Scientific Advances in the Last Decade on the Recovery, Characterization, and Functionality of Bioactive Compounds from the Araticum Fruit (Annona crassiflora Mart.)
Abstract
:1. Introduction
2. Search Strategy and Studies Selection
3. Bioactive Compounds Found in Araticum Fruit Parts
3.1. Phenolic Compounds
3.2. Alkaloids
3.3. Annonaceous Acetogenins
3.4. Carotenoids
3.5. Phytosterols
3.6. Tocols
4. Biological Activities Reported in Araticum Fruit Parts
4.1. Antioxidant and Anti-Inflammatory Activities
4.2. Anti-Alzheimer Activity
4.3. Anticancer Activity
4.4. Antidiabetic Activity
4.5. Anti-Obesity and Antidyslipidemic Activities
4.6. Hepatoprotective Activity
4.7. Antinociceptive Activity
4.8. Healing of Cutaneous Wounds Activity
4.9. Antibacterial Activity
4.10. Insecticide Activity
5. Applications of Araticum Fruit in the Foods and Beverages Development
Product | Formulation Description | Major Findings | Ref. |
---|---|---|---|
Bread | Araticum pulp flour (10 and 20%) in replacing the wheat flour |
| [100] |
Bread | Araticum pulp flour (10%) replacing refined or whole wheat flour |
| [98] |
Bread | Araticum pulp flour (16% + 30% replacing the wheat flour and the water, respectively) and pequi peel flour (2%) |
| [99] |
Flour | Araticum pulp |
| [101] |
Fruit preserve | Mixed Brazilian Cerrado using 60% of fruits (araticum, soursop, and passion fruit) added in equal proportions |
| [102] |
Fruit preserve | Araticum pulp |
| [103] |
Sweet paste | Araticum pulp |
| [104] |
Sweet paste | Araticum pulp |
| [105] |
Sweet paste | Araticum pulp (50 pulp/50 sugar ratio) |
| [106] |
Jam | Mixed Brazilian Cerrado fruit pulp (20% of the araticum, soursop, and sweet passion fruit) |
| [93] |
Jam | Mixed Brazilian Cerrado fruit pulp (20% of the araticum, soursop, and sweet passion fruit) |
| [107] |
Jam | Extra-type jam developed using 50% of araticum pulp |
| [108] |
Jam | Araticum pulp (50 pulp/50 sugar ratio) |
| [90] |
Jam | Extra-type jam with araticum pulp |
| [109] |
Juice | Araticum and cagaita juices were produced using 40% and 50% of pulp, respectively, and mixed juice was prepared with isolated pulp juices in different concentrations (16.33, 33, 50 and 67.33 %) |
| [95] |
Juice | Araticum pulp juice (40% v/v) and mixed araticum (20% v/v) and cagaita (30% v/v) pulp juice |
| [94] |
Juice | Araticum pulp (40%) |
| [52] |
Yogurt | Araticum pulp (5% w/w) |
| [110] |
Fermented dairy beverage | Araticum pulp (5.0, 7.5, 10.0, 12.5, 15.0, 17.5, and 20.0% w/v) |
| [111] |
Fermented milk drink | Araticum pulp (4, 8, 12, and 16%) |
| [112] |
Whey beverage | Araticum pulp freeze-dried (6% w/w) |
| [113] |
Snack bar | Araticum pulp flour (5, 10, 15, and 20 %) in replacement corn starch biscuit |
| [96] |
Food bar | Araticum pulp flour (5, 10, 15, and 20%) in replacement of corn starch cake |
| [114] |
Food bar | Araticum pulp flour (20, 30, 40, and 50%) in replacement of oatmeal |
| [97] |
Milk caramel | Araticum pulp (16.6%) |
| [115] |
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Arruda, H.S.; Fernandes, R.V.d.B.; Botrel, D.A.; de Almeida, M.E.F. Cerrado fruits: Knowledge and acceptance of Annona crassiflora Mart. (Araticum) and Eugenia dysenterica Mart. (Cagaita) for children using the senses of taste and vision. J. Health Biol. Sci. 2015, 3, 224–230. [Google Scholar] [CrossRef] [Green Version]
- Cota, L.G.; Vieira, F.A.; Melo Júnior, A.F.; Brandão, M.M.; Santana, K.N.O.; Guedes, M.L.; Oliveira, D.A. Genetic diversity of Annona crassiflora (Annonaceae) in northern Minas Gerais State. Genet. Mol. Res. 2011, 10, 2172–2180. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, E.C.; Villa, F.; Da Silva, D.F.; Possenti, J.C.; Da Silva, L.S.; Ritter, G. Araticum accessions: Effect of gibberellic acid concentrations and soaking times on seed dormancy overcoming. Rev. Caatinga 2021, 34, 614–620. [Google Scholar] [CrossRef]
- Palermo, A.C.; de Souza, A.M. Morphometric analysis of fruits and seeds of Annona crassiflora Mart. (Annonaceae) from central Brazil. Rev. Árvore 2019, 43, e430304. [Google Scholar] [CrossRef]
- Vitorino, L.C.; Reis, M.N.O.; Bessa, L.A.; de Souza, U.J.B.; Silva, F.G. Landscape and Climate Influence the Patterns of Genetic Diversity and Inbreeding in Cerrado Plant Species. Diversity 2020, 12, 421. [Google Scholar] [CrossRef]
- Arruda, H.S.; Pastore, G.M. Araticum (Annona crassiflora Mart.) as a source of nutrients and bioactive compounds for food and non-food purposes: A comprehensive review. Food Res. Int. 2019, 123, 450–480. [Google Scholar] [CrossRef]
- Vilar, J.; Ferri, P.; Chen-Chen, L. Genotoxicity investigation of araticum (Annona crassiflora Mart., 1841, Annonaceae) using SOS-Inductest and Ames test. Braz. J. Biol. 2011, 71, 197–202. [Google Scholar] [CrossRef]
- Cavéchia, L.A.; Proença, C.E.B. Resgate cultural de usos de plantas nativas do cerrado pela população tradicional da região do atual Distrito Federal. Heringeriana 2015, 1, 11–24. [Google Scholar] [CrossRef]
- Arruda, H.S.; de Almeida, M.E.F. Frutos do Cerrado: Panorama, Resgate Cultural e Aproveitamento Culinário; Novas Edições Acadêmicas: Saarbrücken, Germany, 2015; ISBN 978-3-639-83794-0. [Google Scholar]
- Cardoso, L.d.M.; Oliveira, D.d.S.; Bedetti, S.d.F.; Martino, H.S.D.; Pinheiro-Sant’Ana, H.M. Araticum (Annona crassiflora Mart.) from the Brazilian Cerrado: Chemical composition and bioactive compounds. Fruits 2013, 68, 121–134. [Google Scholar] [CrossRef] [Green Version]
- Erzinger, G.S.; Lopes, P.C.; del Ciampo, L.F.; Zimath, S.C.; Vicente, D.; Martins de Albuquerque, F.; Prates, R.C. Bioactive compounds of hops resulting from the discarding of the beer industry in the control of pathogenic bacteria. In Natural Bioactive Compounds; Sinha, R.P., Häder, D.-P., Eds.; Academic Press: London, UK, 2021; pp. 41–55. ISBN 9780128206553. [Google Scholar]
