ChIP-Based Nuclear DNA Isolation for Genome Sequencing in Pyropia to Remove Cytosol and Bacterial DNA Contamination
Abstract
:1. Introduction
2. Results
2.1. Histone H3-Based ChIP-Seq Data Collection
2.2. Relationship of Transcriptional Activities and Aligned Depth by ChIP Data
2.3. Genome Coverage of the Three Methods
2.4. Features of the Uncovered Region
3. Discussion
4. Materials and Methods
4.1. Algal Culture and Sample Collection
4.2. Chromatin Immuno-Precipitation (ChIP) and Hi-Seq Sequencing
4.3. ChIP-Seq Data Analysis
4.4. Genomic DNA Preparation by Direct Extraction or Nuclei Extraction
4.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Full Length | GC | N | TR Number | TR Length | TR Length Rate | |
---|---|---|---|---|---|---|
ChIP data | 10,901,248 | 59.05% | 4.60% | 6162 | 684,452 | 6.28% |
ChIP dehydrated data | 10,777,313 | 59.03% | 4.65% | 6203 | 677,089 | 6.28% |
nuclei data | 12,013,931 | 60.37% | 4.17% | 9668 | 950,651 | 7.90% |
nuclei dehydrated data | 11,968,968 | 59.92% | 4.19% | 8643 | 901,127 | 7.52% |
direct extraction data | 13,901,143 | 61.67% | 3.60% | 14,039 | 1,255,462 | 9.03% |
References
- Cho, T.J.; Rhee, M.S. Health Functionality and Quality Control of Laver (Porphyra, Pyropia): Current Issues and Future Perspectives as an Edible Seaweed. Mar. Drugs 2019, 18, 14. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Wang, J.; Wang, S.; Xu, X. Porphyra Species: A Mini-Review of Its Pharmacological and Nutritional Properties. J. Med. Food 2016, 19, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.E.; Deng, Y.Y.; Xu, G.P.; Russell, S.; Lu, Q.Q.; Brodie, J. Redefining Pyropia (Bangiales, Rhodophyta): Four New Genera, Resurrection of Porphyrella and Description of Calidia pseudolobata sp. nov. From China. J. Phycol. 2020, 56, 862–879. [Google Scholar] [CrossRef] [PubMed]
- Abdelrahman, H.; ElHady, M.; Alcivar-Warren, A.; Allen, S.; Al-Tobasei, R.; Bao, L.; Beck, B.; Blackburn, H.; Bosworth, B.; Buchanan, J.; et al. Aquaculture genomics, genetics and breeding in the United States: Current status, challenges, and priorities for future research. BMC Genom. 2017, 18, 191. [Google Scholar]
- Wang, D.; Yu, X.; Xu, K.; Bi, G.; Cao, M.; Zelzion, E.; Fu, C.; Sun, P.; Liu, Y.; Kong, F.; et al. Pyropia yezoensis genome reveals diverse mechanisms of carbon acquisition in the intertidal environment. Nat. Commun. 2020, 11, 4028. [Google Scholar] [CrossRef]
- Guan, X.; Mao, Y.; Stiller, J.W.; Shu, S.; Pang, Y.; Qu, W.; Zhang, Z.; Tang, F.; Qian, H.; Chen, R.; et al. Comparative Gene Expression and Physiological Analyses Reveal Molecular Mechanisms in Wound-Induced Spore Formation in the Edible Seaweed Nori. Front. Plant Sci. 2022, 13, 840439. [Google Scholar] [CrossRef]
- McCombie, W.R.; McPherson, J.D.; Mardis, E.R. Next-Generation Sequencing Technologies. Cold Spring Harb. Perspect. Med. 2019, 9, a036798. [Google Scholar] [CrossRef]
- Wang, L.; Mao, Y.; Kong, F.; Li, G.; Ma, F.; Zhang, B.; Sun, P.; Bi, G.; Zhang, F.; Xue, H.; et al. Complete sequence and analysis of plastid genomes of two economically important red algae: Pyropia haitanensis and Pyropia yezoensis. PLoS ONE 2013, 8, e65902. [Google Scholar] [CrossRef]
- Wang, L.; Mao, Y.; Kong, F.; Cao, M.; Sun, P. Genome-wide expression profiles of Pyropia haitanensis in response to osmotic stress by using deep sequencing technology. BMC Genom. 2015, 16, 1012. [Google Scholar] [CrossRef]
