on resistance to rice lodging. China Rice 2009, 6, 15–19. [Google Scholar] [CrossRef]
- Luo, M.; Tian, C.; Li, X.; Lin, J. Relationship between Morpho-anatomical Traits Together with Chemical Components and Lodging Resistance of Stem in Rice (Oryza sativa L.). Acta Bot. Boreali-Occident. Sin. 2007, 11, 2346–2353. [Google Scholar] [CrossRef] [PubMed]
- Kashiwagi, T.; Munakata, J.; Ishimaru, K. Functional analysis of the lodging resistance QTL BSUC11 on morphological and chemical characteristics in upper culms of rice. Euphytica 2016, 210, 233–243. [Google Scholar] [CrossRef]
- Wang, X.; Miao, Y.; Cen, F.; Ding, L. Progress in the study of the constituent factors of rice stalk resistance. Mod. Agric. Sci. Technol. 2006, 4, 65–66. [Google Scholar] [CrossRef]
- Somerville, C.; Bauer, S.; Brininstool, G.; Facette, M.; Hamann, T.; Milne, J.; Osborne, E.; Paredez, A.; Persson, S.; Raab, T.; et al. Toward a systems approach to understanding plant cell walls. Science 2004, 306, 2206–2211. [Google Scholar] [CrossRef]
- Zhang, B.; Gao, Y.; Zhang, L.; Zhou, Y. The Plant Cell Wall: Biosynthesis, construction, and functions. J. Integr. Plant Biol. 2020, 63, 251–272. [Google Scholar] [CrossRef]
- Shu, Y.; Zeng, D.; Qin, R.; Jin, X.; Zheng, X.; Shi, C. Identification and Gene Fine Mapping of a Brittle Culm 16 (bc16) Mutant in Rice. Chin. J. Rice Sci. 2016, 30, 345–355. [Google Scholar] [CrossRef]
- Li, F.; Zhang, M.; Guo, K.; Hu, Z.; Zhang, R.; Feng, Y.; Yi, X.; Zou, W.; Wang, L.; Wu, C.; et al. High-level hemicellulosic arabinose predominately affects lignocellulose crystallinity for genetically enhancing both plant lodging resistance and biomass enzymatic digestibility in rice mutants. Plant Biotechnol. J. 2015, 13, 514–525. [Google Scholar] [CrossRef]
- Zhang, B.; Zhou, Y. Rice brittleness mutants: A way to open the ’black box’ of monocot cell wall biosynthesis. J. Integr. Plant Biol. 2011, 53, 136–142. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, B.; Yang, Y.; Ye, Y.; Ren, Y.; Wu, Y. Cell wall components and mechanical properties in brittle culm mutants of rice. J. Biol. 2020, 37, 26–29. [Google Scholar] [CrossRef]
- Ping, X.; Donaldson, L.A.; Gergely, Z.R.; Staehelin, L.A. Dual-axis electron tomography: A new approach for investigating the spatial organization of wood cellulose microfibrils. Wood Sci. Technol. 2007, 41, 101–116. [Google Scholar] [CrossRef]
- Guo, Y.; Zhu, S.; Zhang, L. Influence of Different Cultivation Conditions on Biochemistry Components of Rice Culms. J. Shenyang Agric. Univ. 2003, 34, 89–91. [Google Scholar] [CrossRef]
- Xu, Z. QTL Analysis and Gene Cloning for Stem Strength Related Traits in Rice. Ph.D. Thesis, Yangzhou University, Yangzhou, China, 2017. [Google Scholar]
- Chang, M.; Drakakaki, G. How Does a Plant Cell Build a New Cell Wall When Dividing? Front. Young Minds 2021, 9, 570769. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, L.; Sun, Y.; Mitchell, G.; Liu, S. Advance of Studies on Structure and Decrystallization of Cellulose. Chem. Ind. For. Prod. 2008, 28, 109–114. [Google Scholar] [CrossRef]
- Shang-Guan, X.; Qi, Y.; Wang, A.; Ren, Y.; Wang, Y.; Xiao, T.; Shen, Z.; Wang, Q.; Xia, Y. OsGLP participates in the regulation of lignin synthesis and deposition in rice against copper and cadmium toxicity. Front. Plant Sci. 2023, 13, 1078113. [Google Scholar] [CrossRef]
- Li, F. Characterization of Cell Wall Structural Features that Predominately Affect Plant Growth and Biomass Saccharification. Ph.D. Thesis, Huazhong Agricultural University, Wuhan, China, 2015. [Google Scholar] [CrossRef]
- Ishida, K. Reciprocal regulation of cellulose and lignin biosynthesis by the transcription factor OsTCP19. J. Exp. Bot. 2024, 75, 5–8. [Google Scholar] [CrossRef]
- Yin, L. Effect of saline-alkaline stress on lignin biosynthesis in maize revealed by transcriptome and biochemical analysis. Southwest China J. Agric. Sci. 2023, 36, 454–464. [Google Scholar] [CrossRef]
- Chen, X.; Shi, C.; Yin, Y.; Wang, Z.; Shi, Y.; Peng, D.; Ni, Y.; Cai, T. Relationship between Lignin Metabolism and Lodging Resistance in Wheat. Acta Agron. Sin. 2011, 37, 1616–1622. [Google Scholar] [CrossRef]
- Thévenin, J.; Pollet, B.; Letarnec, B.; Saulnier, L.; Gissot, L.; Alessandra, M.; Lapierre, C.; Jouanin, L. The Simultaneous Repression of CCRand CAD, Two Enzymes of the Lignin Biosynthetic Pathway, Results in Sterility andDwarfism in Arabidopsis thaliana. Mol. Plant 2011, 4, 70–82. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chapple, C. Understanding lignification:challenges beyond monolignol biosythesis. Plant Physiol. 2010, 154, 449–452. [Google Scholar] [CrossRef] [PubMed]
