Diversity of the Morphometric and Biochemical Traits of Allium cepa L. Varieties
Abstract
:1. Introduction
2. Results
2.1. Morphometric Traits
2.2. Biochemical Measurements
2.2.1. Total Phenolic Content (TPC)
2.2.2. Total Flavonoid Content (TFC)
2.2.3. Total Antioxidant Capacity
2.2.4. Soluble Sugar Analysis
2.2.5. Volatile Compounds Analysis
2.3. Correlation and Principal Component Analysis (PCA)
3. Discussion
4. Materials and Methods
4.1. Plant Material and Morphometric Characterization
4.2. Biochemical Measurements
4.2.1. Total Phenolic Content (TPC)
4.2.2. Total Flavonoid Content (TFC)
4.2.3. Total Antioxidant Capacity
4.2.4. Soluble Sugar Analysis
4.2.5. Volatile Compounds Analysis
4.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Roldán, E.; Sánchez-Moreno, C.; de Ancos, B.; Cano, M.P. Characterisation of onion (Allium cepa L.) by-products as food ingredients with antioxidant and antibrowning properties. Food Chem. 2008, 108, 907–916. [Google Scholar] [CrossRef] [PubMed]
- Fritsch, R.M.; Friesen, N. Evolution, domestication and taxonomy. In Allium Crop Science: Recent Advances; CABI: Wallingford, UK, 2002; pp. 5–30. ISBN 0-85199-510-1. [Google Scholar]
- Griffiths, G.; Trueman, L.; Crowther, T.; Thomas, B.; Smith, B. Onions—A global benefit to health. Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2002, 16, 603–615. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#home (accessed on 14 June 2024).
- Rabinowitch, H.D.; Goldstein, R.K. Allium crops. In The Physiology of Vegetable Crops; CABI: Wallingford, UK, 2020; pp. 421–456. [Google Scholar] [CrossRef]
- Thorup-Kristensen, K. Root growth and nitrogen uptake of carrot, early cabbage, onion and lettuce following a range of green manures. Soil. Use Manag. 2006, 22, 29–38. [Google Scholar] [CrossRef]
- Piechowiak, T.; Grzelak-Błaszczyk, K.; Bonikowski, R.; Balawejder, M. Optimization of extraction process of antioxidant compounds from yellow onion skin and their use in functional bread production. LWT 2020, 117, 108614. [Google Scholar] [CrossRef]
- Alam, A.; Al Arif Jahan, A.; Bari, M.S.; Khandokar, L.; Mahmud, M.H.; Junaid, M.; Chowdhury, M.S.; Khan, M.F.; Seidel, V.; Haque, M.A. Allium vegetables: Traditional uses, phytoconstituents, and beneficial effects in inflammation and cancer. Crit. Rev. Food Sci. Nutr. 2023, 63, 6580–6614. [Google Scholar] [CrossRef] [PubMed]
- Brewster, J.L. The Structure of Edible Allium. In Onions and Other Vegetable Alliums, 2nd ed.; CABI: Wallingford, UK, 2008; Volume 15, pp. 27–47. ISBN 978-1-84593-3999. [Google Scholar]
- Kelly, G.S. “Quercetin”. Altern. Med. Rev. 2011, 16, 172+. Gale Academic OneFile. Available online: https://go.gale.com/ps/i.do?p=AONE&u=anon~60dc60d9&id=GALE|A259077887&v=2.1&it=r&sid=googleScholar&asid=141ffb55 (accessed on 14 June 2024). [PubMed]
- Slimestad, R.; Fossen, T.; Vågen, I.M. Onions: A source of unique dietary flavonoids. J. Agric. Food Chem. 2007, 55, 10067–10080. [Google Scholar] [CrossRef]
