Response Mechanisms of Woody Plants to High-Temperature Stress
Abstract
:1. Introduction
2. Effect of High-Temperature Stress on the Seed Germination of Woody Plants
3. Effects of High-Temperature Stress on the Morphological and Anatomical Characteristics of Woody Plants
3.1. Effects on Woody Plant Morphology
3.2. Effects on Anatomical Structure Characteristics of Woody Plants
4. Effects of High-Temperature Stress on Physiological and Biochemical Indexes of Woody Plants
4.1. Influence on Plasma Membrane Permeability
4.2. Influence on Osmotic Adjustment Substances
4.3. Effect of Antioxidase Activity
4.4. Effects on Photosynthetic Characteristics
5. Effects of High-Temperature Stress on the Genomics of Woody Plants
6. Summary and Prospect
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Malunguja, G.K.; Devi, A.; Kilonzo, M.; Rubanza, C.D. Climate change mitigation through carbon dioxide (CO2) sequestration in community reserved forests of northwest Tanzania. Arch. Agric. Environ. Sci. 2020, 5, 231–240. [Google Scholar] [CrossRef]
- Hossain, T.; Jones, D.S.; Hartley, D.S.; Thompson, D.N.; Langholtz, M.; Davis, M. Nth-plant scenario for forest resources and short rotation woody crops: Biorefineries and depots in the contiguous US. Appl. Energy. 2022, 325, 119881. [Google Scholar] [CrossRef]
- Sun, Y.J.; Zhou, J.; Guo, J.S. Advances in the knowledge of adaptive mechanisms mediating abiotic stress responses in Camellia sinensis. Front. Biosci. 2021, 26, 1714–1722. [Google Scholar] [CrossRef] [PubMed]
- Ruelland, E.; Zachowski, A. How plants sense temperature. Environ. Exp. Bot. 2010, 69, 225–232. [Google Scholar] [CrossRef]
- Choudhary, S.; Thakur, S.; Majeed, A.; Bhardwaj, P. Adaptability of Rhododendrons in high altitude habitats. J. For. Res. 2021, 32, 449–460. [Google Scholar] [CrossRef]
- Polgar, C.A.; Primack, R.B. Leaf-out phenology of temperate woody plants: From trees to ecosystems. New Phytol. 2011, 191, 926–941. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lai, L.; Du, H.; Jiang, L.; Wang, F.; Zhang, C.; Zhuang, P.; Zheng, Y. Phylogeny, habitat together with biological and ecological factors can influence germination of 36 subalpine Rhododendron species from the eastern Tibetan Plateau. Ecol. Evol. 2018, 8, 3589–3598. [Google Scholar] [CrossRef]
- Guo, C.; Shen, Y.; Shi, F. Effect of temperature, light, and storage time on the seed germination of Pinus bungeana Zucc. ex Endl.: The role of seed-covering layers and abscisic acid changes. Forests 2020, 11, 300. [Google Scholar] [CrossRef]
- Simoes, I.M.; Baptista, J.O.; Rosa, T.; de Mello, T.; de Araujo, C.P.; de Lima, P.; Dos Anjos, B.B.; de Oliveira, J.; Caldeira, M.; Otoni, W.C.; et al. Heat stress affects the physiological and biochemical quality of Dalbergia nigra seeds in vitro. For. Sci. 2021, 67, 731–739. [Google Scholar]
- Kim, D.H.; Han, S.H. Direct effects on seed germination of 17 tree species under elevated temperature and CO2 conditions. Open Life Sci. 2018, 13, 137–148. [Google Scholar] [CrossRef]
- Santos, M.M.; Borges, E.E.D.L.; Ataíde, G.D.M.; Pires, R.M.D.O.; Rocha, D.K. Enzyme activity in the micropylar region of Melanoxylon brauna Schott seeds during germination under heat stress conditions. J. Seed Sci. 2020, 42, e202042009. [Google Scholar] [CrossRef]
- Barthélémy, D.; Caraglio, Y. Plant architecture: A dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Ann. Bot. 2007, 99, 375–407. [Google Scholar] [CrossRef] [PubMed]
- Sehgal, A.; Sita, K.; Kumar, J.; Kumar, S.; Singh, S.; Siddique, K.; Nayyar, H. Effects of drought, heat and their interaction on the growth, yield and photosynthetic function of lentil (Lens culinaris medikus) genotypes varying in heat and drought sensitivity. Front. Plant Sci. 2017, 8, 1776. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, Y.; Hu, S.; Xu, J.; Nian, J.; Cao, X.; Chen, M.; Cen, J.; Liu, X.; Zhang, Z.; et al. Leaf tip rumpled 1 regulates leaf morphology and salt tolerance in rice. Int. J. Mol. Sci. 2022, 23, 8818. [Google Scholar] [CrossRef]
- Shafqat, W.; Jaskani, M.J.; Maqbool, R.; Chattha, W.S.; Ali, Z.; Naqvi, S.A.; Haider, M.S.; Khan, I.A.; Vincent, C.I. Heat shock protein and aquaporin expression enhance water conserving behavior of citrus under water deficits and high temperature conditions. Environ. Exp. Bot. 2021, 181, 104270. [Google Scholar] [CrossRef]