- Lam, T.B.T.; Kadoya, K.; Iiyama, K. Bonding of hydroxycinnamic acids to lignin: Ferulicandp-coumaric acids are predominantly linked at the benzyl position of lignin, not the β-position, in grass cell walls. Phytochemistry 2001, 57, 987–992. [Google Scholar] [CrossRef] [PubMed]
- Scheller, H.V.; Ulvskov, P. Hemicelluloses. Annu. Rev. Plant Biol. 2010, 61, 263–289. [Google Scholar] [CrossRef] [PubMed]
- Carvalheiro, F.; Duarte, L.C.; Girio, F.M. Hemicellulose biorefineries: A review on biomass pretreatments. J. Sci. Ind. Res. 2008, 67, 849. [Google Scholar] [CrossRef]
- Zhang, B.; Zhou, Y. Plant Cell Wall Formation and Regulation. Entia Sin. 2015, 45, 544–556. [Google Scholar] [CrossRef]
- Lamport, D.T.A.; Kieliszewski, M.J.; Chen, Y.; Cannon, M.C. Role of the extensin superfamily in primary cell wall architecture. Plant Physiol. 2011, 156, 11–19. [Google Scholar] [CrossRef]
- Cannon, M.C.; Terneus, K.; Qi, H.; Tan, L.; Wang, Y.; Wegenhart, B.L.; Chen, L.; Lamport, D.T.A.; Chen, Y.; Kieliszewski, M.J. Self-assembly of the plant cell wall requires an extensin scaffold. Proc. Natl. Acad. Sci. USA 2008, 105, 2226–2231. [Google Scholar] [CrossRef]
- Han, Y.; Chen, H. Plant Cell Wall Proteins & Enzymatic Hydrolysis of Lignocellulose. Prog. Chem. 2007, 19, 1153–1158. [Google Scholar]
- Delmer, D.P.; Haigler, C.H. The Regulation of Metabolic Flux to Cellulose, a Major Sink for Carbon in Plants. Metab. Eng. 2002, 4, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Somerville, C. Cellulose synthesis in higher plants. Annu. Rev. Cell Dev. Biol. 2006, 22, 53–78. [Google Scholar] [CrossRef] [PubMed]
- Saxena, I.M.; Malcolm, B.R. Cellulose biosynthesis: Current views and evolving concepts. Ann. Bot. 2005, 96, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Doblin, M.S.; Kurek, I.; Jacob-Wilk, D.; Delmer, D.P. Cellulose biosynthesis in plants: From genes to rosettes. Plant Cell Physiol. 2002, 43, 1407–1420. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Zhang, T.; Hu, Z.; Wang, L. Progress on cell wall biosynthesis and regulation in grasses. Jiangsu J. Agric. Sci. 2018, 34, 472–480. [Google Scholar] [CrossRef]
- Tanaka, K.; Murata, K.; Yamazaki, M.; Onosato, K.; Miyao, A.; Hirohiko, H. Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall. Plant Physiol. 2003, 133, 73–83. [Google Scholar] [CrossRef]
- Zhang, B.; Deng, L.; Qian, Q.; Xiong, G.; Zeng, D.; Li, R.; Guo, L.; Li, J.; Zhou, Y. A missense mutation in the transmembrane domain of CESA4 affects protein abundance in the plasma membrane and results in abnormal cell wall biosynthesis in rice. Plant Mol. Biol. 2009, 71, 509–524. [Google Scholar] [CrossRef]
- Song, X.; Liu, F.; Jiang, Y.; Zhang, B.; Gao, Y.; Liu, X.; Lin, Q.; Ling, H.; Zhou, Y. Disruption of secondary wall cellulose biosynthesis alters cadmium translocation and tolerance in rice plants. Mol. Plant 2013, 6, 768–780. [Google Scholar] [CrossRef]
- Zhong, R.; Ye, Z. Secondary Cell Walls: Biosynthesis, Patterned Deposition and Transcriptional Regulation. Plant Cell Physiol. 2015, 56, 195–214. [Google Scholar] [CrossRef]
- Demura, T.; Ye, Z. Regulation of plant biomass production. Curr. Opin. Plant Biol. 2010, 13, 298–303. [Google Scholar] [CrossRef] [PubMed]
- Desprez, T.; Juraniec, M.; Crowell, E.F.; Jouy, H.; Pochylova, Z.; Parcy, F.; Hoefte, H.; Gonneau, M.; Vernhettes, S. Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 2007, 104, 15572–15577. [Google Scholar] [CrossRef] [PubMed]
- Noda, S.; Koshiba, T.; Hattori, T.; Yamaguchi, M.; Suzuki, S.; Umezawa, T. The expression of a rice secondary wall-specific cellulose synthase gene, OsCesA7, is directly regulated by a rice transcription factor, OsMYB58/63. Planta 2015, 242, 589–600. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Liu, B.; Zhao, M.; Wu, K.; Cheng, W.; Chen, X.; Liu, Q.; Liu, Z.; Fu, X.; Wu, Y. CEF1/OsMYB103L is involved in GA-mediated regulation of secondary wall biosynthesis in rice. Plant Mol. Biol. 2015, 89, 385–401. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Wang, S.; Zhang, B.; Shang-Guan, K.; Shi, Y.; Zhang, D.; Liu, X.; Wu, K.; Xu, Z.; Fu, X.; et al. A Gibberellin-Mediated DELLA-NAC Signaling Cascade Regulates Cellulose Synthesis in Rice. Plant Cell 2015, 27, 1681–1696. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Wu, K.; Chen, J.; Liu, Q.; Wu, Y.; Liu, B.; Fu, X. OsSND2, a NAC family transcription factor, is involved in secondary cell wall biosynthesis through regulating MYBs expression in rice. Rice 2018, 11, 36. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Qi, H.; Yang, L.; Xu, L.; Wang, J.; Guo, J.; Zhang, L.; Tan, Y.; Pan, R.; Shu, Q.; et al. The OsbHLH002/OsICE1-OSH1 module orchestrates secondary cell wall formation in rice. Cell Rep. 2023, 42, 112702. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Xu, Z.; Cao, S.; Chen, K.; Li, S.; Liu, X.; Gao, C.; Zhang, B.; Zhou, Y. An Uncanonical CCCH-Tandem Zinc-Finger Protein Represses Secondary Wall Synthesis and Controls Mechanical Strength in Rice. Mol. Plant 2018, 11, 163–174. [Google Scholar] [CrossRef]