- Ankri, S.; Mirelman, D. Antimicrobial properties of allicin from garlic. Microbes Infect. 1999, 2, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, A.J.; Uddin, T.M.; Matin Zidan, B.M.R.; Mitra, S.; Das, R.; Nainu, F.; Dhama, K.; Roy, A.; Hossain, M.J.; Khusro, A.; et al. Allium cepa: A Treasure of Bioactive Phytochemicals with Prospective Health Benefits. Evid. Based Complement. Altern. Med. 2022, 2022, 4586318. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pareek, S.; Sagar, N.A.; Sharma, S.; Kumar, V. Onion (Allium cepa L.). Fruit and Vegetable Phytochemicals: Chemistry and Human Health, 2nd ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2008; pp. 1145–1162. [Google Scholar] [CrossRef]
- Di Bella, M.C.; Treccarichi, S.; Arena, D.; Nicotra, R.; Mazzaglia, A.; Melilli, M.G.; Bartoszek, A.; Kusznierewicz, B.; Parchem, K.; Branca, F. Evaluation of Sicilian landraces of broccoli (B. oleracea var. italica Plenck) for quality traits. ISHS Acta Hortic. 2022, 1354, 343–350. [Google Scholar] [CrossRef]
- Stoica, F.; Rațu, R.N.; Veleșcu, I.D.; Stănciuc, N.; Râpeanu, G. A comprehensive review on bioactive compounds, health benefits, and potential food applications of onion (Allium cepa L.) skin waste. Trends Food Sci. Technol. 2023, 141, 104173. [Google Scholar] [CrossRef]
- Dias, M.C.; Pinto, D.C.G.A.; Silva, A.M.S. Plant Flavonoids: Chemical Characteristics and Biological Activity. Molecules 2021, 26, 5377. [Google Scholar] [CrossRef] [PubMed]
- Marcinkowska, M.A.; Jeleń, H.H. Role of Sulfur Compounds in Vegetable and Mushroom Aroma. Molecules 2022, 27, 6116. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Teshika, J.D.; Zakariyyah, A.M.; Zaynab, T.; Zengin, G.; Rengasamy, K.R.; Pandian, S.K.; Fawzi, M.M. Traditional and modern uses of onion bulb (Allium cepa L.): A systematic review. Crit. Rev. Food Sci. Nutr. 2019, 59 (Suppl. 1), S39–S70. [Google Scholar] [CrossRef] [PubMed]
- Lanzotti, V. The analysis of onion and garlic. J. Chromatogr. A 2006, 1112, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Nadeem, M.S.; Kazmi, I.; Ullah, I.; Muhammad, K.; Anwar, F. Allicin, an Antioxidant and Neuroprotective Agent, Ameliorates Cognitive Impairment. Antioxidants 2021, 11, 87. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ramirez, D.A.; Locatelli, D.A.; González, R.E.; Cavagnaro, P.F.; Camargo, A.B. Analytical methods for bioactive sulfur compounds in Allium: An integrated review and future directions. J. Food Compos. Anal. 2017, 61, 4–19. [Google Scholar] [CrossRef]
- Omar, A.E.; Al-Khalaifah, H.S.; Mohamed, W.A.; Gharib, H.S.; Osman, A.; Al-Gabri, N.A.; Amer, S.A. Effects of phenolic-rich onion (Allium cepa L.) extract on the growth performance, behavior, intestinal histology, amino acid digestibility, antioxidant activity, and the immune status of broiler chickens. Front. Vet. Sci. 2020, 7, 582612. [Google Scholar] [CrossRef]
