Impacts of Plastics on Plant Development: Recent Advances and Future Research Directions
Abstract
:1. Introduction
2. Impact of Plastics on Soil, Plants, and Ecosystems
3. Effects of Plastics on Plant Development
3.1. Effects of Polystyrene on Plant Development
Species | Concentration | Particle Size | Medium Used | Effect on | Notes | Reference | ||
---|---|---|---|---|---|---|---|---|
Germination | Root Growth | Shoot Growth | ||||||
Oryza sativa L. | 50 mg/L NPs/MPs and 250 μg/L As(III)/As (V) | 82 and 200 nm | Hydroponic | n.d. | − | n.d. | NPs/MPs may coexist with As in soil and induce potentially toxic effects on the crop’s growth. | [57] |
O. sativa | 5 mg/mL | 139 nm | Pot experiment | n.d. | − | − | Growth inhibition. | [58] |
O. sativa | 0, 0.5, 1.5, and 3.0 mg/L | 10 ± 0.37 μm | Hydroponic | n.d. | − | − | Decline in growth, nutrient profile, perturbed gas exchange attributes, and enhanced oxidative damage. | [60] |
Lactuca sativa L. | 10, 20, 30, 40, and 50 mg/L | 0.2 μm | Hydroponic | n.d. | − | − | Disturbing the antioxidant system and changing gene expression of the roots. | [61] |
Lycopersicon esculentum L. | 0.1 and 1 mg/L | 5.23–17.21 μm | Hydroponic | n.d. | − | − | MPs caused severe oxidative stress. | [62] |
Allium cepa L. | 25, 50, and 100 μg/mL | n.d. | Pot experiment | n.d. | 0 | n.d. | The activation of antioxidant enzyme machinery of root cells successfully decomposed ROS and prevented oxidative damage. | [63] |
Vigna radiata L. | 2–4 mg/kg | 5 µm | Pot experiment | n.d. | − | − | Perturbed rubisco activity and changed amino acid concentration in the plant tissues. | [64] |
Taraxacum asiaticum Dahlst | 1, 5, and 10 mg/L | 80 nm | Hydroponic | n.d. | − | − | Inhibited the activities of rubisco and DHA by destroying the tertiary structure of the enzymes. | [65] |
Ipomoea aquatica Forsk | 0.5–10 mg/L | 80 nm | Hydroponic | n.d. | − | − | The migration of PS NPs in roots, stems, and leaves was tracked. | [66] |
Zea mays L. | 10 mg/L | 0.2–1.0 μm and 2.0 and 0.5 μm | Hydroponic | n.d. | 0 | 0 | The smaller-sized PS beads were absorbed by the roots. | [67] |
Glycine max L. | 80 μg/mL | 20 nm and 1 µm | Hydroponic | 0 | 0 | n.d. | PS nanoparticles were distributed in the roots of bean sprouts more than in the stems and cotyledons. | [68] |
Myriophyllum verticillatum L. | 5 g/L | 100 nm | Hydroponic | n.d. | n.d. | − | Induced changes in SOD activity, ROS production rate, and osmotic regulator content. | [69] |
Z. mays | 10 and 100 mg/L | 25 nm | Pot experiment | n.d. | − | − | Polystyrene nanoplastics and Cd entered the root system through the stomatal pathway. | [70] |
G. max | 0, 12.5, 25, and 50 mg/L | 20–30 nm | Petri dish experiments | n.d. | − | 0 | PS NPs affected growth and absorption of elements and the production of ROS and lipid peroxidation in the roots and leaves. | [71] |
3.2. Effects of Polyethylene Plastics on Plant Development
3.3. Effects of Polyvinyl Chloride Plastics on Plant Development
3.4. Effects of Biodegradable Plastics on Plant Development
4. Conclusions
5. Future Directions
- Interactions with different stressors: The interactions between plastics and other stressors, such as heavy metals or chemicals (which can be adsorbed in MPs), need to be explored further. Understanding how plastics interact with other environmental factors can provide insights into their combined effects on plant growth and development.
- Mechanisms of action: Studying the mechanisms through which plastics exert their negative effects on plants is crucial. This includes investigating how plastics are taken up by plants, their impact on cellular processes, and the disruption of plant physiology. Elucidating these mechanisms will help in designing targeted mitigation strategies.
- Species-specific responses: Different plant species may exhibit varying sensitivities to plastics. Further research should focus on a wide range of plant species in order to better understand the species-specific responses to different types of plastics and concentrations.
- Long-term effects: Most of the studies conducted so far have focused on short-term effects. It is important to investigate the long-term consequences of plastic exposure on plant growth, reproduction, and overall ecosystem health. Long-term studies can provide valuable insights into the persistence and cumulative effects of plastics on plants.