- Cao, S.; Wang, Y.; Gao, Y.; Xu, R.; Ma, J.; Xu, Z.; Shang-Guan, K.; Zhang, B.; Zhou, Y. The RLCK-VND6 module coordinates secondary cell wall formation and adaptive growth in rice. Mol. Plant 2023, 16, 999–1015. [Google Scholar] [CrossRef]
- Liu, L.; Shang-Guan, K.; Zhang, B.; Liu, X.; Yan, M.; Zhang, L.; Shi, Y.; Zhang, M.; Qian, Q.; Li, J.; et al. Brittle Culm1, a COBRA-like protein, functions in cellulose assembly through binding cellulose microfibrils. PLoS Genet. 2013, 9, 1003704. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, B.; Qian, Q.; Yu, Y.; Li, R.; Zhang, J.; Liu, X.; Zeng, D.; Li, J.; Zhou, Y. Brittle Culm 12, a dual-targeting kinesin-4 protein, controls cell-cycle progression and wall properties in rice. Plant J. 2010, 63, 312–328. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Liu, Y.; Yuan, D.; Duan, M.; Liu, Y.; Shen, Z.; Yang, C.; Qiu, Z.; Liu, D.; Wen, P.; et al. An R2R3 MYB transcription factor confers brown planthopper resistance by regulating the phenylalanine ammonia-lyase pathway in rice. Proc. Natl. Acad. Sci. USA 2020, 117, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Gui, J.; Shen, J.; Li, L. Functional Characterization of Evolutionarily Divergent 4-Coumarate: Coenzyme A Ligases in rice. Plant Physiol. 2011, 157, 574–586. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wang, K.; Chern, M.; Liu, Y.; Zhu, Z.; Liu, J.; Zhu, X.; Yin, J.; Ran, L.; Xiong, J.; et al. Sclerenchyma cell thickening through enhanced lignification induced by OsMYB30 prevents fungal penetration of rice leaves. New Phytol. 2020, 226, 1850–1863. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, B.; Chen, Z.; Wu, M.; Chao, D.; Wei, Q.; Xin, Y.; Li, L.; Ming, Z.; Xia, J. Three OsMYB36 members redundantly regulate Casparian strip formation at the root endodermis. Plant Cell 2022, 34, 2948–2968. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.; Cho, L.; Antt, H.W.; Koh, H.; An, G. KNOX Protein OSH15 Induces Grain Shattering by Repressing Lignin Biosynthesis Genes. Plant Physiol. 2017, 174, 312–325. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Ma, X.; Zhao, S.; Tang, Y.; Liu, F.; Gu, P.; Fu, Y.; Zhu, Z.; Cai, H.; Sun, C.; et al. The APETALA2-Like Transcription Factor SUPERNUMERARY BRACT Controls Rice Seed Shattering and Seed Size. Plant Cell 2019, 31, 17–36. [Google Scholar] [CrossRef] [PubMed]
- Bang, S.; Choi, S.; Jin, X.; Jung, S.; Choi, J.; Seo, J.; Kim, J. Transcriptional activation of rice CINNAMOYL-CoA REDUCTASE 10 by OsNAC5, contributes to drought tolerance by modulating lignin accumulation in roots. Plant Biotechnol. J. 2021, 20, 736–747. [Google Scholar] [CrossRef] [PubMed]
- Guo, G.; Bai, F.; Liu, W.; Bi, C. Advances in Research of the Regulation of Transcription Factors of Lignin Biosynthesis. Sci. Agric. Sin. 2015, 48, 1277–1287. [Google Scholar] [CrossRef]
- Su, L.; Fang, L.; Zhu, Z.; Zhang, L.; Xin, H. The transcription factor VaNAC17 from grapevine (Vitis amurensis) enhances drought tolerance by modulating jasmonic acid biosynthesis in transgenic Arabidopsis. Plant Cell Rep. 2020, 39, 621–634. [Google Scholar] [CrossRef]
- Burton, R.A.; Gidley, M.J.; Fincher, G.B. Heterogeneity in the chemistry, structure and function of plant cell walls. Nat. Chem. Biol. 2010, 6, 724–732. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Xiong, G.; Rui, L.; Cui, J.; Ding, T.; Zhang, B.; Pauly, M.; Cheng, Z.; Zhou, Y. Rice cellulose synthase-like D4 is essential for normal cell-wall biosynthesis and plant growth. Plant J. 2009, 60, 1055–1069. [Google Scholar] [CrossRef] [PubMed]
- Vega-Sánchez, M.E.; Verhertbruggen, Y.; Christensen, U.; Chen, X.; Sharma, V.; Varanasi, P.; Jobling, S.A.; Talbot, M.; White, R.G.; Joo, M.; et al. Loss of Cellulose synthase-like F6 function affects mixed-linkage glucan deposition, cell wall mechanical properties, and defense responses in vegetative tissues of rice. Plant Physiol. 2012, 159, 56–69. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Park, S.; Je, B.I.; Park, S.; Park, S.; Piao, H.; Eun, M.; Dolan, L.; Han, C. OsCSLD1, a cellulose synthase-like D1 gene, is required for root hair morphogenesis in rice. Plant Physiol. 2007, 143, 1220–1230. [Google Scholar] [CrossRef] [PubMed]