- Burri, S.; Haeler, E.; Eugster, W.; Haeni, M.; Etzold, S.; Walthert, L.; Braun, S.; Zweifel, R. How did Swiss forest trees respond to the hot summer 2015? Die Erde 2019, 150, 214–229. [Google Scholar]
- Xu, H.; Hannam, K.D.; MacDonald, J.L.; Ediger, D. Field investigation into tree fates from recent apple tree decline: Abrupt hydraulic failure versus gradual hydraulic loss. Stresses 2023, 3, 256–269. [Google Scholar] [CrossRef]
- Jumrani, K.; Bhatia, V.S. Impact of combined stress of high temperature and water deficit on growth and seed yield of soybean. Physiol. Mol. Biol. Plants 2018, 24, 37–50. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Al-Suhaibani, N.; Ali, N.; Akmal, M.; Alotaibi, M.; Refay, Y.; Dindaroglu, T.; Abdul-Wajid, H.H.; Battaglia, M.L. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants 2021, 10, 259. [Google Scholar] [CrossRef]
- Lawas, L.M.F.; Zuther, E.; Jagadish, S.K.; Hincha, D.K. Molecular mechanisms of combined heat and drought stress resilience in cereals. Curr. Opin. Plant Biol. 2018, 45, 212–217. [Google Scholar] [CrossRef]
- Zhou, Q.; Jiang, Z.; Zhang, X.; Zhang, T.; Zhu, H.; Cui, B.; Li, Y.; Zhao, F.; Zhao, Z. Leaf anatomy and ultrastructure in senescing ancient tree, Platycladus orientalis L. (Cupressaceae). Peer J. 2019, 7, e6766. [Google Scholar] [CrossRef] [PubMed]
- Li, X.E.; Zhao, X.; Tsujii, Y.; Ma, Y.Q.; Zhang, R.Y.; Qian, C.; Wang, Z.X.; Geng, F.L.; Jin, S.X. Links between leaf anatomy and leaf mass per area of herbaceous species across slope aspects in an eastern Tibetan subalpine meadow. Ecol. Evol. 2022, 12, e8973. [Google Scholar] [CrossRef]
- Hong, Y.; Zhang, L.; Liu, X.; Aritsara, A.N.A.; Zeng, X.; Xing, X.; Lu, Q.; Wang, K.; Wang, Y.; Zhang, Y. Tree ring anatomy indices of Pinus tabuliformis revealed the shifted dominant climate factor influencing potential hydraulic function in western Qinling Mountains. Dendrochronologia 2021, 70, 125881. [Google Scholar] [CrossRef]
- Ruehr, N.K.; Grote, R.; Mayr, S.; Arneth, A. Beyond the extreme: Recovery of carbon and water relations in woody plants following heat and drought stress. Tree Physiol. 2019, 39, 1285–1299. [Google Scholar] [CrossRef] [PubMed]
- Stefi, A.L.; Papaioannou, V.; Nikou, T.; Halabalaki, M.; Vassilacopoulou, D.; Christodoulakis, N.S. Heat and cold-stressed individuals of Pistacia lentiscus (Mastic Tree) do modify their secreting profile. Plants 2022, 11, 3290. [Google Scholar] [CrossRef]
- Fajstavr, M.; Giagli, K.; Vavrcik, H.; Gryc, V.; Horacek, P.; Urban, J. The cambial response of Scots pine trees to girdling and water stress. Iawa J. 2020, 41, 159–185. [Google Scholar] [CrossRef]
- Zhao, X.; Li, P.; Liu, X.; Xu, T.; Zhang, Y.; Meng, H.; Xia, T. High temperature increased lignin contents of poplar (Populus spp.) stem via inducing the synthesis caffeate and coniferaldehyde. Front. Genet. 2022, 13, 1007513. [Google Scholar] [CrossRef] [PubMed]
- Karlova, R.; Boer, D.; Hayes, S.; Testerink, C. Root plasticity under abiotic stress. Plant Physiol. 2021, 187, 1057–1070. [Google Scholar] [CrossRef]
- El-Ramady, H.; Abdalla, N.; Elmahrouk, M.; Bayoumi, Y.; Elsakhawy, T.A.; Omara, A.E.; Shalaby, T.A. Anatomical changes of cultivated plants under combined stress: An urgent need for investigation. Environ. Biodivers. Soil Secur. 2021, 5, 73–83. [Google Scholar] [CrossRef]
- Singh, R.K.; Prasad, A.; Maurya, J.; Prasad, M. Regulation of small RNA-mediated high temperature stress responses in crop plants. Plant Cell Rep. 2022, 41, 765–773. [Google Scholar] [CrossRef]
- Xue, J.; Zeng, P.; Cui, J.; Zhang, Y.; Yang, J.; Zhu, L.; Hu, H.; Xu, J. Physiological and gene expression changes of Cryptomeria fortunei Hooibrenk families under heat stress. Front. Plant Sci. 2023, 14, 1083847. [Google Scholar] [CrossRef]
- Waadt, R.; Seller, C.A.; Hsu, P.; Takahashi, Y.; Munemasa, S.; Schroeder, J.I. Plant hormone regulation of abiotic stress responses. Nat. Rev. Mol. Cell Biol. 2022, 23, 680–694. [Google Scholar] [CrossRef] [PubMed]