- Walia, A.; Gupta, A.K.; Sharma, V. Role of Bioactive Compounds in Human Health. Acta Sci. Med. Sci. 2019, 3, 25–33. [Google Scholar]
- Stafussa, A.P.; Maciel, G.M.; Bortolini, D.G.; Maroldi, W.V.; Ribeiro, V.R.; Fachi, M.M.; Pontarolo, R.; Bach, F.; Pedro, A.C.; Haminiuk, C.W.I. Bioactivity and bioaccessibility of phenolic compounds from Brazilian fruit purees. Futur. Foods 2021, 4, 100066. [Google Scholar] [CrossRef]
- Carvalho, N.C.C.; Monteiro, O.S.; da Rocha, C.Q.; Longato, G.B.; Smith, R.E.; da Silva, J.K.R.; Maia, J.G.S. Phytochemical Analysis of the Fruit Pulp Extracts from Annona crassiflora Mart. and Evaluation of Their Antioxidant and Antiproliferative Activities. Foods 2022, 11, 2079. [Google Scholar] [CrossRef]
- Guimarães, A.C.G.; de Souza Gomes, M.; Zacaroni Lima, L.M.; Sales, P.F.; da Cunha, M.C.; Rodrigues, L.J.; de Barros, H.E.A.; Pires, C.R.F.; dos Santos, V.F.; Lima Natarelli, C.V.; et al. Application of Chemometric Techniques In The Evaluation of Bioactive Compounds and Antioxidant Activity of Fruit From Brazilian Cerrado. J. Food Meas. Charact. 2022, 1–12. [Google Scholar] [CrossRef]
- Arruda, H.S.; Silva, E.K.; Pereira, G.A.; Angolini, C.F.F.; Eberlin, M.N.; Meireles, M.A.A.; Pastore, G.M. Effects of high-intensity ultrasound process parameters on the phenolic compounds recovery from araticum peel. Ultrason. Sonochem. 2019, 50, 82–95. [Google Scholar] [CrossRef]
- Justino, A.B.; Pereira, M.N.; Vilela, D.D.; Peixoto, L.G.; Martins, M.M.; Teixeira, R.R.; Miranda, N.C.; da Silva, N.M.; de Sousa, R.M.F.; de Oliveira, A.; et al. Peel of araticum fruit (Annona crassiflora Mart.) as a source of antioxidant compounds with α-amylase, α-glucosidase and glycation inhibitory activities. Bioorg. Chem. 2016, 69, 167–182. [Google Scholar] [CrossRef]
- Justino, A.B.; Franco, R.R.; Silva, H.C.G.; Saraiva, A.L.; Sousa, R.M.F.; Espindola, F.S. B procyanidins of Annona crassiflora fruit peel inhibited glycation, lipid peroxidation and protein-bound carbonyls, with protective effects on glycated catalase. Sci. Rep. 2019, 9, 19183. [Google Scholar] [CrossRef] [Green Version]
- Ramos, L.P.A.; Justino, A.B.; Tavernelli, N.; Saraiva, A.L.; Franco, R.R.; de Souza, A.V.; Silva, H.C.G.; de Moura, F.B.R.; Botelho, F.V.; Espindola, F.S. Antioxidant compounds from Annona crassiflora fruit peel reduce lipid levels and oxidative damage and maintain the glutathione defense in hepatic tissue of Triton WR-1339-induced hyperlipidemic mice. Biomed. Pharmacother. 2021, 142, 112049. [Google Scholar] [CrossRef]
- Menezes, E.G.T.; Oliveira, É.R.; Carvalho, G.R.; Guimarães, I.C.; Queiroz, F. Assessment of chemical, nutritional and bioactive properties of Annona crassiflora and Annona muricata wastes. Food Sci. Technol. 2019, 39, 662–672. [Google Scholar] [CrossRef] [Green Version]
- Formagio, A.S.N.; Vieira, M.C.; Volobuff, C.R.F.; Silva, M.S.; Matos, A.I.; Cardoso, C.A.L.; Foglio, M.A.; Carvalho, J.E. In vitro biological screening of the anticholinesterase and antiproliferative activities of medicinal plants belonging to Annonaceae. Braz. J. Med. Biol. Res. 2015, 48, 308–315. [Google Scholar] [CrossRef] [Green Version]
- Ramos, A.L.C.C.; Silva, M.R.; Mendonça, H.d.O.P.; Mazzinghy, A.C.d.C.; Silva, V.D.M.; Botelho, B.G.; Augusti, R.; Ferreira, R.M.d.S.B.; Sousa, I.M.N.d.; Batista-Santos, P.; et al. Use of pulp, peel, and seed of Annona crassiflora Mart. in elaborating extracts for fingerprint analysis using paper spray mass spectrometry. Food Res. Int. 2022, 160, 111687. [Google Scholar] [CrossRef]
- Prado, L.G.; Arruda, H.S.; Peixoto Araujo, N.M.; de Oliveira Braga, L.E.; Banzato, T.P.; Pereira, G.A.; Figueiredo, M.C.; Ruiz, A.L.T.G.; Eberlin, M.N.; de Carvalho, J.E.; et al. Antioxidant, antiproliferative and healing properties of araticum (Annona crassiflora Mart.) peel and seed. Food Res. Int. 2020, 133, 109168. [Google Scholar] [CrossRef] [PubMed]
- Ramos, A.L.C.C.; Minighin, E.C.; Soares, I.I.C.; Ferreira, R.M.d.S.B.; Sousa, I.M.N.d.; Augusti, R.; Labanca, R.A.; Araújo, R.L.B.d.; Melo, J.O.F. Evaluation of the total phenolic content, antioxidative capacity, and chemical fingerprint of Annona crassiflora Mart. bioaccessible molecules. Food Res. Int. 2023, 165, 112514. [Google Scholar] [CrossRef] [PubMed]
- Arruda, H.S.; Pereira, G.A.; de Morais, D.R.; Eberlin, M.N.; Pastore, G.M. Determination of free, esterified, glycosylated and insoluble-bound phenolics composition in the edible part of araticum fruit (Annona crassiflora Mart.) and its by-products by HPLC-ESI-MS/MS. Food Chem. 2018, 245, 738–749. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, M.F.; Justino, A.B.; Martins, M.M.; Belaz, K.R.A.; Ferreira, F.B.; Junio de Oliveira, R.; Danuello, A.; Espindola, F.S.; Pivatto, M. Cholinesterase inhibitors assessment of aporphine alkaloids from Annona crassiflora and molecular docking studies. Bioorg. Chem. 2022, 120, 105593. [Google Scholar] [CrossRef] [PubMed]
- Santos, P.D.; Vieira, T.N.; Gontijo Couto, A.C.; Mesquita Luiz, J.P.; Lopes Saraiva, A.L.; Borges Linhares, C.R.; Barbosa, M.F.; Justino, A.B.; Franco, R.R.; da Silva Brum, E.; et al. Stephalagine, an aporphinic alkaloid with therapeutic effects in acute gout arthritis in mice. J. Ethnopharmacol. 2022, 293, 115291. [Google Scholar] [CrossRef]
- Justino, A.B.; Barbosa, M.F.; Neves, T.V.; Silva, H.C.G.; Brum, E.d.S.; Fialho, M.F.P.; Couto, A.C.; Saraiva, A.L.; Avila, V.d.M.R.; Oliveira, S.M.; et al. Stephalagine, an aporphine alkaloid from Annona crassiflora fruit peel, induces antinociceptive effects by TRPA1 and TRPV1 channels modulation in mice. Bioorg. Chem. 2020, 96, 103562. [Google Scholar] [CrossRef]
- Pereira, M.N.; Justino, A.B.; Martins, M.M.; Peixoto, L.G.; Vilela, D.D.; Santos, P.S.; Teixeira, T.L.; da Silva, C.V.; Goulart, L.R.; Pivatto, M.; et al. Stephalagine, an alkaloid with pancreatic lipase inhibitory activity isolated from the fruit peel of Annona crassiflora Mart. Ind. Crops Prod. 2017, 97, 324–329. [Google Scholar] [CrossRef]
