Effects of Submerged Macrophytes on Demography and Filtration Rates of Daphnia and Simocephalus (Crustacea: Cladocera)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Organisms
2.2. Culture and Maintenance of Organisms
2.3. Experimental Design
2.4. Population Growth
2.5. Filtration and Feeding Rates
2.6. Life Table
3. Results
3.1. Population Growth
3.2. Filtration and Feeding Rates
3.3. Life Table
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moss, B. Ecology of Freshwaters: A View for the Twenty-First Century; Wiley-Blackwell: Oxford, UK, 2010; p. 480. [Google Scholar]
- Downing, A.J. Limnology and oceanography: Two estranged twins reuniting by global change. Inland Waters 2014, 4, 215–232. [Google Scholar] [CrossRef]
- Gulati, R.D.; Pires, M.D.; van Donk, E. Restoration of freshwater lakes. In Restoration Ecology: The New Frontier, 2nd ed.; van Andel, J., Aronson, J., Eds.; Wiley-Blackwell: Oxford, UK, 2012; pp. 233–247. [Google Scholar] [CrossRef]
- Janssen, A.B.G.; Hilt, S.; Kosten, S.; de Klein, J.J.M.; Paerl, H.W.; van de Waal, D.B. Shifting states, shifting services: Linking regime shifts to changes in ecosystem services in shallow lakes. Freshw. Biol. 2021, 66, 1–12. [Google Scholar] [CrossRef]
- Sondergaard, M.; Jeppesen, E.; Lauridsen, T.L.; Skov, C.; van Nes, E.H.; Roijackers, R.M.M.; Lammens, E.; Portielje, R. Lake restoration: Successes, failures, and long-term effects. J. Appl. Ecol. 2007, 44, 1095–1105. [Google Scholar] [CrossRef]
- Xu, S.; Lyu, P.; Zheng, X.; Yang, H.; Xia, B.; Li, H.; Zhang, H.; Ma, S. Monitoring and control methods of harmful algal blooms in Chinese freshwater system: A review. Environ. Sci. Pollut. Res. 2022, 29, 56908–56927. [Google Scholar] [CrossRef] [PubMed]
- Klapper, H. Technologies for Lake Restoration. J. Limnol. 2003, 62, 73–90. [Google Scholar] [CrossRef]
- Dodds, W.; Whiles, M. Freshwater Ecology: Concepts and Environmental Applications of Limnology, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2010; p. 821. [Google Scholar]
- Burks, R.L.; Mulderij, G.; Gross, E.; Jones, I.; Jacobsen, L.; Jeppesen, E.; van Donk, E. Center stage: The crucial role of macrophytes in regulating trophic interactions in shallow lakes. In Wetlands: Functioning, Biodiversity Conservation, and Restoration; Bobbink, R., Beltman, B., Verhoeven, J.T.A., Whigham, D.F., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; Volume 191, pp. 37–59. [Google Scholar] [CrossRef]
- O’Hare, W.T.; Aguiar, F.C.; Asaeda, T.; Bakker, E.S.; Chambers, P.A.; Clayton, J.S.; Elger, A.; Ferreira, T.M.; Gross, E.M.; Gunn, I.D.M.; et al. Plants in aquatic ecosystems: Current trends and future directions. Hydrobiologia 2018, 812, 1–11. [Google Scholar] [CrossRef]
- Timms, R.M.; Moss, B. Prevention of growth of potentially dense phytoplankton populations by zooplankton grazing in the presence of zooplanktivorous fish, in a shallow wetland ecosystem. Limnol. Oceanogr. 1984, 29, 472–486. [Google Scholar] [CrossRef]
- Hu, H.; Hong, Y. Algal-bloom control by allelopathy of aquatic macrophytes—A review. Front. Environ. Sci. Eng. China 2008, 2, 421–438. [Google Scholar] [CrossRef]
- Erhard, D. Alleopathy in aquatic environments. In Allelopathy; Reigosa, M., Pedrol, N., González, L., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 433–450. [Google Scholar]
- Alvarez, M.F.; Benítez, H.H.; Solari, L.C.; Villegas Cortés, J.C.; Gabellone, N.A.; Claps, M.C. Effects of polyphenols on plankton assemblages and bacterial abundance representative of a pampean shallow lake: An experimental study. Aquat. Microb. Ecol. 2020, 85, 85–100. [Google Scholar] [CrossRef]