- Mu, P.; Li, Z.; Li, C.; Zhang, H.; Wang, X. QTL analysis for lodging resistance in rice using a DH population under lowland and upland ecosystems. Acta Genet. Sin. 2004, 31, 717–723. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Luo, L.; Yan, X.; Gao, Y.; Wang, C.; Ling, J.; Yano, M.; Zhai, H.; Wan, J. Quantitative Trait Locus Analysis of Lodging Index in Rice (Oryza sativa L.). Acta Agron. Sin. 2005, 31, 348–354. [Google Scholar] [CrossRef]
- Kashiwagi, T.; Togawa, E.; Hirotsu, N.; Ishimaru, K. Improvement of lodging resistance with QTLs for stem diameter in rice (Oryza sativa L.). Theor. Appl. Genet. 2008, 117, 749–757. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Rao, Y.; Li, G.; Huang, L.; Leng, Y.; Zhang, G.; Gao, Z.; Hu, J.; Zhu, L.; Guo, L.; et al. Genetic Analysis of Culms Traits in Rice. Mol. Plant Breed. 2011, 9, 160–168. [Google Scholar] [CrossRef]
- Zhou, L. Fine Mapping of a QTL for Strong Rice Culm and Analysis of Its Candidate Gene. Master’s Thesis, Sichuan Agricultural University, Ya’an, China, 2018. [Google Scholar] [CrossRef]
- Zhu, X.; Li, C.; Ning, W.; Zhang, J.; Zeng, J.; Mao, C.; Li, Y.; Lin, Y. Mapping QTLs for internode diameter using a population of recombinant inbred lines. J. Huazhong Agric. Univ. 2022, 41, 178–183. [Google Scholar] [CrossRef]
- Wang, D.; Qin, Y.; Fang, J.; Yuan, S.; Peng, L.; Zhao, J.; Li, X. A Missense Mutation in the Zinc Finger Domain of OsCESA7 Deleteriously Affects Cellulose Biosynthesis and Plant Growth in Rice. PLoS ONE 2016, 11, e0153993. [Google Scholar] [CrossRef]
- Li, F.; Xie, G.; Huang, J.; Zhang, R.; Li, Y.; Zhang, M.; Wang, Y.; Li, A.; Li, X.; Xia, T. OsCESA9 conserved-site mutation leads to largely enhanced plant lodging resistance and biomass enzymatic saccharification by reducing cellulose DP and crystallinity in rice. Plant Biotechnol. J. 2017, 15, 1093–1104. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Li, S.; Qian, Q.; Zeng, D.; Zhang, M.; Guo, L.; Zhang, B.; Deng, L.; Liu, X. BC10, a DUF266-containing and Golgi-located type II membrane protein, is required for cell-wall biosynthesis in rice. Plant J. 2010, 57, 446–462. [Google Scholar] [CrossRef] [PubMed]
- Hirano, K.; Kotake, T.; Kamihara, K.; Tsuna, K.; Aohara, T.; Kaneko, Y.; Takatsuji, H.; Tsumuraya, Y.; Kawasaki, S. Rice BRITTLE CULM 3 (BC3) encodes a classical dynamin OsDRP2B essential for proper secondary cell wall synthesis. Planta 2010, 232, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Zhang, B.; Zhou, Y. Golgi-localized UDP-glucose transporter is required for cell wall integrity in rice. Plant Signal. Behav. 2011, 6, 1097–1100. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Zhang, M.; Ye, J.; Hu, D.; Zhang, Y.; Li, Z.; Liu, J.; Sun, Y.; Wang, S.; Yuan, X.; et al. Brittle culm 25, which encodes an UDP-xylose synthase, affects cell wall properties in rice. Crop. J. 2023, 11, 733–743. [Google Scholar] [CrossRef]
- Li, Y.; Shen, A.; Xiong, W.; Sun, Q.; Luo, Q.; Song, T.; Li, Z.; Luan, W. Overexpression of OsHox32 Results in Pleiotropic Effects on Plant Type Architecture and Leaf Development in Rice. Rice 2016, 9, 46. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Li, D.; Liu, X.; Ji, C.; Hao, L.; Zhao, X.; Li, X.; Chen, C.; Chen, Z.; Zhu, L. OsMYB103L, an R2R3-MYB transcription factor, influences leaf rolling and mechanical strength in rice (Oryza sativa L.). BMC Plant Biol. 2014, 14, 158. [Google Scholar] [CrossRef]
- Xie, G.; Yang, B.; Xu, Z.; Li, F.; Guo, K.; Zhang, M.; Wang, L.; Wang, L.; Zou, W.; Wang, Y.; et al. Global Identification of Multiple OsGH9 Family Members and Their Involvement in Cellulose Crystallinity Modification in Rice. PLoS ONE 2013, 8, 50171. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Cheng, Z.; Wang, J.; Zhang, F.; Zhang, B.; Luo, S.; Lei, C.; Pan, T.; Wang, Y.; Zhu, Y.; et al. Rice STOMATAL CYTOKINESIS DEFECTIVE2 regulates cell expansion by affecting vesicular trafficking in rice. Plant Physiol. 2022, 189, 567–584. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Y.; Tan, H.; Wang, Y.; Li, G.; Liang, W.; Yuan, Z.; Hu, J.; Ren, H.; Zhang, D. RICE MORPHOLOGY DETERMINANT encodes the type II formin FH5 and regulates rice morphogenesis. Plant Cell 2011, 23, 681–700. [Google Scholar] [CrossRef]
- Nguyen, H.P.; Jeong, H.; Jeon, S.; Kim, D.; Lee, C. Rice pectin methylesterase inhibitor28 (OsPMEI28) encodes a functional PMEI and its overexpression results in a dwarf phenotype through increased pectin methylesterification levels. J. Plant Physiol. 2017, 208, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Zhuo, L.; Su, Y.; Sun, L.; Wang, X. Non-specific phospholipase C1 affects silicon distribution and mechanical strength in stem nodes of rice. Plant J. 2016, 86, 308–321. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Wang, M.; Cao, L.; Dang, Z.; Ruan, N.; Wang, Y.; Huang, Y.; Wu, J.; Zhang, M.; Xu, Z.; et al. OsUGE3-mediated cell wall polysaccharides accumulation improves biomass production, mechanical strength, and salt tolerance. Plant Cell Environ. 2022, 45, 2492–2507. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, A.; Ueguchi-Tanaka, M.; Sonoda, Y.; Kitano, H.; Koshioka, M.; Futsuhara, Y.; Matsuoka, M.; Yamaguchi, J. slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell 2001, 13, 999–1010. [Google Scholar] [CrossRef] [PubMed]