- Justino, A.B.; Florentino, R.M.; França, A.; Filho, A.C.M.L.; Franco, R.R.; Saraiva, A.L.; Fonseca, M.C.; Leite, M.F.; Salmen Espindola, F. Alkaloid and acetogenin-rich fraction from Annona crassiflora fruit peel inhibits proliferation and migration of human liver cancer HepG2 cells. PLoS ONE 2021, 16, e0250394. [Google Scholar] [CrossRef]
- Tran, K.; Ryan, S.; McDonald, M.; Thomas, A.L.; Maia, J.G.S.; Smith, R.E. Annonacin and Squamocin Contents of Pawpaw (Asimina triloba) and Marolo (Annona crassiflora) Fruits and Atemoya (A. squamosa × A. cherimola) Seeds. Biol. Trace Elem. Res. 2021, 199, 2320–2329. [Google Scholar] [CrossRef]
- Silva, L.L.; Cardoso, L.d.M.; Pinheiro-Sant’Ana, H.M. Influência do branqueamento, pasteurização e congelamento nas características físico-químicas e carotenoides de polpa de araticum. Bol. Cent. Pesqui. Process. Aliment. 2015, 33, 49–59. [Google Scholar] [CrossRef] [Green Version]
- Luzia, D.M.M.; Jorge, N. Bioactive substance contents and antioxidant capacity of the lipid fraction of Annona crassiflora Mart. seeds. Ind. Crops Prod. 2013, 42, 231–235. [Google Scholar] [CrossRef]
- Arruda, H.S.; Araújo, M.V.L.; Marostica Junior, M.R. Underexploited Brazilian Cerrado fruits as sources of phenolic compounds for diseases management: A review. Food Chem. Mol. Sci. 2022, 5, 100148. [Google Scholar] [CrossRef]
- Borsoi, F.T.; Neri-Numa, I.A.; de Oliveira, W.Q.; de Araújo, F.F.; Pastore, G.M. Dietary polyphenols and their relationship to the modulation of non-communicable chronic diseases and epigenetic mechanisms: A mini-review. Food Chem. Mol. Sci. 2023, 6, 100155. [Google Scholar] [CrossRef]
- Arruda, H.S.; Pereira, G.A.; Pastore, G.M. Optimization of Extraction Parameters of Total Phenolics from Annona crassiflora Mart. (Araticum) Fruits Using Response Surface Methodology. Food Anal. Methods 2017, 10, 100–110. [Google Scholar] [CrossRef]
- Anaya-Esparza, L.M.; García-Magaña, M.d.L.; Abraham Domínguez-Ávila, J.; Yahia, E.M.; Salazar-López, N.J.; González-Aguilar, G.A.; Montalvo-González, E. Annonas: Underutilized species as a potential source of bioactive compounds. Food Res. Int. 2020, 138, 109775. [Google Scholar] [CrossRef]
- Bhambhani, S.; Kondhare, K.R.; Giri, A.P. Diversity in Chemical Structures and Biological Properties of Plant Alkaloids. Molecules 2021, 26, 3374. [Google Scholar] [CrossRef]
- Rajput, A.; Sharma, R.; Bharti, R. Pharmacological activities and toxicities of alkaloids on human health. Mater. Today Proc. 2022, 48, 1407–1415. [Google Scholar] [CrossRef]
- Debnath, B.; Singh, W.S.; Das, M.; Goswami, S.; Singh, M.K.; Maiti, D.; Manna, K. Role of plant alkaloids on human health: A review of biological activities. Mater. Today Chem. 2018, 9, 56–72. [Google Scholar] [CrossRef]
- Durán, A.G.; Gutiérrez, M.T.; Mejías, F.J.R.; Molinillo, J.M.G.; Macías, F.A. An Overview of the Chemical Characteristics, Bioactivity and Achievements Regarding the Therapeutic Usage of Acetogenins from Annona cherimola Mill. Molecules 2021, 26, 2926. [Google Scholar] [CrossRef]
- Neske, A.; Ruiz Hidalgo, J.; Cabedo, N.; Cortes, D. Acetogenins from Annonaceae family. Their potential biological applications. Phytochemistry 2020, 174, 112332. [Google Scholar] [CrossRef]
- Lima, N.N.d.C.; Faustino, D.C.; Allahdadi, K.J.; França, L.S.d.A.; Pinto, L.C. Acetogenins from Annonaceae plants: Potent antitumor and neurotoxic compounds. PharmaNutrition 2022, 20, 100295. [Google Scholar] [CrossRef]
- Neri-Numa, I.A.; Arruda, H.S.; Geraldi, M.V.; Maróstica Júnior, M.R.; Pastore, G.M. Natural prebiotic carbohydrates, carotenoids and flavonoids as ingredients in food systems. Curr. Opin. Food Sci. 2020, 33, 98–107. [Google Scholar] [CrossRef]
- Rodriguez-Amaya, D.B. Update on natural food pigments—A mini-review on carotenoids, anthocyanins, and betalains. Food Res. Int. 2019, 124, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Arruda, H.S.; Geraldi, M.V.; Cedran, M.F.; Bicas, J.L.; Marostica Junior, M.R.; Pastore, G.M. Prebiotics and probiotics. In Bioactive Food Components Activity in Mechanistic Approach; Cazarin, C.B.B., Bicas, J.L., Pastore, G.M., Marostica Junior, M.R., Eds.; Academic Press: London, UK, 2022; pp. 55–118. [Google Scholar]
- do Nascimento Silva, N.R.R.; Cavalcante, R.B.M.; da Silva, F.A. Nutritional properties of Buriti (Mauritia flexuosa) and health benefits. J. Food Compos. Anal. 2023, 117, 105092. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, J.; Zhu, L.; Wang, X.; Meng, F.; Xia, L.; Zhang, H. Advances in Stigmasterol on its anti-tumor effect and mechanism of action. Front. Oncol. 2022, 12, 1101289. [Google Scholar] [CrossRef]
- Traber, M.G.; Head, B. Vitamin E: How much is enough, too much and why! Free Radic. Biol. Med. 2021, 177, 212–225. [Google Scholar] [CrossRef]
- Durazzo, A.; Nazhand, A.; Lucarini, M.; Delgado, A.M.; De Wit, M.; Nyam, K.L.; Santini, A.; Fawzy Ramadan, M. Occurrence of Tocols in Foods: An Updated Shot of Current Databases. J. Food Qual. 2021, 2021, 8857571. [Google Scholar] [CrossRef]
- Arruda, H.S.; Pereira, G.A.; Pastore, G.M. Brazilian Cerrado fruit araticum (Annona crassiflora Mart.) as a potential source of natural antioxidant compounds. Int. Food Res. J. 2018, 25, 2005–2012. [Google Scholar]
- Schiassi, M.C.E.V.; Souza, V.R.d.; Lago, A.M.T.; Campos, L.G.; Queiroz, F. Fruits from the Brazilian Cerrado region: Physico-chemical characterization, bioactive compounds, antioxidant activities, and sensory evaluation. Food Chem. 2018, 245, 305–311. [Google Scholar] [CrossRef]
- de Barros, H.E.A.; Alexandre, A.C.S.; Campolina, G.A.; Alvarenga, G.F.; Silva, L.M.d.S.F.e.; Natarelli, C.V.L.; Carvalho, E.E.N.; Vilas Boas, E.V.d.B. Edible seeds clustering based on phenolics and antioxidant activity using multivariate analysis. LWT 2021, 152, 112372. [Google Scholar] [CrossRef]