- Puizina, J.; Papeš, D. Classical and molecular cytogenetic studies of top onion, Allium × proliferum (Moench) Schrader. Acta Bot. Croat. 1999, 58, 65–77. [Google Scholar]
- Van der Meer, Q.P. Old and New Crops within Edible Allium. Acta Hortic. 1997, 433, 17–31. [Google Scholar] [CrossRef]
- Bhat, R. Bioactive Compounds of Allium Species. In Bioactive Compounds in Underutilized Vegetables and Legumes; Murthy, H.N., Paek, K.Y., Eds.; Reference Series in Phytochemistry; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Yaguchi, S.; McCallum, J.; Shaw, M.; Pither-Joyce, M.; Onodera, S.; Shiomi, N.; Yamauchi, N.; Shigyo, M. Biochemical and Genetic Analysis of Carbohydrate Accumulation in Allium cepa L. Plant Cell Physiol. 2008, 49, 730–739. [Google Scholar] [CrossRef] [PubMed]
- Major, N.; Goreta Ban, S.; Urlić, B.; Ban, D.; Dumičić, G.; Perković, J. Morphological and biochemical diversity of shallot landraces preserved along the Croatian coast. Front. Plant Sci. 2018, 9, 1749. [Google Scholar] [CrossRef] [PubMed]
- Aryakia, E.; Karimi, H.R.; Naghavi, M.R.; Shahzadeh Fazeli, S.A. Morphological characterization of intra-and interspecific diversity in some Iranian wild Allium species. Euphytica 2016, 211, 185–200. [Google Scholar] [CrossRef]
- Carson, J.F. Chemistry and biological properties of onions and garlic. Food Rev. Int. 1987, 3, 71–103. [Google Scholar] [CrossRef]
- Marrelli, M.; Amodeo, V.; Statti, G.; Conforti, F. Biological Properties and Bioactive Components of Allium cepa L.: Focus on Potential Benefits in the Treatment of Obesity and Related Comorbidities. Molecules 2019, 24, 119. [Google Scholar] [CrossRef] [PubMed]
- Prakash, D.; Singh, B.N.; Upadhyay, G. Antioxidant and free radical scavenging activities of phenols from onion (Allium cepa). Food Chem. 2007, 102, 1389–1393. [Google Scholar] [CrossRef]
- Liguori, L.; Califano, R.; Albanese, D.; Raimo, F.; Crescitelli, A.; Di Matteo, M. Chemical composition and antioxidant properties of five white onion (Allium cepa L.) landraces. J. Food Qual. 2017, 2017, 6873651. [Google Scholar] [CrossRef]
- Maisuthisakul, P.; Suttajit, M.; Pongsawatmanit, R. Assessment of phenolic content and free radical-scavenging capacity of some Thai indigenous plants. Food Chem. 2007, 100, 1409–1418. [Google Scholar] [CrossRef]
- Bianchi, G.; Picchi, V.; Tava, A.; Doria, F.; Walley, P.G.; Dever, L.; Di Bella, M.C.; Arena, D.; Ben Ammar, H.; Lo Scalzo, R.; et al. Insights into the phytochemical composition of selected genotypes of organic kale (Brassica oleracea L. var. acephala). J. Food Compos. Anal. 2024, 125, 105721. [Google Scholar] [CrossRef]
- Branca, F.; Kaczyńska, K.; Niklas, A.; Di Bella, M.C.; Picchi, V.; Lo Scalzo, R.; Tribulato, A. Polyphenol profile and antioxidant capacity of a traditional Sicilian landrace of the Egyptian Walking Onion (Allium cepa L. var. viviparum). Acta Hortic. 1251, 2019, 173–180. [Google Scholar] [CrossRef]