- Phanchaisri, B.; Samsang, N.; Yu, L.; Singkarat, S.; Anuntalabhochai, S. Expression of OsSPY and 14-3-3 genes involved in plant height variations of ion-beam-induced KDML 105 rice mutants. Mutat. Res. Fundam. Mol. Mech. Mutagen. 2012, 734, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Rong, C.; Liu, Z.; Chang, Z.; Liu, Z.; Ding, Y.; Ding, C. Cytokinin oxidase/dehydrogenase family genes exhibit functional divergence and overlap in rice growth and development, especially in control of tillering. J. Exp. Bot. 2022, 73, 3552–3568. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Yu, H.; Yuan, K.; Liao, Z.; Meng, X.; Jing, Y.; Liu, G.; Chu, J.; Li, J. Strigolactone promotes cytokinin degradation through transcriptional activation of CYTOKININ OXIDASE/DEHYDROGENASE 9 in rice. Proc. Natl. Acad. Sci. USA 2019, 116, 14319–14324. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Tan, L.; Zhu, Z.; Xiao, L.; Xie, D.; Sun, C. PAY1 improves plant architecture and enhances grain yield in rice. Plant J. 2015, 83, 528–536. [Google Scholar] [CrossRef]
- Malik, N.; Ranjan, R.; Parida, S.K.; Agarwal, P.; Tyagi, A.K. Mediator subunit OsMED14_1 plays an important role in rice development. Plant J. 2020, 101, 1411–1429. [Google Scholar] [CrossRef]
- Zhang, M.; Feng, W.; Guo, K.; Hu, Z.; Li, Y.; Xie, G.; Wang, Y.; Cai, Y.; Peng, L.; Wang, L. A Novel FC116/BC10 Mutation Distinctively Causes Alteration in the Expression of the Genes for Cell Wall Polymer Synthesis in Rice. Front. Plant Sci. 2016, 7, 1366. [Google Scholar] [CrossRef]
- Xiong, G.; Li, R.; Qian, Q.; Song, X.; Zhou, Y. The rice dynamin-related protein DRP2B mediates membrane trafficking, and thereby plays a critical role in secondary cell wall cellulose biosynthesis. Plant J. 2010, 64, 56–70. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, X.; Qian, Q.; Liu, L.; Zhou, L. Golgi nucleotide sugar transporter modulates cell wall biosynthesis and plant growth in rice. Proc. Natl. Acad. Sci. USA 2011, 108, 5110–5115. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, H.; Srivastava, A.; Pan, Y.; Bai, J.; Fang, J.; Shi, H.; Zhu, J. Knockdown of Rice MicroRNA166 Confers Drought Resistance by Causing Leaf Rolling and Altering Stem Xylem Development. Plant Physiol. 2018, 176, 2082–2094. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Xia, T.; Li, G.; Li, X.; Li, Y.; Wang, Y.; Wang, Y.; Chen, Y.; Xie, G.; Bai, F.; et al. Overproduction of native endo-β-1,4-glucanases leads to largely enhanced biomass saccharification and bioethanol production by specific modification of cellulose features in transgenic rice. Biotechnol. Biofuels 2019, 12, 11. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Ren, Y.; Guo, J.; Yang, H.; Zhu, X.; Li, W.; Tao, L.; Zhan, Y.; Wang, Q.; Wu, Y. CEF3 is involved in membrane trafficking and essential for secondary cell wall biosynthesis and its mutation enhanced biomass enzymatic saccharification in rice. Biotechnol. Biofuels Bioprod. 2022, 15, 111. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Ren, S.; Zhang, X.; Gao, M.; Ye, S.; Qi, Y.; Zheng, Y.; Wang, J.; Zeng, L.; Li, Q.; et al. BENT UPPERMOST INTERNODE1 encodes the class II formin FH5 crucial for actin organization and rice development. Plant Cell 2011, 23, 661–680. [Google Scholar] [CrossRef] [PubMed]
- Vleesschauwer, D.D.; Seifi, H.S.; Filipe, O.; Haeck, A.; Huu, S.N.; Demeestere, K.; Höfte, M. The DELLA protein SLR1 integrates and amplifies salicylic acid- and jasmonic acid-dependent innate immunity in rice. Plant Physiol. 2016, 170, 1831–1847. [Google Scholar] [CrossRef] [PubMed]
- Yano, K.; Morinaka, Y.; Wang, F.; Huang, P.; Takehara, S.; Hirai, T.; Ito, A.; Koketsu, E.; Kawamura, M.; Kotake, K.; et al. GWAS with principal component analysis identifies a gene comprehensively controlling rice architecture. Proc. Natl. Acad. Sci. USA 2019, 116, 21262–21267. [Google Scholar] [CrossRef] [PubMed]
- Ueguchi-Tanaka, M.; Kobayashi, M.; Ashikari, M.; Iwasaki, Y.K.H.; Matsuoka, M.; Fujisawa, Y. Rice dwarf mutant d1, which is defective in the alpha subunit of the heterotrimeric G protein, affects gibberellin signal transduction. Proc. Natl. Acad. Sci. USA 2000, 97, 11638–11643. [Google Scholar] [CrossRef]