- Field studies: While many studies have been conducted under controlled laboratory conditions, field studies are necessary to assess the real-world impacts of plastics on plant development. Field experiments can consider the complex interactions of plants with their natural environment, including soil composition, nutrient availability, and microbial communities.
- Biodegradable plastics: Further research is needed to evaluate the environmental fate and potential ecological impacts of biodegradable plastics. Understanding their decomposition rates, byproducts, and effects on plant growth will help us to determine their suitability as alternatives to conventional plastics.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; de Vries, W.; de Wit, C.A.; et al. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef] [PubMed]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S.; Lambin, E.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. Planetary Boundaries: Exploring the Safe Operating Space for Humanity. Ecol. Soc. 2009, 14, 32. [Google Scholar] [CrossRef]
- Plastics—The facts 2022. Plastics Europe. 2022. Available online: https://plasticseurope.org/knowledge-hub/plastics-the-facts-2022/ (accessed on 20 July 2023).
- OECD Publications. Global Plastics Outlook: Policy Scenarios to 2060. 2022. Available online: https://www.oecd.org/publications/global-plastics-outlook-aa1edf33-en.htm (accessed on 10 September 2023).
- Larue, C.; Sarret, G.; Castillo-Michel, H.; Pradas del Real, A.E. A critical review on the impacts of nanoplastics and microplastics on aquatic and terrestrial photosynthetic organisms. Small 2021, 17, 2005834. [Google Scholar] [CrossRef] [PubMed]
- Bucknall, D.G. Plastics as a materials system in a circular economy. Philosophical Transactions of the Royal Society A: Mathematical. Phys. Eng. Sci. 2020, 378, 20190268. [Google Scholar]
- Rochman, C.M.; Hoh, E.; Hentschel, B.T.; Kaye, S. Long-term field measurement of sorption of organic contaminants to five types of plastic pellets: Implications for Plastic Marine Debris. Environ. Sci. Technol. 2013, 47, 1646–1654. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, T.D.; Hasselbalch, J.; Holmberg, K.; Stripple, J. Politics and the plastic crisis: A review throughout the plastic life cycle. WIREs Energy Environ. 2019, 9, e360. [Google Scholar] [CrossRef]
- Gigault, J.; ter Halle, A.; Baudrimont, M.; Pascal, P.-Y.; Gauffre, F.; Phi, T.-L.; El Hadri, H.; Grassl, B.; Reynaud, S. Current opinion: What is a nanoplastic? Environ. Pollut. 2018, 235, 1030–1034. [Google Scholar] [CrossRef]
- Ng, E.-L.; Huerta Lwanga, E.; Eldridge, S.M.; Johnston, P.; Hu, H.-W.; Geissen, V.; Chen, D. An overview of microplastic and nanoplastic pollution in Agroecosystems. Sci. Total Environ. 2018, 627, 1377–1388. [Google Scholar] [CrossRef]
- Gangadoo, S.; Owen, S.; Rajapaksha, P.; Plaisted, K.; Cheeseman, S.; Haddara, H.; Truong, V.K.; Ngo, S.T.; Vu, V.V.; Cozzolino, D.; et al. Nano-plastics and their analytical characterisation and fate in the marine environment: From source TO SEA. Sci. Total Environ. 2020, 732, 138792. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, B.; Gu, C.; Shen, C.; Yin, S.; Aamir, M.; Li, F. Are we underestimating the sources of microplastic pollution in terrestrial environment? J. Hazard. Mater. 2020, 400, 123228. [Google Scholar] [CrossRef]
- Li, J.; Zhang, K.; Zhang, H. Adsorption of antibiotics on microplastics. Environ. Pollut. 2018, 237, 460–467. [Google Scholar] [CrossRef] [PubMed]
- Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic waste inputs from land into the Ocean. Science 2015, 347, 768–771. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, S.; Rauert, C.; Ribeiro, F.; Okoffo, E.D.; Burrows, S.D.; O’Brien, J.W.; Wang, X.; Wright, S.L.; Thomas, K.V. There’s something in the air: A review of sources, prevalence and behaviour of microplastics in the atmosphere. Sci. Total Environ. 2023, 874, 162193. [Google Scholar] [CrossRef] [PubMed]