- Grier, C.G.; Running, S.W. Leaf area of mature northwestern coniferous forests: Relation to site water balance. Ecology 1977, 58, 893–899. [Google Scholar] [CrossRef]
- Andrasi, N.; Pettko-Szandtner, A.; Szabados, L. Diversity of plant heat shock factors: Regulation, interactions, and functions. J. Exp. Bot. 2021, 72, 1558–1575. [Google Scholar] [CrossRef]
- Li, J.B.; Zhao, S.; Yu, X.; Du, W.; Li, H.; Sun, Y.; Sun, H.; Ruan, C.J. Role of Xanthoceras sorbifolium MYB44 in tolerance to combined drought and heat stress via modulation of stomatal closure and ROS homeostasis. Plant Physiol. Biochem. 2021, 162, 410–420. [Google Scholar] [CrossRef]
- Knight, H.; Knight, M.R. Abiotic stress signalling pathways: Specificity and cross-talk. Trends Plant Sci. 2001, 6, 262–267. [Google Scholar] [CrossRef]
- Song, Y.; Chen, Q.; Ci, D.; Shao, X.; Zhang, D. Effects of high temperature on photosynthesis and related gene expression in poplar. BMC Plant Biol. 2014, 14, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.L.; Shen, W.J.; Yang, C.; Zeng, L.Z.; Gao, C.J. Knowns and unknowns of plasma membrane protein degradation in plants. Plant Sci. 2018, 272, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Morais, M.C.; Ferreira, H.; Cabral, J.A.; Goncalves, B.; Rennenberg, H. Differential tolerance of the woody invasive Hakea sericea to drought and terminal heat stress. Tree Physiol. 2023, 43, 47–56. [Google Scholar] [CrossRef]
- You, J.; Chan, Z. ROS regulation during abiotic stress responses in crop plants. Front. Plant Sci. 2015, 6, 1092. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Yang, W.; Lo, H.; Yeh, D. Physiology, anatomy, and cell membrane thermostability selection of leafy radish (Raphanus sativus var. oleiformis Pers.) with different tolerance under heat stress. Sci. Hortic. 2014, 179, 367–375. [Google Scholar]
- Schneider, J.R.; Caverzan, A.; Chavarria, G. Water deficit stress, ROS involvement, and plant performance. Arch. Agron. Soil Sci. 2019, 65, 1160–1181. [Google Scholar] [CrossRef]
- Shen, H.F.; Zhao, B.; Xu, J.J.; Liang, W.; Huang, W.M.; Li, H.H. Effects of heat stress on changes in physiology and anatomy in two cultivars of Rhododendron. S. Afr. J. Bot. 2017, 112, 338–345. [Google Scholar] [CrossRef]
- Rouina, Y.B.; Zouari, M.; Zouari, N.; Rouina, B.B.; Bouaziz, M. Olive tree (Olea europaea L. cv. Zelmati) grown in hot desert climate: Physio-biochemical responses and olive oil quality. Sci. Hortic. 2020, 261, 108915. [Google Scholar] [CrossRef]
- Chao, X.; Yuqing, T.; Xincheng, L.; Huidong, Y.; Yuting, W.; Zhongdong, H.; Xinlong, H.; Buchun, L.; Jing, S. Exogenous spermidine enhances the photosynthetic and antioxidant capacity of citrus seedlings under high temperature. Plant Signal. Behav. 2022, 17, 2086372. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Zhang, Y.; Xiang, J.; Yang, Z.; Gu, F.; Wu, M. Evaluating the physiological and biochemical responses of different mangrove species to upwelling. Front. Mar. Sci. 2022, 9, 989055. [Google Scholar] [CrossRef]
- Niu, Y.; Xiang, Y. An overview of biomembrane functions in plant responses to high-temperature stress. Front. Plant Sci. 2018, 9, 915. [Google Scholar] [CrossRef]
- Tiwari, S.; Patel, A.; Singh, M.; Prasad, S.M. Regulation of temperature stress in plants. In Plant Life under Changing Environment; Tripathi, D.K., Singh, V.P., Chauhan, D.K., Sharma, S., Prasad, S.M., Dubey, N.K., Ramawat, N., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 25–45. [Google Scholar]
- Silva, E.N.; Ferreira-Silva, S.L.; de Vasconcelos Fontenele, A.; Ribeiro, R.V.; Viégas, R.A.; Silveira, J.A.G. Photosynthetic changes and protective mechanisms against oxidative damage subjected to isolated and combined drought and heat stresses in Jatropha curcas plants. J. Plant Physiol. 2010, 167, 1157–1164. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Kumar, N.; Verma, A.; Singh, H.; Siddique, K.H.; Singh, N.P. Novel approaches to mitigate heat stress impacts on crop growth and development. Plant Physiol. Rep. 2020, 25, 627–644. [Google Scholar] [CrossRef]
- Dawood, M.G. Influence of osmoregulators on plant tolerance to water stress. Sci. Agric. 2016, 13, 42–58. [Google Scholar]