- Wang, J.; Tang, X.; Mo, Z.; Mao, Y. Metagenome-Assembled Genomes From Pyropia haitanensis Microbiome Provide Insights Into the Potential Metabolic Functions to the Seaweed. Front. Microbiol. 2022, 13, 857901. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, J.; Jiang, P. Easy Removal of Epiphytic Bacteria on Ulva (Ulvophyceae, Chlorophyta) by Vortex with Silica Sands. Microorganisms 2022, 10, 476. [Google Scholar] [CrossRef]
- Ueda, S.; Mizuta, H.; Uji, T. Development of Chromatin Immunoprecipitation for the Analysis of Histone Modifications in Red Macroalga Neopyropia yezoensis (Rhodophyta). Mol. Biotechnol. 2022, 65, 590–597. [Google Scholar] [CrossRef]
- Li, G.; Zhu, P. Structure and organization of chromatin fiber in the nucleus. FEBS Lett. 2015, 589 Pt 20A, 2893–2904. [Google Scholar] [CrossRef]
- Onufriev, A.V.; Schiessel, H. The nucleosome: From structure to function through physics. Curr. Opin Struct. Biol 2019, 56, 119–130. [Google Scholar] [CrossRef]
- Cutter, A.R.; Hayes, J.J. A brief review of nucleosome structure. FEBS Lett. 2015, 589 Pt 20A, 2914–2922. [Google Scholar] [CrossRef]
- Burki, F. Chapter One-The Convoluted Evolution of Eukaryotes With Complex Plastids. In Advances in Botanical Research; Hirakawa, Y., Ed.; Academic Press: Cambridge, MA, USA, 2017; Volume 84, pp. 1–30. [Google Scholar]
- Hołówka, J.; Płachetka, M. Structure of bacterial chromosome: An analysis of DNA-protein interactions in vivo. Postep. Hig. Med. Dosw. 2017, 71, 1005–1014. [Google Scholar] [CrossRef] [PubMed]
- Dame, R.T.; Rashid, F.M.; Grainger, D.C. Chromosome organization in bacteria: Mechanistic insights into genome structure and function. Nat. Rev. Genet. 2020, 21, 227–242. [Google Scholar] [CrossRef]
- Krupinska, K.; Melonek, J.; Krause, K. New insights into plastid nucleoid structure and functionality. Planta 2013, 237, 653–664. [Google Scholar] [CrossRef]
- Nosek, J.; Tomaska, L.; Bolotin-Fukuhara, M.; Miyakawa, I. Mitochondrial chromosome structure: An insight from analysis of complete yeast genomes. FEMS Yeast Res. 2006, 6, 356–370. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, M.T.; Masukata, H. Regulation of DNA replication by chromatin structures: Accessibility and recruitment. Chromosoma 2011, 120, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Kaya-Okur, H.S.; Wu, S.J.; Codomo, C.A.; Pledger, E.S.; Bryson, T.D.; Henikoff, J.G.; Ahmad, K.; Henikoff, S. CUT & Tag for efficient epigenomic profiling of small samples and single cells. Nat. Commun. 2019, 10, 1930. [Google Scholar]
- Pickrell, J.K.; Gaffney, D.J.; Gilad, Y.; Pritchard, J.K. False positive peaks in ChIP-seq and other sequencing-based functional assays caused by unannotated high copy number regions. Bioinformatics 2011, 27, 2144–2146. [Google Scholar] [CrossRef]
- Jain, D.; Baldi, S.; Zabel, A.; Straub, T.; Becker, P.B. Active promoters give rise to false positive ‘Phantom Peaks’ in ChIP-seq experiments. Nucleic Acids Res. 2015, 43, 6959–6968. [Google Scholar] [CrossRef]
- Benjamini, Y.; Speed, T.P. Summarizing and correcting the GC content bias in high-throughput sequencing. Nucleic Acids Res. 2012, 40, e72. [Google Scholar] [CrossRef]
- Mo, Z.; Li, S.; Kong, F.; Tang, X.; Mao, Y. Characterization of a novel fungal disease that infects the gametophyte of Pyropia yezoensis (Bangiales, Rhodophyta). J. Appl. Phycol. 2015, 28, 395–404. [Google Scholar] [CrossRef]
- Klochkova, T.A.; Shin, Y.J.; Moon, K.-H.; Motomura, T.; Kim, G.H. New species of unicellular obligate parasite, Olpidiopsis pyropiae sp. nov., that plagues Pyropia sea farms in Korea. J. Appl. Phycol. 2016, 28, 73–83. [Google Scholar] [CrossRef]