- Huerta Lwanga, E.; Mendoza Vega, J.; Ku Quej, V.; de Chi, J.; Sanchez del Cid, L.; Chi, C.; Escalona Segura, G.; Gertsen, H.; Salánki, T.; van der Ploeg, M.; et al. Field evidence for transfer of plastic debris along a terrestrial food chain. Sci. Rep. 2017, 7, 14071. [Google Scholar] [CrossRef] [PubMed]
- Leslie, H.A.; van Velzen, M.J.M.; Brandsma, S.H.; Vethaak, A.D.; Garcia-Vallejo, J.J.; Lamoree, M.H. Discovery and quantification of plastic particle pollution in human blood. Environ. Int. 2022, 163, 107199. [Google Scholar] [CrossRef]
- de Souza Machado, A.A.; Lau, C.W.; Till, J.; Kloas, W.; Lehmann, A.; Becker, R.; Rillig, M.C. Impacts of microplastics on the soil biophysical environment. Environ. Sci. Technol. 2018, 52, 9656–9665. [Google Scholar] [CrossRef]
- Joos, L.; De Tender, C. Soil under stress: The importance of soil life and how it is influenced by (micro)plastic pollution. Comput. Struct. Biotechnol. J. 2022, 20, 1554–1566. [Google Scholar] [CrossRef]
- Li, J.; Yu, S.; Yu, Y.; Xu, M. Effects of microplastics on higher plants: A Review. Bull. Environ. Contam. Toxicol. 2022, 109, 241–265. [Google Scholar] [CrossRef]
- Orgiazzi, A.; Ballabio, C.; Panagos, P.; Jones, A.; Fernández-Ugalde, O. Lucas soil, the largest expandable soil dataset for Europe: A Review. Eur. J. Soil Sci. 2017, 69, 140–153. [Google Scholar] [CrossRef]
- Zeb, A.; Liu, W.; Shi, R.; Lian, Y.; Wang, Q.; Tang, J.; Lin, D. Evaluating the knowledge structure of micro- and nanoplastics in terrestrial environment through Scientometric assessment. Appl. Soil Ecol. 2022, 177, 104507. [Google Scholar] [CrossRef]
- Heinze, W.M.; Mitrano, D.M.; Lahive, E.; Koestel, J.; Cornelis, G. Nanoplastic transport in soil via bioturbation by Lumbricus terrestris. Environ. Sci. Technol. 2021, 55, 16423–16433. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; O’Connor, D.; Hou, D.; Jin, Y.; Li, G.; Zheng, C.; Ok, Y.S.; Tsang, D.C.W.; Luo, J. Groundwater Depletion and Contamination: Spatial Distribution of Groundwater Resources Sustainability in China. Sci. Total Environ. 2019, 672, 551–562. [Google Scholar] [CrossRef] [PubMed]
- Chia, R.W.; Lee, J.-Y.; Jang, J.; Kim, H.; Kwon, K.D. Soil Health and Microplastics: A review of the impacts of microplastic contamination on soil properties. J. Soils Sediments 2022, 22, 2690–2705. [Google Scholar] [CrossRef]
- Jiang, X.J.; Liu, W.; Wang, E.; Zhou, T.; Xin, P. Residual plastic mulch fragments effects on soil physical properties and water flow behavior in the Minqin Oasis, Northwestern China. Soil Tillage Res. 2017, 166, 100–107. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, Y.; Li, X.; Zhang, Y.; Gao, W.; Jiang, J.; Mo, A.; He, D. Size/shape-dependent migration of microplastics in agricultural soil under simulative and natural rainfall. Sci. Total Environ. 2022, 815, 152507. [Google Scholar] [CrossRef]
- Wang, Q.; Adams, C.A.; Wang, F.; Sun, Y.; Zhang, S. Interactions between microplastics and Soil Fauna: A Critical Review. Crit. Rev. Environ. Sci. Technol. 2021, 52, 3211–3243. [Google Scholar] [CrossRef]
- Chen, H.; Wang, Y.; Sun, X.; Peng, Y.; Xiao, L. Mixing effect of polylactic acid microplastic and straw residue on soil property and ecological function. Chemosphere 2020, 243, 125271. [Google Scholar] [CrossRef]
- Boughattas, I.; Hattab, S.; Zitouni, N.; Mkhinini, M.; Missawi, O.; Bousserrhine, N.; Banni, M. Assessing the presence of microplastic particles in Tunisian agriculture soils and their potential toxicity effects using Eisenia andrei as bioindicator. Sci. Total Environ. 2021, 796, 148959. [Google Scholar] [CrossRef]
- Qi, Y.; Ossowicki, A.; Yang, X.; Huerta Lwanga, E.; Dini-Andreote, F.; Geissen, V.; Garbeva, P. Effects of plastic mulch film residues on wheat rhizosphere and soil properties. J. Hazard. Mater. 2020, 387, 121711. [Google Scholar] [CrossRef]