- Gutierrez, M.F.; Mayora, G. Influence of macrophyte integrity on zooplankton habitat preference, emphasizing the released phenolic compounds and chromophoric dissolved organic matter. Aquat. Ecol. 2016, 50, 137–151. [Google Scholar] [CrossRef]
- Burns, C.W.; Dodds, A. Food limitation, predation and allelopathy in a population of Daphnia carinata. Hydrobiologia 1999, 400, 41–53. [Google Scholar] [CrossRef]
- Burks, R.L.; Jeppesen, E.; Lodge, D.M. Macrophyte and fish chemicals suppress Daphnia growth and alter life-history traits. Oikos 2000, 88, 139–147. [Google Scholar] [CrossRef]
- Cerbin, S.; van Donk, E.; Gulati, R.D. The influence of Myriophyllum verticillatum and artificial plants on some life history parameters of Daphnia magna. Aquat. Ecol. 2007, 41, 263–271. [Google Scholar] [CrossRef]
- Gutierrez, M.F.; Paggi, J.C. Chemical repellency and adverse effects of free-floating macrophytes on the cladoceran Ceriodaphnia dubia under two temperature levels. Limnology 2014, 15, 37–45. [Google Scholar] [CrossRef]
- Song, Y.; Liew, J.H.; Sim, D.Z.H.; Mowe, A.D.; Mitrovic, S.M.; Tan, H.T.W.; Yeo, D.C.J. Effects of macrophytes on lake-water quality across latitudes: A meta-analysis. Oikos 2019, 128, 468–481. [Google Scholar] [CrossRef]
- Meerhoff, M.; Fosalba, C.; Bruzzone, C.; Mazzeo, N.; Noordoven, W.; Jeppesen, E. An experimental study of habitat choice by Daphnia: Plants signal danger more than refuge in subtropical lakes. Freshwater Biol. 2006, 51, 1320–1330. [Google Scholar] [CrossRef]
- Espinosa-Rodríguez, C.A.; Rivera-De la Parra, L.; Martínez-Téllez, A.; Gómez-Cabral, G.C.; Sarma, S.S.S.; Nandini, S. Allelopathic interactions between the macrophyte Egeria densa and the plankton (alga, Scenedesmus acutus and cladocerans, Simocephalus spp.): A laboratory study. J. Limnol. 2016, 75, 151–160. [Google Scholar] [CrossRef]
- Montiel, M.A. Interacción Lirio Acuático-Plancton: Efectos Directos en el Zooplancton del Lago de Xochimilco. Ph.D. Thesis, Universidad Nacional Autónoma de México, Mexico City, Mexico, 2019. [Google Scholar]
- Reitsema, R.E.; Meire, P.; Schoelynck, J. The future of freshwater macrophytes in a changing world: Dissolved organic carbon quantity and quality and its interactions with macrophytes. Front. Plant. Sci. 2018, 9, 629. [Google Scholar] [CrossRef]
- Kissman, C.E.H.; Williamson, C.E.; Rose, K.C.; Saros, J.E. Nutrients associated with terrestrial dissolved organic matter drive changes in zooplankton: Phytoplankton biomass ratios in an alpine lake. Freshwater. Biol. 2016, 62, 40–51. [Google Scholar] [CrossRef]
- Cuassolo, F.; Bastidas-Navarro, M.; Balseiro, E.; Modenutti, B. Effect of light on particulate and dissolved organic matter production of native and exotic macrophyte species in Patagonia. Hydrobiologia 2016, 766, 29–42. [Google Scholar] [CrossRef]
- Cuevas Madrid, H.; Lugo Vázquez, A.; Peralta Soriano, L.; Morlán Mejía, J.; Vilaclara Fatjó, G.; Sánchez Rodríguez, M.d.R.; Escobar Oliva, M.A.; Carmona Jiménez, J. Identification of key factors affecting the trophic state of four tropical small water bodies. Water 2020, 12, 1454. [Google Scholar] [CrossRef]
- Andersen, R.A.; Berjes, J.A.; Harrison, P.J.; Watanabe, M.M. Recipes for freshwater and seawater media. In Algal Culturing Techniques; Andersen, R.A., Ed.; Elsevier Academic Press: London, UK, 2005; pp. 429–438. [Google Scholar]
- Weber, C.I. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, 4th ed.; United States Environmental Protection Agency: Cincinnati, OH, USA, 1993.