- Ismail, M.M.; El-Sheekh, M. Enhancement of Biochemical and Nutritional Contents of Some Cultivated Seaweeds Under Laboratory Conditions. J. Diet. Suppl. 2018, 15, 318–329. [Google Scholar] [CrossRef]
- Mao, Y.; Chen, N.; Cao, M.; Chen, R.; Guan, X.; Wang, D. Functional Characterization and Evolutionary Analysis of Glycine-Betaine Biosynthesis Pathway in Red Seaweed Pyropia yezoensis. Mar. Drugs 2019, 17, 70. [Google Scholar] [CrossRef]
- Wei, L.; Xu, J. Optimized methods of chromatin immunoprecipitation for profiling histone modifications in industrial microalgae Nannochloropsis spp. J. Phycol. 2018, 54, 358–367. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data; Babraham Bioinformatics, Babraham Institute: Cambridge, UK, 2010. [Google Scholar]
- Jung, Y.; Han, D. BWA-MEME: BWA-MEM emulated with a machine learning approach. Bioinformatics 2022, 38, 2404–2413. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef]
- Gel, B.; Serra, E. karyoploteR: An R/Bioconductor package to plot customizable genomes displaying arbitrary data. Bioinformatics 2017, 33, 3088–3090. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Tang, X.; Bi, G.; Xu, K.; Kong, F.; Mao, Y. Gene expression profiles of Pyropia yezoensis in response to dehydration and rehydration stresses. Mar. Genom. 2019, 43, 43–49. [Google Scholar] [CrossRef]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef]
- Pertea, M.; Kim, D.; Pertea, G.M.; Leek, J.T.; Salzberg, S.L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 2016, 11, 1650–1667. [Google Scholar] [CrossRef]
- Zhang, H.-B.; Zhao, X.; Ding, X.; Paterson, A.H.; Wing, R.A. Preparation of megabase-size DNA from plant nuclei. Plant J. 1995, 7, 175–184. [Google Scholar] [CrossRef]
Raw Data (Gb) | Clean Data (Gb) | Nuclear Mapping Rate | Plastid Mapping Rate | Mitochondrion Mapping Rate | Bacteria Mapping Rate | |
---|---|---|---|---|---|---|
ChIP data1 * | 7.95 | 7.32 | 99.81% | 0.0055% | 0.0014% | 0.11% |
ChIP data2 | 8.12 | 7.54 | 99.41% | 0.0087% | 0.0016% | 0.40% |
ChIP-dehydrated data1 | 13.71 | 12.77 | 99.76% | 0.0049% | 0.0010% | 0.14% |
ChIP-dehydrated data2 | 7.32 | 6.80 | 99.62% | 0.012% | 0.0019% | 0.18% |
Nuclei data1 | 8.10 | 7.83 | 49.91% | 40.96% | 5.26% | 3.27% |
Nuclei data2 | 6.14 | 6.20 | 47.36% | 42.95% | 5.42% | 3.52% |
Nuclei dehydrated data1 | 11.10 | 10.72 | 48.63% | 42.00% | 5.37% | 3.42% |
Nuclei dehydrated data2 | 6.39 | 6.11 | 49.21% | 41.18% | 5.42% | 3.51% |
direct extraction data | 11.20 | 10.70 | 38.76% | 53.41% | 6.64% | 0.48% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Wang, J.; Zhang, X.; Guan, X.; Gao, T.; Mao, Y.; Poetsch, A.; Wang, D. ChIP-Based Nuclear DNA Isolation for Genome Sequencing in Pyropia to Remove Cytosol and Bacterial DNA Contamination. Plants 2023, 12, 1883. https://doi.org/10.3390/plants12091883
Zhang Z, Wang J, Zhang X, Guan X, Gao T, Mao Y, Poetsch A, Wang D. ChIP-Based Nuclear DNA Isolation for Genome Sequencing in Pyropia to Remove Cytosol and Bacterial DNA Contamination. Plants. 2023; 12(9):1883. https://doi.org/10.3390/plants12091883
Chicago/Turabian StyleZhang, Zehao, Junhao Wang, Xiaoqian Zhang, Xiaowei Guan, Tian Gao, Yunxiang Mao, Ansgar Poetsch, and Dongmei Wang. 2023. "ChIP-Based Nuclear DNA Isolation for Genome Sequencing in Pyropia to Remove Cytosol and Bacterial DNA Contamination" Plants 12, no. 9: 1883. https://doi.org/10.3390/plants12091883