- Kwak, J.I.; An, Y.-J. Post covid-19 pandemic: Biofragmentation and soil ecotoxicological effects of microplastics derived from face masks. J. Hazard. Mater. 2021, 416, 126169. [Google Scholar] [CrossRef]
- Huerta Lwanga, E.; Gertsen, H.; Gooren, H.; Peters, P.; Salánki, T.; van der Ploeg, M.; Besseling, E.; Koelmans, A.A.; Geissen, V. Incorporation of microplastics from litter into burrows of Lumbricus terrestris. Environ. Pollut. 2017, 220, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Seijo, A.; Lourenço, J.; Rocha-Santos, T.A.P.; da Costa, J.; Duarte, A.C.; Vala, H.; Pereira, R. Histopathological and molecular effects of microplastics in Eisenia andrei Bouché. Environ. Pollut. 2017, 220, 495–503. [Google Scholar] [CrossRef]
- Jiang, X.; Chang, Y.; Zhang, T.; Qiao, Y.; Klobučar, G.; Li, M. Toxicological effects of polystyrene microplastics on earthworm (Eisenia fetida). Environ. Pollut. 2020, 259, 113896. [Google Scholar] [CrossRef] [PubMed]
- Cao, D.; Wang, X.; Luo, X.; Liu, G.; Zheng, H. Effects of polystyrene microplastics on the fitness of earthworms in an agricultural soil. IOP Conf. Ser. Earth Environ. Sci. 2017, 61, 012148. [Google Scholar] [CrossRef]
- Mondal, T.; Jho, E.H.; Hwang, S.K.; Hyeon, Y.; Park, C. Responses of earthworms exposed to low-density polyethylene microplastic fragments. Chemosphere 2023, 333, 138945. [Google Scholar] [CrossRef] [PubMed]
- Hua, Z.; Ma, S.; Ouyang, Z.; Liu, P.; Qiang, H.; Guo, X. The review of nanoplastics in plants: Detection, analysis, uptake, migration and risk. TrAC Trends Anal. Chem. 2023, 158, 116889. [Google Scholar] [CrossRef]
- Atugoda, T.; Vithanage, M.; Wijesekara, H.; Bolan, N.; Sarmah, A.K.; Bank, M.S.; You, S.; Ok, Y.S. Interactions between microplastics, pharmaceuticals and personal care products: Implications for vector transport. Environ. Int. 2021, 149, 106367. [Google Scholar] [CrossRef]
- De Falco, F.; Cocca, M.; Guarino, V.; Gentile, G.; Ambrogi, V.; Ambrosio, L.; Avella, M. Novel finishing treatments of Polyamide fabrics by electrofluidodynamic process to reduce microplastic release during washings. Polym. Degrad. Stab. 2019, 165, 110–116. [Google Scholar] [CrossRef]
- Napper, I.E.; Thompson, R.C. Release of synthetic microplastic plastic fibres from domestic washing machines: Effects of fabric type and washing conditions. Mar. Pollut. Bull. 2016, 112, 39–45. [Google Scholar] [CrossRef]
- Praveena, S.M.; Shaifuddin, S.N.; Akizuki, S. Exploration of microplastics from personal care and cosmetic products and its estimated emissions to marine environment: An evidence from Malaysia. Mar. Pollut. Bull. 2018, 136, 135–140. [Google Scholar] [CrossRef]
- Sutherland, W.J.; Clout, M.; Côté, I.M.; Daszak, P.; Depledge, M.H.; Fellman, L.; Fleishman, E.; Garthwaite, R.; Gibbons, D.W.; De Lurio, J.; et al. A horizon scan of Global Conservation Issues for 2010. Trends Ecol. Evol. 2010, 25, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Bianco, A.; Passananti, M. Atmospheric Micro and Nanoplastics: An enormous microscopic problem. Sustainability 2020, 12, 7327. [Google Scholar] [CrossRef]
- Kurniawan, S.B.; Said, N.S.; Imron, M.F.; Abdullah, S.R. Microplastic pollution in the environment: Insights into emerging sources and potential threats. Environ. Technol. Innov. 2021, 23, 101790. [Google Scholar] [CrossRef]
- Bank, M.S.; Mitrano, D.M.; Rillig, M.C.; Sze Ki Lin, C.; Ok, Y.S. Embrace complexity to understand microplastic pollution. Nat. Rev. Earth Environ. 2022, 3, 736–737. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Fu, D.; Qi, H.; Lan, C.Q.; Yu, H.; Ge, C. Micro- and nano-plastics in marine environment: Source, distribution and threats—A review. Sci. Total Environ. 2020, 698, 134254. [Google Scholar] [CrossRef]
- Rillig, M.C.; Lehmann, A. Microplastic in terrestrial ecosystems. Science 2020, 368, 1430–1431. [Google Scholar] [CrossRef]