- Lucas dos Santos, E.; Leite, N.; Alves de Araújo, L.C.; Giffoni de Carvalho, J.T.; Souza, K.d.P. Protective effect of Annona crassiflora on oxidative stress and Alzheimer’s models in Caenorhabditis elegans. Free Radic. Biol. Med. 2018, 128, S125. [Google Scholar] [CrossRef]
- Justino, A.B.; Pereira, M.N.; Peixoto, L.G.; Vilela, D.D.; Caixeta, D.C.; de Souza, A.V.; Teixeira, R.R.; Silva, H.C.G.; de Moura, F.B.R.; Moraes, I.B.; et al. Hepatoprotective properties of a polyphenol-enriched fraction from Annona crassiflora Mart. fruit peel against diabetes-induced oxidative and nitrosative stress. J. Agric. Food Chem. 2017, 65, 4428–4438. [Google Scholar] [CrossRef] [PubMed]
- Justino, A.B.; Costa, M.S.; Saraiva, A.L.; Silva, P.H.; Vieira, T.N.; Dias, P.; Linhares, C.R.B.; Dechichi, P.; de Melo Rodrigues Avila, V.; Espindola, F.S.; et al. Protective effects of a polyphenol-enriched fraction of the fruit peel of Annona crassiflora Mart. on acute and persistent inflammatory pain. Inflammopharmacology 2020, 28, 759–771. [Google Scholar] [CrossRef] [PubMed]
- Seixas, F.R.F.; Bassoli, B.K.; Virgolin, L.B.; Garcia, L.C.; Janzantti, N.S. Physicochemical Properties and Effects of Fruit Pulps from the Amazon Biome on Physiological Parameters in Rats. Nutrients 2021, 13, 1484. [Google Scholar] [CrossRef] [PubMed]
- de Moura, F.; Justino, A.; Ferreira, B.; Espindola, F.; Araújo, F.; Tomiosso, T. Pro-Fibrogenic and Anti-Inflammatory Potential of a Polyphenol-Enriched Fraction from Annona crassiflora in Skin Repair. Planta Med. 2019, 85, 570–577. [Google Scholar] [CrossRef]
- de Moura, F.B.R.; Ferreira, B.A.; Muniz, E.H.; Justino, A.B.; Silva, A.G.; Santos, R.d.A.; Gomide, J.A.L.; Ribeiro, R.I.M.d.A.; Ribeiro, D.L.; Araújo, F.d.A.; et al. Topic use of Annona crassiflora Mart. contributes to wound healing due to the antioxidant and proliferative effects of fibroblasts. Injury 2022, 53, 844–857. [Google Scholar] [CrossRef]
- de Moura, F.B.R.; Ferreira, B.A.; Muniz, E.H.; Santos, R.A.; Gomide, J.A.L.; Justino, A.B.; Silva, A.C.A.; Dantas, N.O.; Ribeiro, D.L.; Araújo, F.A.; et al. TiO2 Nanocrystals and Annona crassiflora Polyphenols Used Alone or Mixed Impact Differently on Wound Repair. An. Acad. Bras. Cienc. 2022, 94, 20210230. [Google Scholar] [CrossRef]
- Silva, J.J.d.; Cerdeira, C.D.; Chavasco, J.M.; Cintra, A.B.P.; Silva, C.B.P.d.; Mendonça, A.N.d.; Ishikawa, T.; Boriollo, M.F.G.; Chavasco, J.K. In vitro screening antibacterial activity of Bidens pilosa Linné and Annona crassiflora Mart. against oxacillin resistant Staphylococcus aureus (ORSA) from the aerial environment at the dental clinic. Rev. Inst. Med. Trop. Sao Paulo 2014, 56, 333–340. [Google Scholar] [CrossRef]
- Costa, M.d.S.; Pereira, M.J.B.; Oliveira, S.S.d.; Souza, P.T.d.; Dall’oglio, E.L.; Alves, T.C. Anonáceas provocam mortalidade em larvas de Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae). Braz. J. Biosci. 2013, 11, 184–190. [Google Scholar]
- Krinski, D.; Massaroli, A. Nymphicidal effect of vegetal extracts of Annona mucosa and Anonna crassiflora (Magnoliales, Annonaceae) against rice stalk stink bug, Tibraca limbativentris (Hemiptera, Pentatomidae). Rev. Bras. Frutic. 2014, 36, 217–224. [Google Scholar] [CrossRef] [Green Version]
- Massarolli, A.; Pereira, M.J.B.; Foerster, L.A. Annona crassiflora Mart. (Annonaceae): Effect of crude extract of seeds on larvae of soybean looper Chrysodeixis includens (Lepidoptera: Noctuidae). Bragantia 2017, 76, 398–405. [Google Scholar] [CrossRef] [Green Version]
- Turchen, L.M.; Golin, V.; Butnariu, A.R.; Pereira, M.J.B. Selectivity of Annona (Annonaceae) extract on egg parasitoid Trissolcus urichi (Hymenoptera: Platygastridae). Rev. Colomb. Entomol. 2014, 40, 176–180. [Google Scholar]
- Silva, V.P.d.; Pereira, M.J.B.; Turchen, L.M. Efeito de extratos vegetais no controle de Euschistus heros (F.) (Hemiptera: Pentatomidae) em lavoura de soja na região sudoeste do estado de Mato Grosso. Braz. J. Agric. 2013, 88, 185–190. [Google Scholar] [CrossRef]
- Arruda, H.S.; Neri-Numa, I.A.; Kido, L.A.; Maróstica Júnior, M.R.; Pastore, G.M. Recent advances and possibilities for the use of plant phenolic compounds to manage ageing-related diseases. J. Funct. Foods 2020, 75, 104203. [Google Scholar] [CrossRef]
- Giridharan, V.V.; Barichello De Quevedo, C.E.; Petronilho, F. Microbiota-gut-brain axis in the Alzheimer’s disease pathology—An overview. Neurosci. Res. 2022, 181, 17–21. [Google Scholar] [CrossRef]
- Suganya, S.N.; Sumathi, T. Effect of rutin against a mitochondrial toxin, 3-nitropropionicacid induced biochemical, behavioral and histological alterations-a pilot study on Huntington’s disease model in rats. Metab. Brain Dis. 2017, 32, 471–481. [Google Scholar] [CrossRef]
- Yadav, E.; Singh, D.; Debnath, B.; Rathee, P.; Yadav, P.; Verma, A. Molecular Docking and Cognitive Impairment Attenuating Effect of Phenolic Compound Rich Fraction of Trianthema portulacastrum in Scopolamine Induced Alzheimer’s Disease Like Condition. Neurochem. Res. 2019, 44, 1665–1677. [Google Scholar] [CrossRef]
- Kenchegowda, M.; Rahamathulla, M.; Hani, U.; Begum, M.Y.; Guruswamy, S.; Osmani, R.A.M.; Gowrav, M.P.; Alshehri, S.; Ghoneim, M.M.; Alshlowi, A.; et al. Smart Nanocarriers as an Emerging Platform for Cancer Therapy: A Review. Molecules 2021, 27, 146. [Google Scholar] [CrossRef]
- Peixoto Araujo, N.M.; Arruda, H.S.; de Paulo Farias, D.; Molina, G.; Pereira, G.A.; Pastore, G.M. Plants from the genus Eugenia as promising therapeutic agents for the management of diabetes mellitus: A review. Food Res. Int. 2021, 142, 110182. [Google Scholar] [CrossRef]
- Breton, J.; Galmiche, M.; Déchelotte, P. Dysbiotic Gut Bacteria in Obesity: An Overview of the Metabolic Mechanisms and Therapeutic Perspectives of Next-Generation Probiotics. Microorganisms 2022, 10, 452. [Google Scholar] [CrossRef]