- Sharma, A.; Shahzad, B.; Kumar, V.; Kohli, S.K.; Sidhu, G.; Bali, A.S.; Handa, N.; Kapoor, D.; Bhardwaj, R.; Zheng, B. Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules 2019, 9, 285. [Google Scholar] [CrossRef]
- Huang, H.; Han, Y.; Hao, J.; Qin, X.; Liu, C.; Fan, S. Exogenous spermidine modulates osmoregulatory substances and leaf stomata to alleviate the damage to lettuce seedlings caused by high temperature stress. J. Plant Growth Regul. 2023, 42, 1236–1255. [Google Scholar] [CrossRef]
- Wang, B.M.; Chen, J.J.; Chen, L.S.; Wang, X.N.; Wang, R.; Ma, L.; Peng, S.F.; Luo, J.; Chen, Y.Z. Combined drought and heat stress in Camellia oleifera cultivars: Leaf characteristics, soluble sugar and protein contents, and Rubisco gene expression. Trees-Struct. Funct. 2015, 29, 1483–1492. [Google Scholar] [CrossRef]
- Marias, D.E.; Meinzer, F.C.; Woodruff, D.R.; McCulloh, K.A. Thermotolerance and heat stress responses of Douglas-fir and ponderosa pine seedling populations from contrasting climates. Tree Physiol. 2017, 37, 301–315. [Google Scholar] [CrossRef] [PubMed]
- Saksena, H.B.; Sharma, M.; Singh, D.; Laxmi, A. The versatile role of glucose signalling in regulating growth, development and stress responses in plants. J. Plant Biochem. Biotechnol. 2020, 29, 687–699. [Google Scholar] [CrossRef]
- Salvi, P.; Agarrwal, R.; Kajal; Gandass, N.; Manna, M.; Kaur, H.; Deshmukh, R. Sugar transporters and their molecular tradeoffs during abiotic stress responses in plants. Physiol. Plant. 2022, 174, e13652. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, N.; Umar, S.; Khan, N.A.; Corpas, F.J. Crosstalk between abscisic acid and nitric oxide under heat stress: Exploring new vantage points. Plant Cell Rep. 2021, 40, 1429–1450. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, Y.S. Proline metabolism and molecular cloning of AmP5CS in the mangrove Avicennia marina under heat stress. Ecotoxicology 2020, 29, 698–706. [Google Scholar] [CrossRef]
- Chang, B.; Ma, K.; Lu, Z.; Lu, J.; Cui, J.; Wang, L.; Jin, B. Physiological, transcriptomic, and metabolic responses of Ginkgo biloba L. to drought, salt, and heat stresses. Biomolecules 2020, 10, 1635. [Google Scholar] [CrossRef] [PubMed]
- Nadarajah, K.K. ROS homeostasis in abiotic stress tolerance in plants. Int. J. Mol. Sci. 2020, 21, 5208. [Google Scholar] [CrossRef] [PubMed]
- Zandalinas, S.I.; Mittler, R.; Balfagón, D.; Arbona, V.; Gómez Cadenas, A. Plant adaptations to the combination of drought and high temperatures. Physiol. Plant. 2018, 162, 2–12. [Google Scholar] [CrossRef]
- Li, Y.; Liang, W.; Zhao, B. Physiological and microstructural responses of two Rhododendron cultivars to high temperature and low light. Hortic. Environ. Biotechnol. 2020, 61, 445–458. [Google Scholar] [CrossRef]
- Rascio, A.; Altamura, G.; Pecorella, I.; Goglia, L.; Sorrentino, G. Physiological mechanisms preventing plant wilting under heat stress: A case study on a wheat (Triticum durum desf.) bound water-mutant. Environ. Exp. Bot. 2023, 215, 105502. [Google Scholar] [CrossRef]
- Rajput, V.D.; Harish; Singh, R.K.; Verma, K.K.; Sharma, L.; Quiroz-Figueroa, F.R.; Meena, M.; Gour, V.S.; Minkina, T.; Sushkova, S.; et al. Recent developments in enzymatic antioxidant defence mechanism in plants with special reference to abiotic stress. Biology 2021, 10, 267. [Google Scholar] [CrossRef] [PubMed]
- Dvořák, P.; Krasylenko, Y.; Zeiner, A.; Šamaj, J.; Takáč, T. Signaling toward reactive oxygen species-scavenging enzymes in plants. Front. Plant Sci. 2021, 11, 618835. [Google Scholar] [CrossRef]
- Yamane, K.; Nishikawa, M.; Hirooka, Y.; Narita, Y.; Kobayashi, T.; Kakiuchi, M.; Iwai, K.; Iijima, M. Temperature tolerance threshold and mechanism of oxidative damage in the leaf of Coffea arabica ‘Typica’ under heat stress. Plant Prod. Sci. 2022, 25, 337–349. [Google Scholar] [CrossRef]
- Liu, L.; Lin, W.; Zhang, L.; Tang, X.; Liu, Y.; Lan, S.; Wang, S.; Zhou, Y.; Chen, X.; Wang, L.; et al. Changes and correlation between physiological characteristics of Rhododendron simsii and soil microbial communities under heat stress. Front. Plant Sci. 2022, 13, 950947. [Google Scholar] [CrossRef] [PubMed]