- Rillig, M.C.; Lehmann, A.; de Souza Machado, A.A.; Yang, G. Microplastic effects on plants. New Phytol. 2019, 223, 1066–1070. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Y.; Wang, J.; Wu, L.; Liu, Z.; Wei, H.; Zhang, J. Unraveling consequences of the co-exposure of polyethylene microplastics and acid rain on plant-microbe-soil system. Chemosphere 2022, 307, 135941. [Google Scholar] [CrossRef]
- Chang, X.; Fang, Y.; Wang, Y.; Wang, F.; Shang, L.; Zhong, R. Microplastic pollution in soils, plants, and animals: A review of distributions, effects and potential mechanisms. Sci. Total Environ. 2022, 850, 157857. [Google Scholar] [CrossRef]
- Zhou, J.; Wen, Y.; Marshall, M.R.; Zhao, J.; Gui, H.; Yang, Y.; Zeng, Z.; Jones, D.L.; Zang, H. Microplastics as an emerging threat to plant and soil health in Agroecosystems. Sci. Total Environ. 2021, 787, 147444. [Google Scholar] [CrossRef]
- Yin, L.; Wen, X.; Huang, D.; Du, C.; Deng, R.; Zhou, Z.; Tao, J.; Li, R.; Zhou, W.; Wang, Z.; et al. Interactions between microplastics/nanoplastics and Vascular plants. Environ. Pollut. 2021, 290, 117999. [Google Scholar] [CrossRef] [PubMed]
- Okeke, E.S.; Okoye, C.O.; Atakpa, E.O.; Ita, R.E.; Nyaruaba, R.; Mgbechidinma, C.L.; Akan, O.D. Microplastics in agroecosystems-impacts on ecosystem functions and food chain. Resour. Conserv. Recycl. 2022, 177, 105961. [Google Scholar] [CrossRef]
- Yadav, S.; Gupta, E.; Patel, A.; Srivastava, S.; Mishra, V.K.; Singh, P.C.; Srivastava, P.K.; Barik, S.K. Unravelling the emerging threats of microplastics to Agroecosystems. Rev. Environ. Sci. Bio/Technol. 2022, 21, 771–798. [Google Scholar] [CrossRef]
- Maafa, I. Pyrolysis of polystyrene waste: A Review. Polymers 2021, 13, 225. [Google Scholar] [CrossRef] [PubMed]
- Mamathaxim, N.; Song, W.; Wang, Y.; Habibul, N. Effects of microplastics on arsenic uptake and distribution in rice seedlings. Sci. Total Environ. 2023, 862, 160837. [Google Scholar] [CrossRef]
- Xu, C.; Wang, H.; Zhou, L.; Yan, B. Phenotypic and transcriptomic shifts in roots and leaves of rice under the joint stress from microplastic and Arsenic. J. Hazard. Mater. 2023, 447, 130770. [Google Scholar] [CrossRef]
- Wang, W.; Yuan, W.; Xu, E.G.; Li, L.; Zhang, H.; Yang, Y. Uptake, translocation, and biological impacts of micro(nano)plastics in terrestrial plants: Progress and prospects. Environ. Res. 2022, 203, 111867. [Google Scholar] [CrossRef]
- Ma, J.; Aqeel, M.; Khalid, N.; Nazir, A.; Alzuaibr, F.M.; Al-Mushhin, A.A.M.; Hakami, O.; Iqbal, M.F.; Chen, F.; Alamri, S.; et al. Effects of microplastics on growth and metabolism of rice (Oryza sativa L.). Chemosphere 2022, 307, 135749. [Google Scholar] [CrossRef]
- Wang, Y.; Xiang, L.; Wang, F.; Redmile-Gordon, M.; Bian, Y.; Wang, Z.; Gu, C.; Jiang, X.; Schäffer, A.; Xing, B. Transcriptomic and metabolomic changes in lettuce triggered by microplastics-stress. Environ. Pollut. 2023, 320, 121081. [Google Scholar] [CrossRef]
- Shi, R.; Liu, W.; Lian, Y.; Zeb, A.; Wang, Q. Type-dependent effects of microplastics on tomato (Lycopersicon esculentum L.): Focus on root exudates and metabolic reprogramming. Sci. Total Environ. 2023, 859, 160025. [Google Scholar] [CrossRef]
- Biba, R.; Cvjetko, P.; Jakopčić, M.; Komazec, B.; Tkalec, M.; Dimitrov, N.; Begović, T.; Balen, B. Phytotoxic effects of polystyrene and polymethyl methacrylate microplastics on Allium cepa roots. Plants 2023, 12, 747. [Google Scholar] [CrossRef]
- Chen, F.; Aqeel, M.; Khalid, N.; Nazir, A.; Irshad, M.K.; Akbar, M.U.; Alzuaibr, F.M.; Ma, J.; Noman, A. Interactive effects of polystyrene microplastics and Pb on growth and phytochemicals in mung bean (Vigna radiata L.). J. Hazard. Mater. 2023, 449, 130966. [Google Scholar] [CrossRef]
- Song, Z.; Zhao, X.; Dong, Y.; Bai, L.; Wang, S.; Gao, M. Effects of polystyrene nanoplastics with different functional groups on the accumulation and toxicity of Pb on dandelion. Chemosphere 2023, 310, 136874. [Google Scholar] [CrossRef]