- Silvester, A.J.; Aseer, K.R.; Yun, J.W. Dietary polyphenols and their roles in fat browning. J. Nutr. Biochem. 2019, 64, 1–12. [Google Scholar] [CrossRef]
- Xia, Y.-G.; Wang, T.-L.; Yu, S.-M.; Liang, J.; Kuang, H.-X. Structural characteristics and hepatoprotective potential of Aralia elata root bark polysaccharides and their effects on SCFAs produced by intestinal flora metabolism. Carbohydr. Polym. 2019, 207, 256–265. [Google Scholar] [CrossRef]
- Venmathi Maran, B.A.; Iqbal, M.; Gangadaran, P.; Ahn, B.-C.; Rao, P.V.; Shah, M.D. Hepatoprotective Potential of Malaysian Medicinal Plants: A Review on Phytochemicals, Oxidative Stress, and Antioxidant Mechanisms. Molecules 2022, 27, 1533. [Google Scholar] [CrossRef]
- da Costa Oliveira, C.; de Matos, N.A.; de Carvalho Veloso, C.; Lage, G.A.; Pimenta, L.P.S.; Duarte, I.D.G.; Romero, T.R.L.; Klein, A.; de Castro Perez, A. Anti-inflammatory and antinociceptive properties of the hydroalcoholic fractions from the leaves of Annona crassiflora Mart. in mice. Inflammopharmacology 2019, 27, 397–408. [Google Scholar] [CrossRef]
- Forte, G.; Troisi, G.; Pazzaglia, M.; Pascalis, V.D.; Casagrande, M. Heart Rate Variability and Pain: A Systematic Review. Brain Sci. 2022, 12, 153. [Google Scholar] [CrossRef]
- McDonagh, M.S.; Morasco, B.J.; Wagner, J.; Ahmed, A.Y.; Fu, R.; Kansagara, D.; Chou, R. Cannabis-Based Products for Chronic Pain. Ann. Intern. Med. 2022, 175, 1143–1153. [Google Scholar] [CrossRef]
- Vilela, D.; Blanco-Cabra, N.; Eguskiza, A.; Hortelao, A.C.; Torrents, E.; Sanchez, S. Drug-Free Enzyme-Based Bactericidal Nanomotors against Pathogenic Bacteria. ACS Appl. Mater. Interfaces 2021, 13, 14964–14973. [Google Scholar] [CrossRef]
- Pimenta, L.P.S.; Boaventura, M.D.A.; Cassady, J.M.; Prates, H.T.; Viana, P.A.; de Oliveira, A.B. Acetogenins from Annona crassiflora seeds. In Proceedings of the 2nd IUPAC Intemational Confereace on Biodiversity, Belo Horizonte, Brasil, 11–15 July 1999; p. 72. [Google Scholar]
- Santos, L.P.; Boaventura, M.A.D.; de Oliveira, A.B. Crassiflorina, uma acetogenina tetra-hidrofurânica citotóxica de Annona crassiflora (Araticum). Quim. Nova 1994, 17, 387–391. [Google Scholar]
- Santos, L.P.; Boaventura, M.A.D.; Sun, N.-J.; Cassady, J.M.; De Oliveira, A.B. Araticulin, a bis-tetrahydrofuran polyketide from Annona itcrassiflora seeds. Phytochemistry 1996, 42, 705–707. [Google Scholar] [CrossRef]
- Bernardi, D.; Ribeiro, L.; Andreazza, F.; Neitzke, C.; Oliveira, E.E.; Botton, M.; Nava, D.E.; Vendramim, J.D. Potential use of Annona by products to control Drosophila suzukii and toxicity to its parasitoid Trichopria anastrephae. Ind. Crops Prod. 2017, 110, 30–35. [Google Scholar] [CrossRef] [Green Version]
- Fiaz, M.; Martínez, L.C.; Costa, M.d.S.; Cossolin, J.F.S.; Plata-Rueda, A.; Gonçalves, W.G.; Sant’Ana, A.E.G.; Zanuncio, J.C.; Serrão, J.E. Squamocin induce histological and ultrastructural changes in the midgut cells of Anticarsia gemmatalis (Lepidoptera: Noctuidae). Ecotoxicol. Environ. Saf. 2018, 156, 1–8. [Google Scholar] [CrossRef] [PubMed]
- da Silva Costa, M.; de Paula, S.O.; Martins, G.F.; Zanuncio, J.C.; Santana, A.E.G.; Serrão, J.E. Multiple Modes of Action of the Squamocin in the Midgut Cells of Aedes aegypti Larvae. PLoS ONE 2016, 11, e0160928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bezerra, T.S.; Pereira, C.G.; Prado, M.E.T.; de Barros Vilas Boas, E.V.; de Resende, J.V. Induction of crystallization influences the retention of volatile compounds in freeze-dried marolo pulp. Dry. Technol. 2018, 36, 1250–1262. [Google Scholar] [CrossRef]
- Almeida, R.F.; Bevilaqua, G.C.; Machado, A.P.O. Design, construction, and application of a low-cost solar dryer: A kinetic study of Araticum pulp drying. J. Food Process. Preserv. 2022, 46, e17200. [Google Scholar] [CrossRef]
- Arruda, H.S.; Pereira, G.A.; Pastore, G.M. Oligosaccharide profile in Brazilian Cerrado fruit araticum (Annona crassiflora Mart.). LWT Food Sci. Technol. 2017, 76, 278–283. [Google Scholar] [CrossRef]
- dos Santos Oliveira, M.O.; Dias, B.B.; Pires, C.R.F.; Freitas, B.C.B.; de Aguiar, A.O.; da Silva, J.F.M.; de Souza Martins, G.A. Development of Araticum (Annona crassiflora Mart.) jams: Evaluation of physical, microbiological, and sensorial stability in different packages. J. Food Sci. Technol. 2022, 59, 3399–3407. [Google Scholar] [CrossRef]
- Ramos, A.L.C.C.; Mazzinghy, A.C.d.C.; Correia, V.T.d.V.; Nunes, B.V.; Ribeiro, L.V.; Silva, V.D.M.; Weichert, R.F.; Paula, A.C.C.F.F.d.; Sousa, I.M.N.d.; Ferreira, R.M.d.S.B.; et al. An Integrative Approach to the Flavonoid Profile in Some Plants’ Parts of the Annona Genus. Plants 2022, 11, 2855. [Google Scholar] [CrossRef]
- Guiné, R.P.F.; Florença, S.G.; Barroca, M.J.; Anjos, O. The Link between the Consumer and the Innovations in Food Product Development. Foods 2020, 9, 1317. [Google Scholar] [CrossRef]
- Brandão, T.M.; Carvalho, E.E.N.; Lima, J.P.d.; Carmo, E.L.d.; Elias, H.H.d.S.; Martins, G.A.d.S.; Borges, S.V. Effects of thermal process in bioactive compounds of mixed Brazilian cerrado fruit jam. Food Sci. Technol. 2021, 41, 439–446. [Google Scholar] [CrossRef]
- Resende, N.S.; Souza, V.R.d.; Carvalho, E.E.N.; Junqueira, J.R.d.J.; Vilas Boas, E.V.d.B. Stability and antioxidant activity of bioactive compounds in Cerrado fruit juices during storage. Res. Soc. Dev. 2022, 11, e38211831043. [Google Scholar] [CrossRef]
- Schiassi, M.C.E.V.; Lago, A.M.T.; Souza, V.R.d.; Meles, J.d.S.; Resende, J.V.d.; Queiroz, F. Mixed fruit juices from Cerrado. Br. Food J. 2018, 120, 2334–2348. [Google Scholar] [CrossRef]
- da Silva, E.P.; Siqueira, H.H.; do Lago, R.C.; Rosell, C.M.; de Barros Vilas Boas, E.V. Developing fruit-based nutritious snack bars. J. Sci. Food Agric. 2014, 94, 52–56. [Google Scholar] [CrossRef] [Green Version]