- Cheng, A.; Chen, X.; Jin, Q.; Wang, W.; Shi, J.; Liu, Y. Comparison of phenolic content and antioxidant capacity of red and yellow onions. Czech J. Food Sci. 2013, 31, 501–508. [Google Scholar] [CrossRef]
- Gökçe, A.F.; Kaya, C.; Serçe, S.; Özgen, M. Effect of scale color on the antioxidant capacity of onions. Sci. Hortic. 2010, 123, 431–435. [Google Scholar] [CrossRef]
- Yang, J.; Meyers, K.J.; Van Der Heide, J.; Liu, R.H. Varietal differences in phenolic content and antioxidant and antiproliferative activities of onions. J. Agric. Food Chem. 2004, 52, 6787–6793. [Google Scholar] [CrossRef] [PubMed]
- Bibi, N.; Shah, M.H.; Khan, N.; Al-Hashimi, A.; Elshikh, M.S.; Iqbal, A.; Ahmad, S.; Abbasi, A.M. Variations in Total Phenolic, Total Flavonoid Contents, and Free Radicals’ Scavenging Potential of Onion Varieties Planted under Diverse Environmental Conditions. Plants 2022, 11, 950. [Google Scholar] [CrossRef] [PubMed]
- Khandagale, K.; Gawande, S. Genetics of bulb colour variation and flavonoids in onion. J. Hortic. Sci. Biotechnol. 2019, 94, 522–532. [Google Scholar] [CrossRef]
- Lu, X.; Wang, J.; Al-Qadiri, H.M.; Ross, C.F.; Powers, J.R.; Tang, J.; Rasco, B.A. Determination of total phenolic content and antioxidant capacity of onion (Allium cepa) and shallot (Allium oschaninii) using infrared spectroscopy. Food Chem. 2011, 129, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Denre, M.; Pal, S.; Chattopadhyay, A.; Mazumdar, D.; Chakravarty, A.; Bhattacharya, A. Antioxidants and pungency of onion. Int. J. Veg. Sci. 2011, 17, 233–245. [Google Scholar] [CrossRef]
- Mlcek, J.; Valsikova, M.; Druzbikova, H.; Ryant, P.; Jurikova, T.; Sochor, J.; Borkovcova, M. The antioxidant capacity and macroelement content of several onion cultivars. Turk. J. Agric. For. 2015, 39, 17. [Google Scholar] [CrossRef]
- Vijayalakshmi, G.; Raja, M.M.; Naik, M.L.; Carbone, V.; Russo, G.L.; Khan, P.S.V. Determination of antioxidant capacity and flavonoid composition of onion (Allium cepa L.) landrace ‘Krishnapuram’ bulb using HPLC-ESI-ITMS. J. Biosci. 2021, 46, 58. [Google Scholar] [CrossRef]
- Benkeblia, N. Free-radical scavenging capacity and antioxidant properties of some selected onions (Allium cepa L.) and garlic (Allium sativum L.) extracts. Braz. Arch. Biol. Technol. 2005, 48, 753–759. [Google Scholar] [CrossRef]
- Sekara, A.; Pokluda, R.; Del Vacchio, L.; Somma, S.; Caruso, G. Interactions among genotype, environment and agronomic practices on production and quality of storage onion (Allium cepa L.)—A review. Hortic. Sci. 2017, 44, 21–42. [Google Scholar] [CrossRef]
- Oku, S.; Ueno, K.; Tsuruta, Y.; Jitsuyama, Y.; Suzuki, T.; Onodera, S.; Maeda, T.; Shimura, H. Sugar accumulation and activities of enzymes involved in fructan dynamics from seedling to bulb formation in onion (Allium cepa L.). Sci. Hortic. 2019, 247, 147–155. [Google Scholar] [CrossRef]