- Ferrero-Serrano, Á.; Assmann, S.M. The α-subunit of the rice heterotrimeric G protein, RGA1, regulates drought tolerance during the vegetative phase in the dwarf rice mutant d1. J. Exp. Bot. 2016, 67, 3433–3443. [Google Scholar] [CrossRef]
- Qiao, Y.; Piao, R.; Shi, J.; Lee, S.; Jiang, W.; Kim, B.; Lee, J.; Han, L.; Ma, W.; Koh, H. Fine mapping and candidate gene analysis of dense and erect panicle 3, DEP3, which confers high grain yield in rice (Oryza sativa L.). Theor. Appl. Genet. 2011, 122, 1439–1449. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Zhang, K.; Ai, J.; Deng, X.; Hong, Y.; Wang, X. Patatin-related phospholipase A, pPLAIIIα, modulates the longitudinal growth of vegetative tissues and seeds in rice. J. Exp. Bot. 2015, 66, 6945–6955. [Google Scholar] [CrossRef] [PubMed]
- Mao, C.; Ding, W.; Wu, Y.; Yu, J.; He, X.; Shou, H.; Wu, P. Overexpression of a NAC-domain protein promotes shoot branching in rice. New Phytol. 2007, 176, 288–298. [Google Scholar] [CrossRef] [PubMed]
- Mao, C.; He, J.; Liu, L.; Deng, Q.; Yao, X.; Liu, C.; Qiao, Y.; Li, P.; Ming, F. OsNAC2 integrates auxin and cytokinin pathways to modulate rice root development. Plant Biotechnol. J. 2020, 18, 429–442. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Peng, K.; Cui, F.; Wang, D.; Zhao, J.; Zhang, Y.; Yu, N.; Wang, Y.; Zeng, D.; Wang, Y.; et al. Cytokinin oxidase/dehydrogenase OsCKX11 coordinates source and sink relationship in rice by simultaneous regulation of leaf senescence and grain number. Plant Biotechnol. J. 2020, 19, 335–350. [Google Scholar] [CrossRef] [PubMed]
- Tu, B.; Zhang, T.; Wang, S.; Zhou, L.; Zheng, L.; Zhang, C.; Li, X.; Zhang, X.; Yin, J.; Zhu, X.; et al. Loss of Gn1a/OsCKX2 confers heavy-panicle rice with excellent lodging resistance. J. Integr. Plant Biol. 2021, 64, 23–38. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Dan, Z.; Gao, F.; Chen, P.; Fan, F.; Li, S. Rice GROWTH-REGULATING FACTOR7 Modulates Plant Architecture through Regulating GA and Indole-3-Acetic Acid Metabolism. Plant Physiol. 2020, 184, 393–406. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Dan, Z.; Li, S. Rice iGROWTH-REGULATING FACTOR 7/i controls tiller number by regulating strigolactone synthesis. Plant Signal. Behav. 2020, 15, 1804685. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Ming, L.; Liao, K.; Xia, C.; Sun, S.; Chang, Y.; Wang, H.; Fu, D.; Xu, C.; Wang, Z.; et al. Bract suppression regulated by the miR156/529-SPLs-NL1-PLA1 module is required for the transition from vegetative to reproductive branching in rice. Mol. Plant 2021, 14, 1168–1184. [Google Scholar] [CrossRef]
- Sun, H.; Guo, X.; Qi, X.; Feng, F.; Xie, X.; Zhang, Y.; Zhao, Q. SPL14/17 act downstream of strigolactone signalling to modulate rice root elongation in response to nitrate supply. Plant J. 2021, 106, 649–660. [Google Scholar] [CrossRef]
- Jiao, Y.; Wang, Y.; Xue, D.; Wang, J.; Yan, M.; Liu, G.; Dong, G.; Zeng, D.; Lu, Z.; Zhu, X.; et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat. Genet. 2010, 42, 541–544. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; He, Y.; Liu, Z.; Qin, T.; Wang, L.; Chen, Z.; Zhang, B.; Zhang, H.; Li, H.; Liu, L.; et al. OsSPL14 acts upstream of OsPIN1b and PILS6b to modulate axillary bud outgrowth by fine-tuning auxin transport in rice. Plant J. 2022, 111, 1167–1182. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, H.; Jiang, Z.; Wang, W.; Xu, R.; Wang, Q.; Zhang, Z.; Li, A.; Liang, Y.; Ou, S.; et al. Genomic basis of geographical adaptation to soil nitrogen in rice. Nature 2021, 590, 600–605. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, Z.; Sakamoto, S.; Mitsuda, N.; Ren, A.; Persson, S.; Zhang, D. ETHYLENE RESPONSE FACTOR 34 promotes secondary cell wall thickening and strength of rice peduncles. Plant Physiol. 2022, 190, 1806–1820. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Shen, G.; Wang, H.; Li, X.; Chen, S.; Zhang, C. Research Progress on Brittle Culm Rice. China Seed Ind. 2023, 12, 11–15. [Google Scholar] [CrossRef]
- Peng, Y.; Gan, C.; Wang, H.; Xu, Z. Breeding of Dominant Brittle Culm CMS Line Zhongcui A in Rice. Hybrid Rice 2010, 25, 9–11. [Google Scholar] [CrossRef]
- Ye, Y.; Wang, S.; Wu, K.; Ren, Y.; Jiang, H.; Chen, J.; Tao, L.; Fu, X.; Liu, B.; Wu, Y. A Semi-Dominant Mutation in OsCESA9 Improves Salt Tolerance and Favors Field Straw Decay Traits by Altering Cell Wall Properties in Rice. Rice 2021, 14, 19. [Google Scholar] [CrossRef]
- Shen, C. The Birth of “Crisp but Not Fallen, Cereal and Grass” Rice. Available online: https://news.sciencenet.cn/htmlnews/2021/10/467741.shtm (accessed on 17 March 2024).