- Gao, D.; Liao, H.; Junaid, M.; Chen, X.; Kong, C.; Wang, Q.; Pan, T.; Chen, G.; Wang, X.; Wang, J. Polystyrene nanoplastics’ accumulation in roots induces adverse physiological and molecular effects in water spinach Ipomoea aquatica Forsk. Sci. Total Environ. 2023, 872, 162278. [Google Scholar] [CrossRef]
- Li, H.; Chang, X.; Zhang, J.; Wang, Y.; Zhong, R.; Wang, L.; Wei, J.; Wang, Y. Uptake and distribution of microplastics of different particle sizes in maize (Zea mays) seedling roots. Chemosphere 2023, 313, 137491. [Google Scholar] [CrossRef]
- Liu, Y.; Jin, T.; Wang, L.; Tang, J. Polystyrene micro and nanoplastics attenuated the bioavailability and toxic effects of perfluorooctane sulfonate (PFOS) on soybean (Glycine max) sprouts. J. Hazard. Mater. 2023, 448, 130911. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, W.; Lian, Y.; Shi, R.; Wang, Q.; Zeb, A. Single and combined toxicity of polystyrene nanoplastics and arsenic on Submerged Plant Myriophyllum verticillatum L. Plant Physiol. Biochem. 2023, 194, 513–523. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Lin, B.; Wu, L.; Pan, P.; Liu, B.; Li, R. Antagonistic effect of polystyrene nanoplastics on cadmium toxicity to maize (Zea mays L.). Chemosphere 2022, 307, 135714. [Google Scholar] [CrossRef] [PubMed]
- Surgun-Acar, Y. Response of soybean (Glycine max L.) seedlings to polystyrene nanoplastics: Physiological, biochemical, and molecular perspectives. Environ. Pollut. 2022, 314, 120262. [Google Scholar] [CrossRef] [PubMed]
- Achilias, D.S.; Roupakias, C.; Megalokonomos, P.; Lappas, A.A.; Antonakou, Ε.V. Chemical recycling of Plastic Wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP). J. Hazard. Mater. 2007, 149, 536–542. [Google Scholar] [CrossRef]
- Sun, H.; Shi, Y.; Zhao, P.; Long, G.; Li, C.; Wang, J.; Qiu, D.; Lu, C.; Ding, Y.; Liu, L.; et al. Effects of polyethylene and biodegradable microplastics on photosynthesis, antioxidant defense systems, and arsenic accumulation in maize (Zea mays L.) seedlings grown in arsenic-contaminated soils. Sci. Total Environ. 2023, 868, 161557. [Google Scholar] [CrossRef] [PubMed]
- Uzamurera, A.G.; Zhao, Z.-Y.; Wang, P.-Y.; Wei, Y.-X.; Mo, F.; Zhou, R.; Wang, W.-L.; Ullah, F.; Khan, A.; Xiong, X.-B.; et al. Thickness effects of polyethylene and biodegradable film residuals on soil properties and dryland maize productivity. Chemosphere 2023, 329, 138602. [Google Scholar] [CrossRef] [PubMed]
- Martín, C.; Pirredda, M.; Fajardo, C.; Costa, G.; Sánchez-Fortún, S.; Nande, M.; Mengs, G.; Martín, M. Transcriptomic and physiological effects of polyethylene microplastics on Zea mays seedlings and their role as a vector for organic pollutants. Chemosphere 2023, 322, 138167. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Gong, K.; Shao, X.; Liang, W.; Zhang, W.; Peng, C. Effect of polyethylene, polyamide, and polylactic acid micro-plastics on CR accumulation and toxicity to cucumber (Cucumis sativus L.) in hydroponics. J. Hazard. Mater. 2023, 450, 131022. [Google Scholar] [CrossRef]
- Gomes, A.R.; Freitas, Í.N.; Luz, T.M.; Guimarães, A.T.; Araújo, A.P.; Kamaraj, C.; Rahman, M.M.; Islam, A.R.; Arias, A.H.; Silva, F.B.; et al. Multiple endpoints of polyethylene microplastics toxicity in vascular plants of freshwater ecosystems: A study involving Salvinia auriculata (Salviniaceae). J. Hazard. Mater. 2023, 450, 131069. [Google Scholar] [CrossRef]
- De Silva, Y.S.; Rajagopalan, U.M.; Kadono, H.; Li, D. Effects of microplastics on lentil (Lens culinaris) seed germination and seedling growth. Chemosphere 2022, 303, 135162. [Google Scholar] [CrossRef]
- Bouaicha, O.; Tiziani, R.; Maver, M.; Lucini, L.; Miras-Moreno, B.; Zhang, L.; Trevisan, M.; Cesco, S.; Borruso, L.; Mimmo, T. Plant species-specific impact of polyethylene microspheres on seedling growth and the metabolome. Sci. Total Environ. 2022, 840, 156678. [Google Scholar] [CrossRef]