- Krebs, C. Ecology: The Experimental Analysis of Distribution and Abundance, 6th ed.; Ashford Color Press: Harlow, UK, 2014; p. 646. [Google Scholar]
- Sokal, R.R.; Rohlf, F.L. Biometry: The Principles and Practice of Statistics in Biological Research, 3rd ed.; W.H. Freeman and Company: San Francisco, CA, USA, 1995; p. 887. [Google Scholar]
- Rigler, F.H. Feeding rates: Zooplankton. In A Manual for the Assessment of Secondary Productivity in Freshwaters; Edmondson, W.T., Winberg, G.G., Eds.; Blackwell Scientific: Oxford, UK, 1971; pp. 228–255. [Google Scholar]
- Espinosa-Rodríguez, C.A.; Sarma, S.S.S.; Nandini, S. Effect of the allelochemicals from the macrophyte Egeria densa on the competitive interactions of pelagic and littoral cladocerans. Chem. Ecol. 2017, 33, 247–256. [Google Scholar] [CrossRef]
- Wilkins, K.W.; Overholt, E.; Williamson, C. The effects of dissolved organic matter from a native and an invasive plant species on juvenile Daphnia survival and growth. J. Plankton Res. 2020, 42, 453–456. [Google Scholar] [CrossRef]
- Liu, X.; Sun, T.; Yang, W.; Li, X.; Ding, J.; Fu, X. Meta-analysis to identify inhibition mechanisms for the effects of submerged plants on algae. J. Environ. Manag. 2024, 355, 120480. [Google Scholar] [CrossRef] [PubMed]
- Kurbatova, S.A.; Lapteva, N.A.; Bykova, S.N.; Yershov, I.Y. Aquatic plants as a factor that changes trophic relations and the structure of zooplankton and microperiphyton communities. Biol. Bull. 2019, 46, 284–293. [Google Scholar] [CrossRef]
- Gross, E.M.; Bakker, E.S. The role of plant secondary metabolites in freshwater macrophyte–herbivore interactions: Limited or unexplored chemical defenses? In The Ecology of Plant Secondary Metabolites: From Genes to Global Processes; Iason, G.R., Dicke, M., Hartley, S.E., Eds.; Ecological Reviews; Cambridge University Press: Cambridge, UK, 2012; pp. 154–169. [Google Scholar]
- Calabrase, E.J.; Baldwin, L.A. Hormesis as a biological hypothesis. Environ. Health Persp. 1998, 106, 357–362. [Google Scholar] [CrossRef]
- Harris, T.D.; Reinl, K.L.; Azarderakhsh, M.; Berger, S.A.; Castro Berman, M.; Bizic, M.; Bhattacharya, R.; Burnet, S.H.; Cianci-Gaskill, J.A.; de Senerpont Domis, L.N.; et al. What makes a cyanobacterial Bloom disappear? A review of the abiotic and biotic cyanobacterial bloom factors. Harmful Algae 2024, 133, 102599, in press. [Google Scholar] [CrossRef] [PubMed]
- Orlova-Bienkowskaja, M. Guides to the Identification of the Microinvertebrates of the Continental Waters of the World. Cladocera: Anomopoda. Daphniidae: Genus Simocephalus; Backhuys Publishers: Leiden, The Netherlands, 2001; p. 130. [Google Scholar]
- Susanti, I.; Pratiwi, R.; Rosandi, Y.; Hasanah, A.N. Separation methods of phenolic compounds from plant extract as antioxidant agents candidate. Plants 2024, 13, 965. [Google Scholar] [CrossRef] [PubMed]
- Maslyk, M.; Lenard, T.; Olech, M.; Martyna, A.; Poniewozik, M.; Boguszewska-Czubara, A.; Kochanowicz, E.; Czubak, P.; Kubiński, K. Ceratophyllum demersum the submerged macrophyte from the mining subsidence reservoir Nadrybie Poland as a source of anticancer agents. Sci. Rep. 2024, 14, 6661. [Google Scholar] [CrossRef]
- Ren, H.; Wang, G.; Ding, W.; Li, H.; Shen, X.; Shen, D.; Jiang, X.; Qadeer, A. Response of dissolved organic matter (DOM) and microbial community to submerged macrophytes restoration in lakes: A review. Environ. Res. 2023, 231, 116185. [Google Scholar] [CrossRef]
- Balzer, M.J.; Hitchcock, J.N.; Hadwen, W.L.; Kobayashi, T.; Westhorpe, D.P.; Boys, C.; Mitrovic, S.M. Experimental additions of allochthonous dissolved organic matter reveal multiple trophic pathways to stimulate planktonic food webs. Freshw. Biol. 2023, 68, 821–836. [Google Scholar] [CrossRef]
- Lampert, W.; Sommer, U. Limnoecology: The Ecology of Lakes and Streams, 2nd ed.; Oxford University Press: New York, NY, USA, 2007; p. 324. [Google Scholar]