- Chen, G.; Deng, H.; Zhang, G.; Tang, W.; Huang, H. The Correlation of Stem Characters and Lodging Resistance and Combining Ability Analysis in Rice. Entia Agric. Sin. 2016, 49, 407–417. [Google Scholar] [CrossRef]
Target of Regulation | Gene | Phenotype | Localization of Chromosomes | Gene Function | Reference |
---|---|---|---|---|---|
Cellulose, lignin, and hemicelluloe | OsCesA4 | Loss-of-function mutants exhibit brittle stems, dwarfed plant height, smaller leaves, thinner stalks, wilting of top leaves, and low fertility | 1 | OsCesA4 encodes a cellulose synthase catalytic subunit and is involved in cellulose synthesis | Zhang et al., 2009; Huang et al., 2015 [40,47] |
OsCesA7 | Loss-of-function mutants exhibit brittle culms and leaves, which break easily when bent; at the same time, the plants are dwarfed, the leaves and stems droop, and the number of tillers and fruiting rate are reduced | 10 | OsCesA7 encodes a cellulose synthase catalytic subunit and is involved in cellulose synthesis | Huang et al., 2015; Wang et al., 2016 [47,73] | |
OsCesA9 | OsCesA9 loss-of-function mutants have reduced plant height, smaller leaves, thinner stalks, wilted top leaves, and are partially sterile | 9 | OsCesA9 encodes the catalytic subunit of cellulose synthase and is involved in cellulose synthesis | Li et al., 2017 [74] | |
BC10 | Loss-of-function mutants have reduced fibre content, increased leaf brittleness, shorter plant height at maturity, and reduced tiller number | 5 | BC10 encodes a glycosyltransferase, which is required for rice cell wall biosynthesis | Zhou et al., 2010; Zhang et al., 2016 [75,93] | |
BC3 | Loss of BC3 function results in plants showing slight dwarfing, shorter internodes, and reduced stem and leaf cellulose content | 2 | BC3 encodes a classic promoter protein, OsDRP2B, which is involved in cellulose synthesis | Hirano et al., 2010; Xiong et al., 2010 [76,94] | |
BC14 | The cell wall cellulose content in BC14 loss-of-function mutants decreased, the plants were short, the fertility decreased, and the seeds became smaller | 2 | BC14 transports UDPG and regulates cellulose biosynthesis | Song et al., 2011; Zhang et al., 2011 [77,95] | |
BC25 | BC25 loss-of-function mutants have reduced secondary cell wall thickness, reduced mechanical strength, and brittle internodes and leaf blades | 3 | BC25 encodes a UDP glucuronide decarboxylase involved in cellulose synthesis, which is involved in sugar metabolism and affects cell wall synthesis | Xu et al., 2023 [78] | |
BC12 | BC12 loss-of-function mutant plants are dwarfed with altered orientation of cellulose and cell wall components | 9 | BC12 encodes a functional motor protein involved in the arrangement of microtubules during cell division | Zhang et al., 2010 [53] | |
OsHB4 | OsHB4-overexpressing plants produced narrow leaves curled towards the near-axis, and the angle of the leaves was reduced, resulting in an upright shape and a shorter plant height | 3 | OsHB4 binds to the promoters of OsCAD2 and OsCESA7, repressing the expression of these two genes and regulating cell wall synthesis | Li et al., 2016; Zhang et al., 2018 [79,96] | |
OsMYB103L | Overexpression of OsMYB103L led to curling of rice leaves, and the mechanical strength and cellulose content of OsMYB103L RNAi lines decreased | 8 | OsMYB103L directly binds to and regulates the expression of CESA4, CESA7, CESA9, and BC1 promoters | Yang et al., 2014; Ye et al., 2015 [46,80] | |
OsGH9B1 | The cellulase activity of the transgenic lines increased significantly, and the mechanical strength of the stems decreased | 2 | OsGH9B1 encodes the OsGH9B1 protein, which has endotype β-1,4-glucanase activity | Xie et al., 2013; Huang et al., 2019 [81,97] | |
DPH1 | Loss of DPH1 function results in smaller tissues or organs, shorter roots and above-ground parts, a reduction in the number of primary and secondary branching peduncles, and a lower number of grains per spike | 1 | DPH1 encodes OsSCD2 protein involved in lattice-protein-associated vesicular transport regulating cell expansion | Wang et al., 2022; Jiang et al., 2022 [82,98] | |
OsFH5 | Loss-of-gene-function mutants have reduced cellulose and lignin content, thinner secondary cell walls, and reduced mechanical strength of internodes | 7 | OsFH5 encodes a formazin-like protein that regulates the correct spatial structure of actin-dynamic microtubule filaments and plays a key role in the morphology of rice | Zhang et al., 2011; Yang et al., 2011 [83,99] | |
OsPMEI28 | Loss-of-function mutants have 50% lower plant height, lower stalk diameter, lower tiller number, and delayed spiking | 8 | OsPMEI28 functions as a key component in the regulation of pectin methyl esterification levels | Nguyen et al., 2017 [84] | |
OsNPC1 | OsNPC1 loss-of-function plants have brittle stem nodes that bend easily, brittle spike tips, and reduced thickness of thick-walled cells in stem nodes | 3 | NPC1 mediates the distribution of silicon and the deposition of secondary cell walls, affecting mechanical strength | Cao et al., 2016 [85] | |
OsUGE3 | OsUGE3 loss-of-function plants showed significant decreases in plant height, biomass, spike weight, and thousand-grain weight, and the mechanical strength decreased | 9 | OsUGE3 positively regulates cellulose and hemicellulose biosynthesis and increases polysaccharide deposition | Tang et al., 2022 [86] | |
CslF6 | The height and stem diameter of the cslf6 knockout mutant decreased slightly, but the growth was normal during vegetative development | 8 | CslF6 mediates the biosynthesis of MLG and affects MLG deposition, cell wall mechanical properties, and defensive response in rice vegetative tissues | Vega-Sánchez et al., 2012 [65] | |