- Fabbri, A.D.; Crosby, G.A. A review of the impact of preparation and cooking on the nutritional quality of vegetables and legumes. Int. J. Gastron. Food Sci. 2016, 3, 2–11. [Google Scholar] [CrossRef]
- Kandoliya, U.K.; Bodar, N.P.; Bajaniya, V.K.; Bhadja, N.V.; Golakiya, B.A. Determination of nutritional value and antioxidant from bulbs of different onion (Allium cepa) variety: A comparative study. Int. J. Curr. Microbiol. Appl. Sci. 2015, 4, 635–641. [Google Scholar]
- Benkeblia, N.; Onodera, S.; Yoshihira, T.; Kosaka, S.; Shiomi, N. Effect of temperature on soluble invertase activity, and glucose, fructose and sucrose status of onion bulbs (Allium cepa) in store. Int. J. Food Sci. Nutr. 2004, 55, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Pöhnl, T.; Schweiggert, R.M.; Carle, R. Impact of cultivation method and cultivar selection on soluble carbohydrates and pungent principles in onions (Allium cepa L.). J. Agric. Food Chem. 2018, 66, 12827–12835. [Google Scholar] [CrossRef] [PubMed]
- Yoo, K.S.; Pike, L.; Crosby, K.; Jones, R.; Leskovar, D. Differences in onion pungency due to cultivars, growth environment, and bulb sizes. Sci. Hortic. 2006, 110, 144–149. [Google Scholar] [CrossRef]
- Benkeblia, N.; Ueno, K.; Onodera, S.; Shiomi, N. Variation of fructooligosaccharides and their metabolizing enzymes in onion bulb (Allium cepa L. cv. Tenshin) during long-term storage. J. Food Sci. 2005, 70, S208–S214. [Google Scholar] [CrossRef]
- Galdón, B.R.; Rodríguez, C.T.; Rodríguez, E.R.; Romero, C.D. Fructans and major compounds in onion cultivars (Allium cepa). J. Food Compos. Anal. 2009, 22, 25–32. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, H.; Zhan, Z.; Liu, B.; Chen, Z.; Liang, Y. Transcriptome analysis of sucrose metabolism during bulb swelling and development in onion (Allium cepa L.). Front. Plant Sci. 2016, 7, 212763. [Google Scholar] [CrossRef]
- Galavi, A.; Hosseinzadeh, H.; Razavi, B.M. The effects of Allium cepa L. (onion) and its active constituents on metabolic syndrome: A review. Iran. J. Basic Med. Sci. 2021, 24, 3. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.Q.; Wang, L.Y.; Yang, X.Y.; Xu, Y.J.; Fan, G.; Fan, Y.G.; Ren, J.N.; An, Q.; Li, X. Inulin: Properties and health benefits. Food Funct. 2023, 14, 2948–2968. [Google Scholar] [CrossRef] [PubMed]
- Aisara, J.; Wongputtisin, P.; Deejing, S.; Maneewong, C.; Unban, K.; Khanongnuch, C.; Kosma, P.; Blaukopf, M.; Kanpiengjai, A. Potential of Inulin-Fructooligosaccharides Extract Produced from Red Onion (Allium cepa var. viviparum (Metz) Mansf.) as an Alternative Prebiotic Product. Plants 2021, 10, 2401. [Google Scholar] [CrossRef] [PubMed]
- Major, N.; Perković, J.; Palčić, I.; Bažon, I.; Horvat, I.; Ban, D.; Goreta Ban, S. The Phytochemical and Nutritional Composition of Shallot Species (Allium × cornutum, Allium × proliferum and A. cepa Aggregatum) Is Genetically and Environmentally Dependent. Antioxidants 2022, 11, 1547. [Google Scholar] [CrossRef] [PubMed]