- Karabulut, G.; Feng, H.; Yemiş, O. Physicochemical and antioxidant properties of industrial hemp seed protein isolate treated by high-intensity ultrasound. Plant Food Hum. Nutr. 2022, 77, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Yao, F.; Xue, T.; Wang, Z.; Wang, Y.; Cao, X.; Hui, M.; Wu, D.; Li, Y.; Wang, H. Sprayed Biodegradable Liquid Film Improved the Freezing Tolerance of cv. Cabernet sauvignon by Up-Regulating Soluble Protein and Carbohydrate Levels and Alleviating Oxidative Damage. Front. Plant Sci. 2022, 13, 1021483. [Google Scholar] [CrossRef]
- Jiang, J.F.; Liu, X.N.; Liu, C.H.; Liu, G.T.; Li, S.H.; Wang, L.J. Integrating omics and alternative splicing reveals insights into grape response to high temperature. Plant Physiol. 2017, 189, 10. [Google Scholar] [CrossRef]
- Siddiqui, H.; Hayat, S.; Bajguz, A. Regulation of photosynthesis by brassinosteroids in plants. Acta Physiol. Plant. 2018, 40, 1–15. [Google Scholar] [CrossRef]
- Zahra, N.; Hafeez, M.B.; Ghaffar, A.; Kausar, A.; Al Zeidi, M.; Siddique, K.H.; Farooq, M. Plant photosynthesis under heat stress: Effects and management. Environ. Exp. Bot. 2023, 206, 105178. [Google Scholar] [CrossRef]
- Perez-Oliver, M.A.; Haro, J.G.; Pavlovic, I.; Novak, O.; Segura, J.; Sales, E.; Arrillaga, I. Priming maritime pine megagametophytes during somatic embryogenesis improved plant adaptation to heat stress. Plants 2021, 10, 446. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Ding, Y.; Zhu, C. Sensitivity and responses of chloroplasts to heat stress in plants. Front. Plant Sci. 2020, 11, 375. [Google Scholar] [CrossRef]
- Chaudhry, S.; Sidhu, G. Climate change regulated abiotic stress mechanisms in plants: A comprehensive review. Plant Cell Rep. 2022, 411, 1–31. [Google Scholar] [CrossRef]
- Dias, M.C.; Correia, S.; Serôdio, J.; Silva, A.M.S.; Freitas, H.; Santos, C. Chlorophyll fluorescence and oxidative stress endpoints to discriminate olive cultivars tolerance to drought and heat episodes. Sci. Hortic. 2018, 231, 31–35. [Google Scholar] [CrossRef]
- Twala, T.C.; Witkowski, E.F.; Fisher, J.T. The effects of heat and drought stress on the ecophysiological responses and growth of Afrocarpus falcatus and Podocarpus henkelii seedlings. S. Afr. J. Bot. 2022, 149, 258–268. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, B.H.; Hao, Y.; Yang, R.; Wang, Y.A. Effects of short-term heat stress on PSII and subsequent recovery for senescent leaves of Vitis vinifera L. cv. Red Globe. J. Integr. Agric. 2018, 17, 2683–2693. [Google Scholar] [CrossRef]
- Dewhirst, R.A.; Handakumbura, P.; Clendinen, C.S.; Arm, E.; Tate, K.; Wang, W.; Washton, N.M.; Young, R.P.; Mortimer, J.C.; McDowell, N.G.; et al. High temperature acclimation of leaf gas exchange, photochemistry, and metabolomic profiles in Populus trichocarpa. ACS Earth Space Chem. 2021, 5, 1813–1828. [Google Scholar] [CrossRef]
- Haider, S.; Iqbal, J.; Naseer, S.; Shaukat, M.; Abbasi, B.A.; Yaseen, T.; Zahra, S.A.; Mahmood, T. Unfolding molecular switches in plant heat stress resistance: A comprehensive review. Plant Cell Rep. 2022, 41, 775–798. [Google Scholar] [CrossRef]
- Guo, M.; Liu, J.H.; Ma, X.; Luo, D.X.; Gong, Z.H.; Lu, M.H. The plant heat stress transcription factors (HSFs): Structure, regulation, and function in response to abiotic stresses. Front. Plant Sci. 2016, 7, 114. [Google Scholar] [CrossRef]
- Tian, F.; Hu, X.L.; Yao, T.; Yang, X.; Chen, J.G.; Lu, M.Z.; Zhang, J. Recent advances in the roles of HSFs and HSPs in heat stress response in woody plants. Front. Plant Sci. 2021, 12, 704905. [Google Scholar] [CrossRef] [PubMed]
- Driedonks, N.; Xu, J.; Peters, J.L.; Park, S.; Rieu, I. Multi-level interactions between heat shock factors, heat shock proteins, and the redox system regulate acclimation to heat. Front. Plant Sci. 2015, 6, 999. [Google Scholar] [CrossRef]
- Du, W.; Ruan, C.J.; Li, J.B.; Li, H.; Ding, J.; Zhao, S.Y.; Jiang, X. Quantitative proteomic analysis of Xanthoceras sorbifolium Bunge seedlings in response to drought and heat stress. Plant Physiol. Biochem. 2021, 160, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Elfving, N.; Davoine, C.; Benlloch, R.; Blomberg, J.; Brännström, K.; Müller, D.; Nilsson, A.; Ulfstedt, M.; Ronne, H.; Wingsle, G. The Arabidopsis thaliana Med25 mediator subunit integrates environmental cues to control plant development. Proc. Natl. Acad. Sci. USA 2011, 108, 8245–8250. [Google Scholar] [CrossRef]