- Reay, M.K.; Greenfield, L.M.; Graf, M.; Lloyd, C.E.M.; Evershed, R.P.; Chadwick, D.R.; Jones, D.L. LDPE and biodegradable PLA-pbat plastics differentially affect plant-soil nitrogen partitioning and dynamics in a Hordeum vulgare mesocosm. J. Hazard. Mater. 2023, 447, 130825. [Google Scholar] [CrossRef]
- Menicagli, V.; Balestri, E.; Fulignati, S.; Raspolli Galletti, A.M.; Lardicci, C. Plastic litter in coastal sand dunes: Degradation behavior and impact on native and non-native invasive plants. Environ. Pollut. 2023, 316, 120738. [Google Scholar] [CrossRef]
- Akovali, G. Plastic Materials: Polyvinyl Chloride (PVC). In Toxicity of Building Materials; Woodhead Publishing: Cambridge, UK, 2012; pp. 23–53. [Google Scholar]
- Zhang, K.; Gao, N.; Li, Y.; Dou, S.; Liu, Z.; Chen, Y.; Ma, C.; Zhang, H. Responses of maize (Zea mays L.) seedlings growth and physiological traits triggered by polyvinyl chloride microplastics is dominated by soil available nitrogen. Ecotoxicol. Environ. Saf. 2023, 252, 114618. [Google Scholar] [CrossRef]
- Ikhajiagbe, B.; Omoregie, G.O.; Adama, S.O.; Esheya, K.U. Growth responses of Celosia argentea L. in soils polluted with microplastics. bioRxiv 2023. [Google Scholar] [CrossRef]
- Khan, M.A.; Kumar, S.; Wang, Q.; Wang, M.; Fahad, S.; Nizamani, M.M.; Chang, K.; Khan, S.; Huang, Q.; Zhu, G. Influence of polyvinyl chloride microplastic on chromium uptake and toxicity in sweet potato. Ecotoxicol. Environ. Saf. 2023, 251, 114526. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Bai, J.; Wen, L.; Wang, W.; Zhang, L.; Liu, Z.; Liu, H. Phytotoxicity of microplastics to the Floating Plant Spirodela polyrhiza (L.): Plant functional traits and Metabolomics. Environ. Pollut. 2023, 322, 121199. [Google Scholar] [CrossRef]
- Chai, M.; Li, R.; Li, B.; Wu, H.; Yu, L. Responses of mangrove (Kandelia obovata) growth, photosynthesis, and rhizosphere soil properties to microplastic pollution. Mar. Pollut. Bull. 2023, 189, 114827. [Google Scholar] [CrossRef]
- Song, B.; Shang, S.; Cai, F.M.; Liu, Z.; Fang, J.; Li, N.; Adams, J.M.; Razavi, B.S. Microbial resistance in rhizosphere hotspots under biodegradable and conventional microplastic amendment: Community and functional sensitivity. Soil Biol. Biochem. 2023, 180, 108989. [Google Scholar] [CrossRef]
- Steinbüchel, A. Biodegradable plastics. Curr. Opin. Biotechnol. 1992, 3, 291–297. [Google Scholar] [CrossRef]
- Brown, R.W.; Chadwick, D.R.; Zang, H.; Graf, M.; Liu, X.; Wang, K.; Greenfield, L.M.; Jones, D.L. Bioplastic (PHBV) addition to soil alters microbial community structure and negatively affects plant-microbial metabolic functioning in maize. J. Hazard. Mater. 2023, 441, 129959. [Google Scholar] [CrossRef]
- Celletti, S.; Fedeli, R.; Ghorbani, M.; Loppi, S. Impact of starch-based bioplastic on growth and biochemical parameters of Basil Plants. Sci. Total Environ. 2023, 856, 159163. [Google Scholar] [CrossRef]
- Liwarska-Bizukojc, E. Effect of innovative bio-based plastics on early growth of higher plants. Polymers 2023, 15, 438. [Google Scholar] [CrossRef]
- Serrano-Ruiz, H.; Martin-Closas, L.; Pelacho, A.M. Impact of buried debris from agricultural biodegradable plastic mulches on two horticultural crop plants: Tomato and lettuce. Sci. Total Environ. 2023, 856, 159167. [Google Scholar] [CrossRef]
- Wu, X.; Lu, J.; Du, M.; Xu, X.; Beiyuan, J.; Sarkar, B.; Bolan, N.; Xu, W.; Xu, S.; Chen, X.; et al. Particulate plastics-plant interaction in soil and its implications: A Review. Sci. Total Environ. 2021, 792, 148337. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Li, Y.; Liu, S.; Junaid, M.; Wang, J. Effects of micro(nano)plastics on higher plants and the rhizosphere environment. Sci. Total Environ. 2022, 807, 150841. [Google Scholar] [CrossRef] [PubMed]
Effect on | |||||||||