- Magwaza, L.S.; Opara, U.L. Analytical methods for determination of sugars and sweetness of horticultural products—A review. Sci. Hortic. 2015, 184, 179–192. [Google Scholar] [CrossRef]
- Vågen, I.M.; Slimestad, R. Amount of characteristic compounds in 15 cultivars of onion (Allium cepa L.) in controlled field trials. J. Sci. Food Agric. 2008, 88, 404–411. [Google Scholar] [CrossRef]
- Freeman, G.G.; Mossadeghi, N. Effect of sulphate nutrition on flavour components of onion (Allium cepa). J. Sci. Food Agric. 1970, 21, 610–615. [Google Scholar] [CrossRef]
- Cozzolino, R.; Malorni, L.; Martignetti, A.; Picariello, G.; Siano, F.; Forte, G.; De Giulio, B. Comparative analysis of volatile profiles and phenolic compounds of Four Southern Italian onion (Allium cepa L.) Landraces. J. Food Compos. Anal. 2021, 101, 103990. [Google Scholar] [CrossRef]
- Schwab, W.; Davidovich-Rikanati, R.; Lewinsohn, E. Biosynthesis of plant-derived flavor compounds. Plant J. 2008, 54, 712–732. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Kim, D.B.; Jin, W.; Park, J.; Yoon, W.; Lee, Y.; Kim, S.; Lee, S.; Kim, S.; Lee, O.-H.; et al. Comparative studies of bioactive organosulphur compounds and antioxidant activities in garlic (Allium sativum L.), elephant garlic (Allium ampeloprasum L.) and onion (Allium cepa L.). Nat. Prod. Res. 2018, 32, 1193–1197. [Google Scholar] [CrossRef]
- Ng, A.; Parker, M.L.; Parr, A.J.; Saunders, P.K.; Smith, A.C.; Waldron, K.W. Physicochemical characteristics of onion (Allium cepa L.) tissues. J. Agric. Food Chem. 2000, 48, 5612–5617. [Google Scholar] [CrossRef] [PubMed]
- Bonaccorsi, P.; Caristi, C.; Gargiulli, C.; Leuzzi, U. Flavonol glucosides in Allium species: A comparative study by means of HPLC-DAD-ESI-MS-MS. Food Chem. 2008, 107, 1668–1673. [Google Scholar] [CrossRef]
- Wilson, E.A.; Demmig-Adams, B. Antioxidant, anti-inflammatory, and antimicrobial properties of garlic and onions. Nutr. Food Sci. 2007, 37, 178–183. [Google Scholar] [CrossRef]
- Boelens, M.; De Valois, P.J.; Wobben, H.J.; Van der Gen, A. Volatile flavor compounds from onion. J. Agric. Food Chem. 1971, 19, 984–991. [Google Scholar] [CrossRef]
- Colina-Coca, C.; González-Peña, D.; Vega, E.; de Ancos, B.; Sánchez-Moreno, C. Novel approach for the determination of volatile compounds in processed onion by headspace gas chromatography–mass spectrometry (HS GC–MS). Talanta 2013, 103, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Cecchi, L.; Ieri, F.; Vignolini, P.; Mulinacci, N.; Romani, A. Characterization of Volatile and Flavonoid Composition of Different Cuts of Dried Onion (Allium cepa L.) by HS-SPME-GC-MS, HS-SPME-GC×GC-TOF and HPLC-DAD. Molecules 2020, 25, 408. [Google Scholar] [CrossRef] [PubMed]