- Kiranmai, K.; Lokanadha, R.G.; Pandurangaiah, M.; Nareshkumar, A.; Amaranatha, R.V.; Lokesh, U.; Venkatesh, B.; Anthony, J.A.; Sudhakar, C. A novel WRKY transcription factor, MuWRKY3 (Macrotyloma uniflorum Lam. Verdc.) enhances drought stress tolerance in transgenic groundnut (Arachis hypogaea L.). Plants Front. Plant Sci. 2018, 9, 346. [Google Scholar] [CrossRef]
- Xu, P.; Guo, Q.; Pang, X.; Zhang, P.; Kong, D.; Liu, J. New insights into evolution of plant heat shock factors (Hsfs) and expression analysis of tea genes in response to abiotic stresses. Plants 2020, 9, 311. [Google Scholar] [CrossRef]
- Yuan, T.; Liang, J.; Dai, J.; Zhou, X.R.; Liao, W.; Guo, M.; Aslam, M.; Li, S.; Cao, G.; Cao, S. Genome-Wide identification of eucalyptus heat shock transcription factor family and their transcriptional analysis under salt and temperature stresses. Int. J. Mol. Sci. 2022, 23, 8044. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Meng, P.; Yang, G.; Zhang, M.; Peng, S.; Zhai, M.Z. Genome-wide identification and transcript profiles of walnut heat stress transcription factor involved in abiotic stress. BMC Genom. 2020, 21, 474. [Google Scholar] [CrossRef]
- Lin, Q.; Jiang, Q.; Lin, J.Y.; Wang, D.L.; Li, S.J.; Liu, C.R.; Sun, C.D.; Chen, K.S. Heat shock transcription factors expression during fruit development and under hot air stress in Ponkan (Citrus reticulata Blanco cv. Ponkan) fruit. Gene 2015, 559, 129–136. [Google Scholar] [CrossRef]
- Wan, X.; Yang, J.; Guo, C.; Bao, M.; Zhang, J. Genome-wide identification and classification of the Hsf and sHsp gene families in Prunus mume, and transcriptional analysis under heat stress. Peer J. 2019, 7, e7312. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.T.; Chai, F.M.; Wang, Y.; Jiang, J.Z.; Duan, W.; Wang, Y.T.; Wang, F.F.; Li, S.H.; Wang, L.J. Genome-wide identification and classification of HSF family in grape, and their transcriptional analysis under heat acclimation and heat stress. Hortic. Plant J. 2018, 4, 133–143. [Google Scholar] [CrossRef]
- Panzade, K.P.; Kale, S.S.; Kapale, V.; Chavan, N.R. Genome-Wide analysis of heat shock transcription factors in Ziziphus jujuba identifies potential candidates for crop improvement under abiotic stress. Appl. Biochem. Biotechnol. 2021, 193, 1023–1041. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yang, Y.; Liu, M.; Zhu, Y.; Wang, H.; Feng, C.; Niu, M.; Liu, C.; Yin, W.; Xia, X. The in vivo performance of a heat shock transcription factor from Populus euphratica, PeHSFA2, promises a prospective strategy to alleviate heat stress damage in poplar. Environ. Exp. Bot. 2022, 201, 104940. [Google Scholar] [CrossRef]
- Ji, X.Y.; Nie, X.G.; Liu, Y.J.; Zheng, L.; Zhao, H.M.; Zhang, B.; Huo, L.; Wang, Y.C. A bHLH gene from Tamarix hispida improves abiotic stress tolerance by enhancing osmotic potential and decreasing reactive oxygen species accumulation. Tree Physiol. 2016, 36, 193–207. [Google Scholar]
- Wang, W.L.; Cui, X.; Wang, Y.X.; Liu, Z.W.; Zhuang, J. Members of R2R3-type MYB transcription factors from subgroups 20 and 22 are involved in abiotic stress response in tea plants. Biotechnol. Biotechnol. Equip. 2018, 32, 1141–1153. [Google Scholar] [CrossRef]
- Jue, D.; Sang, X.; Liu, L.; Shu, B.; Wang, Y.; Liu, C.; Xie, J.; Shi, S. Identification of WRKY gene family from Dimocarpus longan and its expression analysis during flower induction and abiotic stress responses. Int. J. Mol. Sci. 2018, 19, 2169. [Google Scholar] [CrossRef]
- Liu, X.; Zong, X.; Wu, X.; Liu, H.; Han, J.; Yao, Z.; Ren, Y.; Ma, L.; Wang, B.; Zhang, H. Ectopic expression of NAC transcription factor HaNAC3 from Haloxylon ammodendron increased abiotic stress resistance in tobacco. Planta 2022, 256, 105. [Google Scholar] [CrossRef]
- Sangster, T.A.; Queitsch, C. The HSP90 chaperone complex, an emerging force in plant development and phenotypic plasticity. Curr. Opin. Plant Biol. 2005, 8, 86–92. [Google Scholar] [CrossRef]
- Liu, J.; Feng, L.; Li, J.; He, Z. Genetic and epigenetic control of plant heat responses. Front. Plant Sci. 2015, 6, 267. [Google Scholar] [CrossRef]