- Silva, J.S.; Damiani, C.; Silva, E.P.; Ruffi, C.R.G.; Asquieri, E.R.; Silva, T.L.L.e.; Vilas Boas, E.V.d.B. Effect of Marolo (Annona crassiflora Mart.) Pulp Flour Addition in Food Bars. J. Food Qual. 2018, 2018, 8639525. [Google Scholar] [CrossRef] [Green Version]
- Neves, N.d.A.; Gomes, P.T.G.; Schmiele, M. Estudo exploratório sobre a elaboração e avaliação de pães de forma com fermentação natural e adição de polpa de araticum (Annona crassiflora Mart.). Res. Soc. Dev. 2020, 9, e956998036. [Google Scholar] [CrossRef]
- Melo, R.d.S.; Lago, R.C.d.; Araújo, A.B.S.; Cunha, M.C.d.; Oliveira, A.L.M.; Araújo, H.E.; Pereira, J.; Carvalho, E.E.N.; Boas, E.V.d.B.V. Armazenamento de pão doce enriquecido com frutos do cerrado. Res. Soc. Dev. 2020, 9, e8419118265. [Google Scholar] [CrossRef]
- Villela, P.; Batista, Â.G.; Dessimoni-Pinto, N.A.V. Nutritional composition of Annona crassiflora pulp and acceptability of bakery products prepared with its flour. Food Sci. Technol. 2013, 33, 417–423. [Google Scholar] [CrossRef] [Green Version]
- Silva, J.S.; Damiani, C.; Silva, T.L.L.e.; Silva, E.P.d.; Cunha, M.C.d.; Asquieri, E.R.; Boas, E.V.d.B.V. Nutritional characterization and technological functional properties of marolo pulp flour. Res. Soc. Dev. 2020, 9, e51942826. [Google Scholar] [CrossRef] [Green Version]
- Farias, T.R.T.; Schiassi, M.C.E.V.; Pereira, P.A.P.; Souza, V.R.d.; Lago, A.M.T.; Borges, S.V.; Queiroz, F. Mixed Brazilian Cerrado fruits preserves without added sugar: The effect of bodying agents. Br. Food J. 2019, 121, 1969–1981. [Google Scholar] [CrossRef]
- de Aguiar, A.O.; Rodrigues, D.d.S.; de Souza, A.R.M.; da Soares, C.M.S.; Ibiapina, A.; de Filho, A.A.M.; dos Oliveira, M.O.S.; de Martins, G.A.S. Use of Passion Fruit Albedo as a Source of Pectin to Produce Araticum (Annona crassiflora Mart.) Preserves. Chem. Eng. Trans. 2019, 75, 223–228. [Google Scholar] [CrossRef]
- Oliveira, M.O.d.S.; Morais, R.A.d.; Dias, B.B.; Soares, C.M.d.S.; Silva, J.F.M.d.; Martins, G.A.d.S. Otimização e correlação sensorial de formulações de doces em pasta de Araticum (Annona crassiflora Mart.). Sci. Plena 2021, 17, 081503. [Google Scholar] [CrossRef]
- Dias, B.B.; Oliveira, M.O.d.S.; Morais, R.A.d.; Freitas, B.C.B.; Martins, G.A.d.S. Características nutricionais de doces em pasta de Araticum (Annona crassiflora Mart.). Sci. Plena 2021, 17, 081502. [Google Scholar] [CrossRef]
- Oliveira, M.O.D.S.; Dias, B.B.; Morais, R.A.; Martins, G.A.d.S. Processamento de doce em pasta do araticum (Annona crassiflora Mart.) e viabilidade da inserção na alimentação escolar. DESAFIOS Rev. Interdiscip. Univ. Fed. Tocantins 2020, 7, 87–93. [Google Scholar] [CrossRef]
- Brandão, T.M.; Carmo, E.L.d.; Elias, H.E.S.; Carvalho, E.E.N.d.; Borges, S.V.; Martins, G.A.S. Physicochemical and Microbiological Quality of Dietetic Functional Mixed Cerrado Fruit Jam during Storage. Sci. World J. 2018, 2018, 2878215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damiani, C.; Silva, E.P.; Becker, F.S.; Endrigo, D.E.; Asquieri, E.R.; Silva, F.A.d.; Boas, E.V.d.B.V. Antioxidant Potential of Marolo Jam (Annona crassiflora Mart) during Storage. Open Access Libr. J. 2017, 4, e3158. [Google Scholar] [CrossRef]
- Arévalo-Pinedo, A.; Carneiro, B.L.A.; Zuniga, A.D.G.; Arévalo, Z.D.S.; Santana, A.A.; Pinedo, R.A. Alterações físico-químicas e colorimétricas de geléias de araticum (Annona crassiflora). Rev. Bras. Prod. Agroind. 2013, 15, 397–403. [Google Scholar] [CrossRef]
- Amaral, C.R.S.; Siqueira, P.B.; Yoshiara, L.Y.; Nascimento, E.; Faria, R.A.P.G.d.; Picanço, N.F.M. Quantitative Descriptive Analysis and Acceptance Testing of Yogurt with no Added Sugar. J. Food Res. 2020, 9, 7–19. [Google Scholar] [CrossRef] [Green Version]
- Lima, A.V.S.C.d.; Nicolau, E.S.; Rezende, C.S.M.e.; Torres, M.C.L.; Novais, L.G.; Soares, N.R. Characterization and sensory preference of fermented dairy beverages prepared with different concentrations of whey and araticum pulp. Semin. Ciências Agrárias 2016, 37, 4011–4026. [Google Scholar] [CrossRef] [Green Version]
- Marco, A.P.D.S.; Nubia, F.V.; Yasmine, A.A.M.; Veronica, F.P.A.; Diene, S.G.; Ligia, C.D.M.; Geovana, R.P.; Bruno, S.C. Sensory profile of fermented milk drinks flavored with fruits from the Brazilian Cerrado. Afr. J. Food Sci. 2015, 9, 379–389. [Google Scholar] [CrossRef]
- Arruda, H.S.; Silva, E.K.; Pereira, G.A.; Meireles, M.A.A.; Pastore, G.M. Inulin thermal stability in prebiotic carbohydrate-enriched araticum whey beverage. LWT 2020, 128, 109418. [Google Scholar] [CrossRef]
- Silva, E.P.d.; Siqueira, H.H.; Damiani, C.; Vilas Boas, E.V.d.B. Effect of adding flours from marolo fruit (Annona crassiflora Mart) and jerivá fruit (Syagrus romanzoffiana Cham Glassm) on the physicals and sensory characteristics of food bars. Food Sci. Technol. 2016, 36, 140–144. [Google Scholar] [CrossRef] [Green Version]
- Arruda, H.S.; Botrel, D.A.; Fernandes, R.V.d.B.; Ferreira de Almeida, M.E. Development and sensory evaluation of products containing the Brazilian Savannah fruits araticum (Annona crassiflora Mart.) and cagaita (Eugenia dysenterica Mart.). Braz. J. Food Technol. 2016, 19, e2015105. [Google Scholar] [CrossRef]
Bioactive Compounds | Fruit Part | Sample Form | Technique Used | Major Findings | Ref. |
---|---|---|---|---|---|
Phenolic compounds | Pulp | Hydroethanolic extract (40% ethanol) | HPLC-ESI-MS/MS |
| [13] |
Pulp | Hydroethanolic extract (70% ethanol) and its ethyl acetate fraction | HPLC-ESI-MS/MS |
| [14] | |
Pulp | Hydromethanolic extract (70% methanol) | HPLC-DAD |
| [15] | |
Peel | Hydroethanolic extract (50% ethanol) | HPLC-ESI-MS/MS |
| [16] | |
Peel | Ethyl acetate and n-butanol fractions from the ethanolic extract | HPLC-ESI-MS/MS |
| [17] | |
Peel | Proanthocyanidins-rich fraction obtained from sequential purification of ethanolic extract | HPLC-ESI-MS/MS |