Plant hormones | OsSLR1 | OsSLR1 loss-of-function mutants exhibit stalk tenderness, basal internode elongation, shorter and fewer root lengths, and increased cell length in the apical portion of the second leaf sheath | 3 | SLR1 is a negative regulator of GA signaling and prevents downward GA signaling | Ikeda et al., 2001; Vleesschauwer et al., 2016 [87,100] |
OsSPY | OsSPY loss-of-function mutants exhibit a BR-deficient phenotype during the nutrient growth phase and an elongated phenotype with an excess of GA during the reproductive growth phase | 8 | OsSPY activates the expression of DELLA protein SLR1, a negative regulator of the gibberellin signaling pathway | Phanchaisri et al., 2012; Yano et al., 2019 [88,101] | |
RGA1 | RGA1 loss-of-function mutant plants are dwarfed, with thickened stems, short and broad leaves, dense internodes, and low sensitivity to drought stress | 5 | RGA1 encodes the α-subunit of GTP-binding proteins and affects the G-protein-dependent GA signaling pathway | Ueguchi-Tanaka et al., 2000; Ferrero-Serrano et al., 2016 [102,103] | |
DEP3 | Overexpression of DEP3 causes a semi-dwarf phenotype, as well as a reduction in the length of rice stems, roots, leaves, seeds, and spikes | 6 | DEP3 is involved in the expression of the growth inhibitor SLENDER1 in the gibberellin signaling pathway | Qiao et al., 2011; Liu et al., 2015 [104,105] | |
OsNAC2 | Loss-of-gene function mutants have increased tiller number, increased tiller angle, shorter plant height, and thinner stems | 4 | OsNAC2 encodes the transcription factor NAC2, which binds to the promoters of GA-synthesis-related genes and represses their expression; it also up-regulates IAA-inactivation-related genes and down-regulates the expression of IAA-signaling-related genes and CK oxidation genes | Mao et al., 2007; Mao et al., 2020 [106,107] | |
OsCKX11 | The OsCKX11 loss-of-function mutant showed a significant increase in the length and width of the apical 3 leaves, a thickening of the basal internode, an increase in the number of glumes per spike, a decrease in thousand-grain weight, and an increase in yield per plant | 8 | OsCKX11 encodes a cytokinin oxidase that catalyzes the degradation of various cytokinins | Zhang et al., 2021; Rong et al., 2022 [89,108] | |
OsCKX9 | Loss-of-function mutants showed reduced plant height, increased tiller number, and reduced spike length, primary peduncle number, secondary peduncle number, and number of grains per spike | 5 | OsCKX9 encodes a cytokinin oxidase that catalyzes the degradation of various cytokinins | Duan et al., 2019; Rong et al., 2022 [89,90] | |
OsCKX2 | The apical 3 leaves of the OsCKX2 loss-of-function mutant appeared to be longer and wider, with a thickened basal internode and an increased thousand-grain weight | 1 | The OsCKX2 gene encodes an enzyme that degrades cytokinin | Tu et al., 2021; Rong et al., 2022 [89,109] | |
PAY1 | The PAY1 mutant showed increased plant height, reduced tiller number, reduced tiller angle, thickened stalks, larger spikes, longer internodes, increased spike branching, increased number of grains per spike, and increased yield | 8 | PAY1 improves rice plant size by affecting auxin polar transport and altering endogenous indole-3-acetic acid distribution | Zhao et al., 2015 [91] | |
OsMED14_1 | Loss-of-function mutants have reduced plant height, narrower leaves and stalks, reduced vascular system, fewer lateral root meristems, reduced spike branching and fruiting, and smaller seeds | 8 | OsMED14_1 physically interacts with the transcription factors YABBY5, TDR, and MADS29 and may regulate auxin homeostasis, ultimately affecting rice lateral organ/leaf, microspore, and seed development | Malik et al., 2020 [92] | |
OsGRF7 | OsGRF7 overexpressing lines were compact and semi-dwarf, with increased stem wall thickness and narrowed leaf angle | 12 | OsGRF7 binds to the promoter regions of the cytochrome P450 gene OsCYP714B1 and the growth factor response factor gene OsARF12 and is involved in gibberellin synthesis and auxin signaling | Chen et al., 2020; Chen et al., 2020 [110,111] | |
OsSPL17 | The root elongation response of the SPL17 knockout mutant is insensitive to NO3− and rac-GR24 application | 9 | SPL17 promote or maintain the formation of reproductive growth by terminating/inhibiting vegetative growth and have an inhibitory effect on panicle bract formation | Wang et al., 2021; Sun et al., 2021 [112,113] | |
OsSPL14 | The loss of OsSPL14 function led to a decrease in tillering and an increase in grain number per spike and thousand-grain weight, while the stem became thicker and the lodging resistance was enhanced | 8 | The transcription factor OsSPL14 binds to the promoter region of auxin export vectors to activate their expression, thereby regulating auxin trafficking and distribution | Jiao et al., 2010; Li et al., 2022 [114,115] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Huang, J.; Ye, Y.; Xu, Y.; Xiao, Y.; Chen, Z.; Li, X.; Ma, Y.; Lu, T.; Rao, Y. Research Progress on Mechanical Strength of Rice Stalks. Plants 2024, 13, 1726. https://doi.org/10.3390/plants13131726
Yang H, Huang J, Ye Y, Xu Y, Xiao Y, Chen Z, Li X, Ma Y, Lu T, Rao Y. Research Progress on Mechanical Strength of Rice Stalks. Plants. 2024; 13(13):1726. https://doi.org/10.3390/plants13131726
Chicago/Turabian StyleYang, Huimin, Jiahui Huang, Yuhan Ye, Yuqing Xu, Yao Xiao, Ziying Chen, Xinyu Li, Yingying Ma, Tao Lu, and Yuchun Rao. 2024. "Research Progress on Mechanical Strength of Rice Stalks" Plants 13, no. 13: 1726. https://doi.org/10.3390/plants13131726
APA StyleYang, H., Huang, J., Ye, Y., Xu, Y., Xiao, Y., Chen, Z., Li, X., Ma, Y., Lu, T., & Rao, Y. (2024). Research Progress on Mechanical Strength of Rice Stalks. Plants, 13(13), 1726. https://doi.org/10.3390/plants13131726