- Gawlik-Dziki, U.; Świeca, M.; Dziki, D.; Baraniak, B.; Tomiło, J.; Czyż, J. Quality and antioxidant properties of breads enriched with dry onion (Allium cepa L.) skin. Food Chem. 2013, 138, 1621–1628. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Sembiring, E.N.; Elya, B.; Sauriasari, R. Phytochemical screening, total flavonoid and total phenolic content and antioxidant activity of different parts of Caesalpinia bonduc (L.) Roxb. Pharmacogn. J. 2018, 10, 123–127. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Ou, B.; Chang, T.; Huang, D.; Prior, R.L. Determination of total antioxidant capacity by oxygen radical absorbance capacity (ORAC) using fluorescein as the fluorescence probe: First action 2012.23. J. AOAC Int. 2013, 96, 1372–1376. [Google Scholar] [CrossRef] [PubMed]
- Maness, N. Extraction and analysis of soluble carbohydrates. In Plant Stress Tolerance; Sunkar, R., Ed.; Methods in Molecular Biology; Humana Press: New York, NY, USA, 2010; Volume 639. [Google Scholar]
- Sysi-Aho, M.; Katajamaa, M.; Yetukuri, L.; Orešič, M. Normalization method for metabolomics data using optimal selection of multiple internal standards. BMC Bioinform. 2007, 8, 93. [Google Scholar] [CrossRef] [PubMed]
Trait | WO | ON | OS | OR | p-Value |
---|---|---|---|---|---|
BFW | 19.3 ± 1.0 bc | 9.3 ± 1.4 d | 26.5 ± 3.1 ab | 28.0 ± 1.4 a | *** |
LBFW | 27.1 ± 1.6 a | 3.7 ± 0.6 c | 21.9 ± 1.7 ab | 16.6 ± 1.8 b | *** |
NL | 4.9 ± 0.3 bc | 4.0 ± 0.3 c | 9.0 ± 0.8 a | 6.6 ± 0.2 b | *** |
MLL | 48.1 ± 1.9 a | 28.6 ± 1.2 c | 43.4 ± 1.5 ab | 37.8 ± 1.7 b | *** |
MLW | 10.4 ± 0.4 a | 4.1 ± 0.3 d | 6.6 ± 0.5 c | 6.9 ± 0.7 c | *** |
LD | 3.6 ± 0.2 | 3.7 ± 0.4 | 4.2 ± 0.6 | 3.9 ± 0.3 | n.s. |
LA | 6.8 ± 0.2 a | 4.2 ± 0.2 b | 4.1 ± 0.3 b | 4.1 ± 0.3 b | *** |
LC | 6.4 ± 0.2 a | 4.6 ± 0.4 bc | 6.3 ± 0.2 a | 4.4 ± 0.3 c | *** |
TPC | TFC | FRAP | DPPH | ORAC | Total Sugars | Sucrose | Glucose | Fructose | FOS | |
---|---|---|---|---|---|---|---|---|---|---|
PO | ||||||||||
Bulb | 15.0 ± 0.5 | 6.1 ± 0.9 | 19.2 ± 3.1 | 38.1 ± 4.8 | 160 ± 13 | 584 ± 5 | 71.8 ± 8.8 | 57.1 ± 8.1 | 84.9 ± 13.5 | 398 ± 3 |
Leaf blade | 12.4 ± 0.3 | 1.9 ± 0.3 | 6.8 ± 0.7 | 27.1 ± 1.8 | 123 ± 5 | 239 ± 6 b | 33.8 ± 4.8 | 57.7 ± 5.5 | 49.4 ± 5.7 | 98 ± 4 b |
GE | ||||||||||
WO | 14.0 ± 0.3 ab 1 | 4.0 ± 0.6 b | 12.3 ± 4.0 b | 41.0 ± 4.3 a | 116 ± 12 c | 457 ± 8 a | 28.8 ± 2.5 c | 44.1 ± 6.1 c | 111.7 ± 3.7 a | 272 ± 5 b |
ON | 11.7 ± 0.4 b | 1.0 ± 0.3 c | 4.6 ± 0.3 c | 17.6 ± 2.4 b | 209 ± 5 a | 471 ± 14 a | 21.7 ± 4.8 d | 17.2 ± 2.5 d | 15.9 ± 2.3 d | 416 ± 15 a |
OS | 12.9 ± 0.4 b | 2.5 ± 0.3 c | 7.7 ± 0.6 c | 25.7 ± 4.8 b | 141 ± 4 b | 396 ± 8 b | 74.0 ± 16.4 b | 71.9 ± 9.2 b | 55.6 ± 2.6 c | 194 ± 11 c |
OR | 16.3 ± 1.4 a | 8.5 ± 2.0 a | 27.1 ± 7.0 a | 46.2 ± 10.2 a | 99 ± 8 d | 321 ± 17 c | 86.8 ± 8.3 a | 96.4 ± 1.3 a | 85.4 ± 3.9 b | 108 ± 23 d |
Significance of the differences by the ANOVA Newman–Keuls method | ||||||||||
PO | ** | *** | *** | *** | *** | *** | *** | n.s. | *** | *** |
GE | ** | *** | *** | *** | *** | *** | *** | *** | *** | *** |
PO × GE | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** |
Total Organosulfur Compounds | Total Alcohols | Total Aldehydes | Total Ketones | Total Volatile Hydrocarbons | Total Carboxylic Acids | Total Esters | |