- Geller, W.; Müller, H. The filtration apparatus of Cladocera: Filter mesh-sizes and their implications on food selectivity. Oecologia 1981, 49, 316–321. [Google Scholar] [CrossRef]
- Knoechel, Y.; Holtby, B. Cladoceran filtering rate: Body length relationships for bacterial and large algal particles. Limnol. Oceanogr. 1986, 31, 195–199. [Google Scholar] [CrossRef]
- Smirnov, N.N. Physiology of the Cladocera, 2nd ed.; Academic Press: Cambridge, MA, USA, 2017; p. 418. [Google Scholar]
- Fenchel, T. The ecology of Protozoa; Springer: Berlin/Heidelberg, Germany, 1987; p. 197. [Google Scholar]
- Navarro, L.; Rejas, D. Potential of four native zooplankton species for biomanipulation of eutrophic lakes in the Valley of Cochabamba, Bolivia. Rev. Biol. Ecol. Cons. Amb. 2009, 25, 1–9. [Google Scholar]
- Burns, C.W. Relation between filtering rate, temperature, and body size in four species of Daphnia. Limnol. Oceanogr. 1969, 14, 693–700. [Google Scholar] [CrossRef]
- Serra, T.; Müller, M.F.; Barcelona, A.; Salvadó, V.; Pous, N.; Colomer, F. Optimal light conditions for Daphnia filtration. Sci. Total Environ. 2019, 686, 151–157. [Google Scholar] [CrossRef]
- Scheffer, M. The effect of aquatic vegetation on turbidity; how important are the filter feeders? Hydrobiologia 1999, 408, 307–316. [Google Scholar] [CrossRef]
Simocephalus cf. mixtus | Daphnia cf. pulex | ||
---|---|---|---|
Filtration rates | Control | 1.01 ± 0.19 a | 2.14 ± 0.24 a |
(mL ind. h−1) | C. demersum | 4.07 ± 0.52 b | 1.99 ± 0.32 a |
S. pectinata | 3.02 ± 0.30 c | 1.88 ± 0.15 a | |
Feeding rates | Control | 0.81 ± 0.15 a | 1.63 ± 0.17 a |
×105 (cells ind. h−1) | C. demersum | 2.87 ± 0.31 b | 1.52 ± 0.22 a |
S. pectinata | 2.22 ± 0.20 c | 1.45 ± 0.25 a |
Treatments | Variable | Simocephalus |
---|---|---|
Control | ALS (days) | 26.6 ± 0.33 a |
Exudates | 37.9 ± 2.45 b | |
POM < 25 µm | 28.7 ± 0.87 a | |
Alive C. demersum | 39.0 ± 1.43 b | |
Control | GRR (neonates per female−1) | 23.3 ± 1.23 a |
Exudates | 37.1 ± 2.64 b | |
POM < 25 µm | 38.4 ± 2.86 b | |
Alive C. demersum | 52.6 ± 3.63 c | |
Control | NRR (neonates per female−1) | 18.1 ± 0.67 a |
Exudates | 28.7 ± 1.81 b | |
POM < 25 µm | 24.5 ± 1.13 ab | |
Alive C. demersum | 41.1 ± 2.63 c | |
Control | GT (days) | 20.6 ± 0.65 ab |
Exudates | 22.3 ± 0.4 ac | |
POM < 25 µm | 19.2 ± 0.36 b | |
Alive C. demersum | 24.6 ± 1.05 c | |
Control | RPI (r) | 0.15 ± 0.06 a |
Exudates | 0.24 ± 0.02 b | |
POM < 25 µm | 0.18 ± 0.07 a | |
Alive C. demersum | 0.22 ± 0.01 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espinosa-Rodríguez, C.A.; Lugo-Vázquez, A.; Montes-Campos, L.J.; Saavedra-Martínez, I.M.; Sánchez-Rodríguez, M.d.R.; Peralta-Soriano, L.; Rivera-De la Parra, L. Effects of Submerged Macrophytes on Demography and Filtration Rates of Daphnia and Simocephalus (Crustacea: Cladocera). Plants 2024, 13, 1504. https://doi.org/10.3390/plants13111504
Espinosa-Rodríguez CA, Lugo-Vázquez A, Montes-Campos LJ, Saavedra-Martínez IM, Sánchez-Rodríguez MdR, Peralta-Soriano L, Rivera-De la Parra L. Effects of Submerged Macrophytes on Demography and Filtration Rates of Daphnia and Simocephalus (Crustacea: Cladocera). Plants. 2024; 13(11):1504. https://doi.org/10.3390/plants13111504
Chicago/Turabian StyleEspinosa-Rodríguez, Cristian A., Alfonso Lugo-Vázquez, Luz J. Montes-Campos, Ivan M. Saavedra-Martínez, Ma. del Rosario Sánchez-Rodríguez, Laura Peralta-Soriano, and Ligia Rivera-De la Parra. 2024. "Effects of Submerged Macrophytes on Demography and Filtration Rates of Daphnia and Simocephalus (Crustacea: Cladocera)" Plants 13, no. 11: 1504. https://doi.org/10.3390/plants13111504
APA StyleEspinosa-Rodríguez, C. A., Lugo-Vázquez, A., Montes-Campos, L. J., Saavedra-Martínez, I. M., Sánchez-Rodríguez, M. d. R., Peralta-Soriano, L., & Rivera-De la Parra, L. (2024). Effects of Submerged Macrophytes on Demography and Filtration Rates of Daphnia and Simocephalus (Crustacea: Cladocera). Plants, 13(11), 1504. https://doi.org/10.3390/plants13111504