| [18] | |
Peel | Ethanolic extract and its ethyl acetate fraction | HPLC-ESI-MS/MS |
| [19] | |
Seeds | Hydromethanolic extract (70% methanol) | HPLC-DAD |
| [20] | |
Seeds | Methanolic extract | HPLC-DAD |
| [21] | |
Pulp and seeds | Ethanolic extract | PS-MS |
| [22] | |
Peel and seeds | Methanol-acetone-water (7:7:6, v/v/v) extract | HPLC-ESI-MS/MS |
| [23] | |
Pulp, peel, and seeds | Aqueous extract | PS-MS |
| [24] | |
Pulp, peel, and seeds | Methanol-acetone-water (7:7:6, v/v/v) extract | HPLC-ESI-MS/MS |
| [25] | |
Alkaloids | Pulp | Hydroethanolic extract (70% ethanol) and its ethyl acetate fraction | HPLC-ESI-MS/MS |
| [14] |
Peel | Ethanolic extract | HR-ESI-MS and NMR |
| [26] | |
Peel | Ethanolic extract | HR-ESI-MS and NMR |
| [27,28,29] | |
Peel | Dichloromethane fraction from the ethanolic extract | HPLC-ESI-MS/MS |
| [30] | |
Pulp and peel | Ethanolic extract | PS-MS |
| [22] | |
Annonaceous acetogenins | Pulp | Hydroethanolic extract (70% ethanol) and its ethyl acetate fraction | HPLC-ESI-MS/MS |
| [14] |
Peel | Hydroethanolic extract (50% ethanol) | HPLC-ESI-MS/MS |
| [16] | |
Peel | Dichloromethane fraction from the ethanolic extract | HPLC-ESI-MS/MS |
| [30] | |
Pulp and seeds | Methanolic extract | LC-HRMS |
| [31] | |
Pulp, peel, and seeds | Ethanolic extract | PS-MS |
| [22] | |
Carotenoids | Pulp | Acetone extract | HPLC-DAD |
| [10] |
Pulp | Acetone extract | HPLC-DAD |
| [32] | |
Phytosterols | Seeds | Chloroform-methanol-water (2:1:0.8, v/v/v) extract | GC-FID |
| [33] |
Tocols | Pulp | Fruit pulp was extracted with heated ultrapure water-isopropanol-hexane containing 0.05% of BHT-solvent mixture (hexane-ethyl acetate, 85:15, v/v) (4:10:1:25, v/v/v/v) | HPLC-FLD |
| [10] |
Seeds | Chloroform-methanol-water (2:1:0.8, v/v/v) extract | HPLC-FLD |
| [33] |
Bioactivity | Fruit Part | Sample Form | Method/Model | Major Findings | Related Compounds | Ref. |
---|---|---|---|---|---|---|
Antioxidant | Pulp | Hydroethanolic extract (46% ethanol) | DPPH, TEAC, and ORAC based in vitro assays |
| Phenolic compounds (compounds were not identified) | [36] |
Pulp | Hydroethanolic extract (40% ethanol) | DPPH and TEAC based in vitro assays |
| Phenolic compounds (see Table 1) | [13] | |
Pulp | Methanolic (for DPPH) and aqueous (for TEAC and ORAC) extracts | DPPH, TEAC, and ORAC based in vitro assays |
| Phenolic compounds (compounds were not identified) | [51] | |
Pulp | Hydroethanolic extract (70% ethanol) and its ethyl acetate fraction | DPPH and TEAC based in vitro assays |
| Phenolic compounds (see Table 1) | [14] | |
Pulp | Combination of hydromethanolic (50% methanol) and hydroacetonic (70% acetone) extracts | DPPH, TEAC, and β-carotene/linoleic acid based in vitro assays |
| Phenolic compounds (compounds were not identified) | [52] | |
Pulp | Combination of hydromethanolic (50% methanol) and hydroacetonic (70% acetone) extracts | DPPH, TEAC, β-carotene/linoleic acid, TBARS, phosphomolybdenum complex, and reducing power based in vitro assays |
| Phenolic compounds (see Table 1) | [15] | |
Peel | Hydroethanolic extract (50% ethanol) | DPPH, TEAC, and ORAC based in vitro assays |
| Phenolic compounds (see Table 1) | [16] | |
Peel | Ethanolic extract and its fractions (hexane, dichloromethane, ethyl acetate, n-butanol, and aqueous) | DPPH, FRAP, and ORAC based in vitro assays |
| Phenolic compounds (see Table 1) | [17] | |
Peel | Procyanidin B-rich fraction and ethyl acetate fraction from ethanolic extract | DPPH, FRAP, and ORAC based in vitro assays, opsonized zymosan-induced macrophages, and Fe2+-ascorbate-induced lipid peroxidation in rats’ liver |
| Procyanidins B | [18] | |
Seeds | Combination of hydromethanolic (50% methanol) and hydroacetonic (70% acetone) extracts | TEAC, FRAP, and β-carotene/linoleic acid based in vitro assays |
| Compounds were not identified | [53] | |
Seeds | Oil | DPPH-based in vitro assay |
| Particularly phytosterols (campesterol, stigmasterol, and β-sitosterol) | [33] | |
Peel and seeds | Methanol-acetone-water (7:7:6, v/v/v) extract | DPPH, TEAC, and ORAC based in vitro assays |
| Phenolic compounds (see Table 1) | [23] | |
Pulp, peel, and seeds | Methanol-acetone-water (7:7:6, v/v/v) extract | DPPH, TEAC, and ORAC based in vitro assays |
| Phenolic compounds (see Table 1) | [25] | |
Pulp, peel, and seeds | Combination of hydromethanolic (50% methanol) and hydroacetonic (70% acetone) extracts | DPPH, TEAC, and FRAP based in vitro assays |
| Phenolic compounds (see Table 1) | [24] | |
Anti-Alzheimer | Pulp | Aqueous extract | Juglone-induced oxidative stress in wild-type (N2) strains of Caenorhabditis elegans and CL2006 strains of C. elegans expressing the Aβ1–42 peptide in muscle tissue |
| Compounds were not identified | [54] |
Peel | Ethanolic extract, alkaloidal fraction, and isolated alkaloids | In vitro cholinesterase activity assay |
| Aporphine alkaloids, particularly stephalagine, liriodenine, and atherospermidine | [26] | |
Seeds | Methanolic extract | In vitro cholinesterase activity assay |
| Phenolic compounds, particularly rutin, caffeic, sinapic, p-coumaric, and ferulic acids | [21] | |
Anticancer | Pulp | Hydroethanolic extract (70% ethanol) | In vitro antiproliferative activity against 6 human cancer cell lines: UA251, MCF-7, PC-3, OVCAR-3, HT-29, and HEP-G2 |
| Annonaceous acetogenins, phenolic compounds, and alkaloids (see Table 1) | [14] |
Peel | Alkaloid and acetogenin-rich fraction from ethanolic extract | In vitro antiproliferative activity against HEP-G2 cells |
| Alkaloids and annonaceous acetogenins (see Table 1) | [30] | |
Seeds | Methanolic extract | In vitro antiproliferative activity against 10 human cancer cell lines: UACC-62, UA251, MCF-7, NCI-H460, 786–0, PC-3, NCI-ADR/RES, OVCAR-3, HT-29, and K562 |