- Alhassan, D.A. Advances in Differentially Methylated Region Detection and Cure Survival Models; Missouri University of Science and Technology: St, Rolla, MO, USA, 2023. [Google Scholar]
- Sun, M.; Yang, Z.; Liu, L.; Duan, L. DNA methylation in plant responses and adaption to abiotic stresses. Int. J. Mol. Sci. 2022, 23, 6910. [Google Scholar] [CrossRef] [PubMed]
- Correia, B.; Valledor, L.; Meijon, M.; Rodriguez, J.L.; Dias, M.C.; Santos, C.; Canal, M.J.; Rodriguez, R.; Pinto, G. Is the interplay between epigenetic markers related to the acclimation of cork oak plants to high temperatures? PLoS ONE 2013, 8, e53543. [Google Scholar] [CrossRef]
- Ci, D.; Song, Y.; Tian, M.; Zhang, D. Methylation of miRNA genes in the response to temperature stress in Populus simonii. Front. Plant Sci. 2015, 6, 921. [Google Scholar] [CrossRef]
- Hossain, M.S.; Kawakatsu, T.; Kim, K.D.; Zhang, N.; Nguyen, C.T.; Khan, S.M.; Batek, J.M.; Joshi, T.; Schmutz, J.; Grimwood, J. Divergent cytosine DNA methylation patterns in single-cell, soybean root hairs. New Phytol. 2017, 214, 808–819. [Google Scholar] [CrossRef]
- Li, J.; Huang, Q.; Sun, M.; Zhang, T.; Li, H.; Chen, B.; Xu, K.; Gao, G.; Li, F.; Yan, G. Global DNA methylation variations after short-term heat shock treatment in cultured microspores of brassica napus cv. Topas. Sci. Rep. 2016, 6, 38401. [Google Scholar] [CrossRef] [PubMed]
- Malabarba, J.; Windels, D.; Xu, W.; Verdier, J. Regulation of DNA (de)methylation positively impacts seed germination during seed development under heat stress. Genes 2021, 12, 457. [Google Scholar] [CrossRef]
- Liu, J.; He, Z. Small DNA methylation, big player in plant abiotic stress responses and memory. Front. Plant Sci. 2020, 11, 595603. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Zheng, Y.; Lu, Y.; Issakidis-Bourguet, E.; Zhou, D. Metabolic control of histone demethylase activity involved in plant response to high temperature. Plant Physiol. 2021, 185, 1813–1828. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Lu, F.; Cui, X.; Cao, X. Histone methylation in higher plants. Annu. Rev. Plant Biol. 2010, 61, 395–420. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Yang, C.; An, B.; Wang, H.; Albaqami, M.; Abou Elwafa, S.F.; Xu, L.; Xu, Y. Comparative transcriptomic and epigenetic analyses reveal conserved and divergent regulatory pathways in barley response to temperature stresses. Physiol. Plant. 2022, 174, e13727. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Jiang, J.; Liu, X.; Jiang, J.; Sun, L.; Duan, W.; Li, R.; Wang, Y.; Lecourieux, D.; Liu, C. New insights into the heat responses of grape leaves via combined phosphoproteomic and acetylproteomic analyses. Hortic. Res. 2019, 6, 100. [Google Scholar] [CrossRef] [PubMed]
Anatomical Site | Change | Mechanism | References |
---|---|---|---|
Leaves | Increase: leaf thickness, cell wall thickness, stomatal density Decrease: mesophyll cell volume | Reduce water evaporation and heating area, improve water utilization efficiency | [24,25] |
Stems | Increase: wall thickness, lignincontent Decrease: wood fiber diameter, length | Smaller hydraulic conductivity, reducing water loss; enhance protection and heat dissipation capabilities | [26,27] |
Roots | Increase: Number and length of root hairs Decrease: Cell division | Increase absorption and utilization of water and nutrients | [28,29] |
Category | Similarities | Differences | References |
---|---|---|---|
Response mechanism | Activating gene expression: Changes in gene expression occur when plants are stressed Accumulation of antioxidant substances: Stress produces oxidative substances to neutralize them and reduce oxidative damage Regulate water balance: Control water evaporation by closing or opening stomata to maintain water balance Accumulation of resistance substances: Synthesis of resistance substances, such as proteins and lipids, in response to stress. Stomatal regulation: Under high temperature conditions, plants often close their stomata to reduce water transpiration | Ecological adaptability: The high temperature stress response mechanism of plants is affected by their ecological environment. Plants may have different high temperature adaptation strategies in different ecological environments Differences in hormone regulation: Different species may regulate different types of plant hormones under high temperature stress. For example, some species rely on abscisic acid, while others are more dependent on gibberellins. | [30,31,32,33] |