---|---|---|---|---|---|---|---|
PO | |||||||
Bulb | 20.7 ± 3.2 | 9.9 ± 2.1 | 10.3 ± 1.2 | 3.0 ± 0.7 | 2.6 ± 0.3 | 0.107 ± 0.018 | 7.8 ± 1.0 |
Leaf blade | 18.8 ± 3.6 | 9.9 ± 0.6 | 12.1 ± 1.4 | 5.8 ± 0.7 | 2.3 ± 0.3 | 0.204 ± 0.023 | 13.4 ± 1.9 |
p-value | * | ns | * | *** | ns | *** | *** |
GE | |||||||
ON | 21.1 ± 7.4 a 1 | 7.6 ± 2.1 c | 15.2 ± 0.5 a | 2.6 ± 0.9 c | 3.4 ± 0.2 a | 0.171 ± 0.043 a | 9.2 ± 3.1 b |
OR | 21.2 ± 0.8 a | 6.1 ± 1.2 c | 7.2 ± 0.4 c | 3.8 ± 0.7 b | 1.6 ± 0.1 c | 0.190 ± 0.030 a | 11.4 ± 1.2 b |
OS | 14.2 ± 0.9 b | 12.0 ± 1.0 b | 10.6 ± 0.9 b | 4.1 ± 1.2 b | 1.9 ± 0.1 c | 0.196 ± 0.019 a | 14.8 ± 2.6 a |
WO | 22.6 ± 6.3 a | 14.0 ± 2.5 a | 11.8 ± 2.8 b | 7.1 ± 1.0 a | 2.9 ± 0.5 b | 0.065 ± 0.017 b | 6.9 ± 1.2 c |
p-value | *** | *** | *** | ** | *** | *** | *** |
Bulb | |||||||
ON | 37.6 ± 0.3 a | 2.9 ± 0.2 d | 16 ± 0.6 a | 1.2 ± 0.02 | 3.03 ± 0.11 b | 0.081 ± 0.013 | 2.2 ± 0.2 e |
OR | 20.9 ± 0.8 b | 3.5 ± 0.1 d | 6.7 ± 0.1 c | 2.43 ± 0.40 | 1.48 ± 0.17 c | 0.148 ± 0.011 | 10.1 ± 0.4 cd |
OS | 15.8 ± 0.5 c | 14.3 ± 0.2 b | 12.4 ± 0.2 b | 1.47 ± 0.10 | 1.89 ± 0.05 c | 0.171 ± 0.017 | 9.2 ± 0.4 d |
WO | 8.6 ± 1 e | 19.0 ± 1.9 a | 6.3 ± 0.8 c | 6.71 ± 0.32 | 3.8 ± 0.36 a | 0.028 ± 0.002 | 9.4 ± 0.4 d |
Leaf blade | |||||||
ON | 4.7 ± 0.2 f | 12.4 ± 0.1 b | 14.5 ± 0.6 ab | 4.0 ± 1.5 | 3.8 ± 0.14 a | 0.261 ± 0.032 | 16.2 ± 0.7 b |
OR | 21.6 ± 1.5 b | 8.7 ± 0.9 c | 7.7 ± 0.6 c | 5.2 ± 0.4 | 1.62 ± 0.1 c | 0.233 ± 0.050 | 12.7 ± 2.2 cd |
OS | 12.6 ± 1.3 d | 9.8 ± 0.4 c | 8.8 ± 0.8 c | 6.6 ± 0.7 | 1.87 ± 0.17 c | 0.220 ± 0.030 | 20.3 ± 1.6 a |
WO | 36.5 ± 0.8 a | 8.9 ± 1.2 c | 17.3 ± 2.7 a | 7.4 ± 2.1 | 1.99 ± 0.44 c | 0.103 ± 0.007 | 4.4 ± 0.6 e |
p-value | *** | *** | *** | ns | *** | ns | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arena, D.; Ben Ammar, H.; Major, N.; Kovačević, T.K.; Goreta Ban, S.; Al Achkar, N.; Rizzo, G.F.; Branca, F. Diversity of the Morphometric and Biochemical Traits of Allium cepa L. Varieties. Plants 2024, 13, 1727. https://doi.org/10.3390/plants13131727
Arena D, Ben Ammar H, Major N, Kovačević TK, Goreta Ban S, Al Achkar N, Rizzo GF, Branca F. Diversity of the Morphometric and Biochemical Traits of Allium cepa L. Varieties. Plants. 2024; 13(13):1727. https://doi.org/10.3390/plants13131727
Chicago/Turabian StyleArena, Donata, Hajer Ben Ammar, Nikola Major, Tvrtko Karlo Kovačević, Smiljana Goreta Ban, Nicolas Al Achkar, Giulio Flavio Rizzo, and Ferdinando Branca. 2024. "Diversity of the Morphometric and Biochemical Traits of Allium cepa L. Varieties" Plants 13, no. 13: 1727. https://doi.org/10.3390/plants13131727
APA StyleArena, D., Ben Ammar, H., Major, N., Kovačević, T. K., Goreta Ban, S., Al Achkar, N., Rizzo, G. F., & Branca, F. (2024). Diversity of the Morphometric and Biochemical Traits of Allium cepa L. Varieties. Plants, 13(13), 1727. https://doi.org/10.3390/plants13131727