| Phenolic compounds, particularly rutin, caffeic, sinapic, p-coumaric, and ferulic acids | [21] | |
Peel and seeds | Methanol-acetone-water (7:7:6, v/v/v) extract | In vitro antiproliferative activity against 8 human cancer cell lines: UA251, MCF-7, NCI-H460, PC-3, NCI-ADR/RES, OVCAR-3, HT-29, and K562 |
| Phenolic compounds (see Table 1) | [23] | |
Antidiabetic | Peel | Ethanolic extract and its fractions (hexane, dichloromethane, ethyl acetate, n-butanol, and aqueous) | In vitro inhibitory activities against α-amylase, α-glucosidase, and non-enzymatic glycation |
| Phenolic compounds (see Table 1) | [17] |
Peel | Procyanidin B-rich fraction and ethyl acetate fraction from ethanolic extract | Antiglycation based in vitro assays |
| Procyanidins B | [18] | |
Anti-obesity | Peel | Ethanolic extract, dichloromethane fraction, and isolated stephalagine | In vitro inhibitory activity against pancreatic lipase and cytotoxicity with Vero cells |
| Stephalagine | [29] |
Antidyslipidemic and hepatoprotective | Peel | Ethanolic extract (EE) and its ethyl acetate fraction (EAF) | Triton WR-1339-induced hyperlipidemic C57BL/6 mice pretreated for 12 days with 10–100 mg EE or EAF/kg bw |
| Phenolic compounds (see Table 1) | [19] |
Hepatoprotective and antioxidant | Peel | n-Butanol fraction from ethanolic extract | Streptozotocin-induced diabetic Wistar rats receiving 25, 50, or 100 mg n-butanol fraction/kg bw for 30 days |
| Phenolic compounds, particularly chlorogenic acid, (epi)catechin, procyanidin B2, feruloyl-galactoside, and caffeoyl-glucoside | [55] |
Antinociceptive and anti-inflammatory | Peel | Stephalagine isolated from ethanolic extract | C57BL/6/J mice receiving 0.1–1.0 mg/kg bw |
| Stephalagine | [28] |
Peel | Stephalagine isolated from ethanolic extract | Monosodium urate crystals-induced gout C57BL/6/J mice receiving 1 mg/kg bw |
| Stephalagine | [27] | |
Peel | Ethyl acetate fraction from ethanolic extract | LPS-induced macrophages and C57BL/6/J mice receiving 30 mg ethyl acetate fraction/kg bw |
| Phenolic compounds, particularly caffeoyl-glucoside, (epi)catechin, procyanidins B2 and C1, feruloyl-galactoside, quercetin-3-glucoside, kaempferol-3-O-rutinoside, and kaempferol-7-O-glucoside | [56] | |
Anti-inflammatory | Pulp | Whole pulp | Wistar rats receiving 3.214 mL pulp/kg bw for 30 days |
| Compounds were not identified | [57] |
Healing of cutaneous wounds | Peel | Combination of ethyl acetate and n-butanol fractions (1:1) from ethanolic extract (Polyphenol-rich fraction (PEF)) | C57BL/6 mice topically treated with an ointment containing 2–6% PEF for 7 days |
| Phenolic compounds (see Table 1) | [58] |
Peel | Combination of ethyl acetate and n-butanol fractions (1:1) from ethanolic extract (Polyphenol-rich fraction (PEF)) | BALB/c mice topically treated with an ointment containing 4% PEF for 21 days |
| Phenolic compounds (see Table 1) | [59] | |
Peel | Combination of ethyl acetate and n-butanol fractions (1:1) from ethanolic extract (Polyphenol-rich fraction (PEF)) | BALB/c mice topically treated with an ointment containing 4% PEF for 7 days |
| Phenolic compounds (see Table 1) | [60] | |
Peel and seeds | Methanol-acetone-water (7:7:6, v/v/v) extract | Scratch assay with HaCaT cells |
| Phenolic compounds (see Table 1) and other compounds unidentified | [23] | |
Antibacterial | Pulp | Hydroethanolic extract (40% ethanol) | In vitro antibacterial activity against 4 potentially pathogenic bacteria Staphylococcus aureus (ATCC 25923), Bacillus cereus (ATCC 11778), Escherichia coli (ATCC 25922), and Salmonella enteritidis (ATCC 13076) |
| Phenolic compounds (see Table 1) | [13] |
Pulp, peel, and seeds | Hydroethanolic extract (70% ethanol) | In vitro antibacterial activity against Oxacillin Resistant Staphylococcus aureus (ORSA) and S. aureus (ATCC 6538) |
| Alkaloids, flavonoids, tannins, and saponins (compounds were not identified) | [61] | |
Insecticide | Seeds | Hexane, chloroform, methanolic (defatted with hexane or dichloromethane) extracts and hexane, hydromethanolic, ethyl acetate, and chloroform fractions from methanolic extract defatted with dichloromethane | Aedes aegypti larvae |
| Mainly annonaceous acetogenins (compounds were not identified) | [62] |
Seeds | Chloroform-methanol (2:1) extract | Rice stalk stink bug nymphs (Tibraca limbativentris) |
| Mainly annonaceous acetogenins (compounds were not identified) | [63] | |
Seeds | Chloroform-methanol (2:1) extract | Soybean looper eggs and caterpillars (Chrysodeixis includens) |
| Mainly annonaceous acetogenins (compounds were not identified) | [64] | |
Seeds | Methanolic extract | Brown stink bug nymphs (Euschistus heros) |
| Compounds were not identified | [65] | |
Seeds | Methanolic extract | Brown stink bug adults (Euschistus heros) |
| Compounds were not identified | [66] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arruda, H.S.; Borsoi, F.T.; Andrade, A.C.; Pastore, G.M.; Marostica Junior, M.R. Scientific Advances in the Last Decade on the Recovery, Characterization, and Functionality of Bioactive Compounds from the Araticum Fruit (Annona crassiflora Mart.). Plants 2023, 12, 1536. https://doi.org/10.3390/plants12071536
Arruda HS, Borsoi FT, Andrade AC, Pastore GM, Marostica Junior MR. Scientific Advances in the Last Decade on the Recovery, Characterization, and Functionality of Bioactive Compounds from the Araticum Fruit (Annona crassiflora Mart.). Plants. 2023; 12(7):1536. https://doi.org/10.3390/plants12071536
Chicago/Turabian StyleArruda, Henrique Silvano, Felipe Tecchio Borsoi, Amanda Cristina Andrade, Glaucia Maria Pastore, and Mario Roberto Marostica Junior. 2023. "Scientific Advances in the Last Decade on the Recovery, Characterization, and Functionality of Bioactive Compounds from the Araticum Fruit (Annona crassiflora Mart.)" Plants 12, no. 7: 1536. https://doi.org/10.3390/plants12071536