Molecular mechanism | Synthesis of heat stress proteins: HSPs are usually synthesized in response to high temperature stress Antioxidant defense: High temperature stress triggers oxidative stress, which increases the activity of antioxidant enzymes Gene expression regulation: Respond to high-temperature stress by adjusting gene expression, including activation of heat-stress response genes | Differences in hormone regulation: Species regulate different types of phytohormones under heat stress Signaling pathways: Different plant species can activate different signaling pathways or specific stress response genes under high-temperature stress. | [34,35,36,37] |
Gene Family | Species | Gene Symbol | Response | Reference |
---|---|---|---|---|
HSF | Camellia japonica | HSF-TEA | Inducing gene expression, plants accumulate metabolites and activate different metabolic pathways and physiological and biochemical processes. | [88] |
Eucalyptus robusta | EgHSF | The expression levels of EgHsf24 and EgHsf32 genes increased significantly, thus, adapting to the high-temperature environment. | [89] | |
Juglans | JrHSF13, JrHSF22 | JrHSF promoted the accumulation of HSP, increased the denaturation temperature of protein and repaired the damaged protein to resist high temperature. | [90] | |
Citrus sinensis | CrHHSFB2, CrHSFB5 | CrHsfB2 and CrHsfB5 are important regulators of citric acid content, which changes during the degradation of citric acid caused by heat-stress. | [91] | |
Prunus salicina | PmHSF18, PmHSF2 | After heat shock, PmHSF18 and PmHSF2 became prominent HSF, and they participate in the key regulation of heat resistance. | [92] | |
Calyx glabrous | VHSF18, VHSF8 | The transcription levels of VHSF18 and VHSF8 increased sharply under high-temperature stress, which played a role in resisting heat resistance. | [93] | |
Ziziphus jujuba | ZjHSF-2, ZjHSF-3 | High temperature significantly upregulates the expression levels of ZjHsf-2 and ZjHsf-3 genes, which plays an important role in heat resistance. | [94] | |
Populus euphratica | PeHSFA2 | Poplar plants overexpressing PeHSFA2 perform better than the control group under severe heat stress | [95] | |
bHLH | Tamarix hispida | ThbHLH1, ThbHLH3 | The accumulation of bHLH gene increased proline level and Ca2+ concentration, decreased the accumulation of reactive oxygen species, and improved heat resistance. | [96] |
MYB | Camellia sinensis | CsMYB20, CsMYB21 | The transcription factors of CsMYB20 and CsMYB21 are upregulated and are involved in recognizing the conserved motifs in tea plants and inducing the expression of ABA synthesis reaction genes to resist stress. | [97] |
WRKY | Osmanthus fragrans | DlWRKY | DlWRKY2 reacted strongly to heat stress, while DlWRKY36 and DlWRKY46 mediated the expression of salicylic acid synthesis reaction gene to alleviate stress. | [98] |
NAC | Haloxylon ammodendron | HaNAC3 | HaNAC3 can improve the tolerance of transgenic plants to high-temperature stress and participate in regulating the downstream genes and metabolic pathways of indolebutyric acid and abscisic acid. | [99] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, C.; Wu, S.; Li, C.; Quan, W.; Wang, A. Response Mechanisms of Woody Plants to High-Temperature Stress. Plants 2023, 12, 3643. https://doi.org/10.3390/plants12203643
Zhou C, Wu S, Li C, Quan W, Wang A. Response Mechanisms of Woody Plants to High-Temperature Stress. Plants. 2023; 12(20):3643. https://doi.org/10.3390/plants12203643
Chicago/Turabian StyleZhou, Chao, Shengjiang Wu, Chaochan Li, Wenxuan Quan, and Anping Wang. 2023. "Response Mechanisms of Woody Plants to High-Temperature Stress" Plants 12, no. 20: 3643. https://doi.org/10.3390/plants12203643
APA StyleZhou, C., Wu, S., Li, C., Quan, W., & Wang, A. (2023). Response Mechanisms of Woody Plants to High-Temperature Stress. Plants, 12(20), 3643. https://doi.org/10.3390/plants12203643