---|---|---|---|---|---|---|---|---|---|
MP Types | Species | Concentration | Particle Size | Medium Used | Germination | Root Growth | Shoot Growth | Notes | Reference |
Polyethylene (PE) | Zea mays L. | 0.1, 1, and 10% (w/w) | n.d. | Pot experiments | n.d. | n.d. | − | Inhibition of chlorophyll synthesis and photosynthetic rates in maize seedling leaves. | [73] |
Z. mays | n.d. | 4 cm2 | Pot experiment | n.d. | − | − | PE residual films had no noticeable effect on the abovementioned soil parameters. | [74] | |
Z. mays | 0.4 mg m/L | 236 ± 7.4 μm and 281 ± 14 μm | In vitro experiment | n.d. | − | − | MPs may act as pollutant carriers, affecting plant physiology and transcriptomic pathways. | [75] | |
Cucumis sativus L. | 200 mg/L | 13, 48, and 500 μm | Hydroponic | n.d. | − | − | Inhibited the photosynthesis of seedlings and caused lipid peroxidation. | [76] | |
Salvinia auriculata Aubl. | 1 × 1012 particles/m3 | 35.46 µm ± 18.17 µm | Hydroponic | n.d. | − | − | Effects on oxidative and nitrosative stress and changes in membrane permeability. | [77] | |
Lens culinaris Medik | 10, 50, and 100 mg/L | 740–4990 nm | Optical coherence tomography (bOCT) | − | n.d. | n.d. | The inhibition of germination and seedling growth. | [78] | |
Hordeum vulgare L. | 0, 10, 100, and 1000 mg/L | 790 nm–4999 nm | Petri dish experiments | 0 | + | + | No significant impact of PE MPs on seed germination of barley, cucumber, or tomato plants. | [79] | |
C. sativus | 0 | − | + | ||||||
Solanum lycopersicum L. | − | − | + | ||||||
Lactuca sativa L. | 1, 5, and 10% PE MPs | 2–4 mm | Pot experiment | n.d. | + | n.d. | Resulted in changes in the structure and function of the soil microbial community. | [50] | |
High-density polyethylene (HDPE) | H. vulgare | 2% (w/w) | 1 cm × 1 cm | Glass mesocosms | n.d. | 0 | − | No effect on root growth but showed shoot growth inhibition. | [80] |
Thinopyrum junceum L. | n.d. | 20 cm × 20 cm | Pot experiments | n.d. | − | − | Growth inhibition was observed. | [81] | |
Carpobrotus sp. | n.d. | − | − |
Effect on | ||||||||
---|---|---|---|---|---|---|---|---|
Species | Concentration | Particle Size | Medium Used | Germination | Root Growth | Shoot Growth | Notes | Reference |
Zea mays L. | 0, 0.1, 1, and 10%, w/w | 15 µm | Pot experiment | n.d. | − | − | SOD and CAT in leaves increased to alleviate the stress. | [83] |
Celosia argentea L. | n.d. | 0.7, 1.7, and 2.4 mm | Pot experiment | n.d. | − | − | The presence of the microplastics in the soil affected the growth of the plant significantly, some plastics affected it positively, some others negatively. | [84] |
Ipomoea batatas L. | 100–200 mg/L | 6.5 µm | Hydroponic | n.d. | 0 | 0 | PVC MPs enhanced Cr(VI) accumulation and toxicity. | [85] |
Spirodela polyrhiza L. | 0, 10, 100, and 1000 mg/L | 3.87 ± 3.14 μm | Open glass containers | n.d. | − | n.d. | Inhibited morphological traits, reproductive traits, and nutrient accumulation as well. | [86] |
Spirodela polyrhiza L. | 0, 10, 100, and 1000 mg/L | 600 μm, 150 μm, and 13 μm | Exposure experiments | n.d. | − | n.d. | The responses of rhizosphere soil properties were reduced soil bulk density and improved soil porosity, caused by MPs. | [87] |
Oryza sativa L. | 10% (w/w) | 155–180 μm | Soil incubation | n.d. | − | 0 | No effect on shoot growth but displayed root growth inhibition. | [88] |
MP Types | Species | Concentration | Particle Size | Medium Used | Effect on | Notes | References | ||
---|---|---|---|---|---|---|---|---|---|
Germination | Root Growth | Shoot Growth | |||||||
Bio-Based Plastics | Zea mays L. | 0.1%, 1%, and 10% (w/w) | - | Pot experiment | n.d. | n.d. | − | Inhibition of chlorophyll synthesis and photosynthetic rates in maize seedling leaves. | [73] |
Z. mays | n.d. | 4 cm2 | Pot experiment | n.d. | − | − | Soil water content, aggregate stability, inorganic nitrogen, and maize crop productivity were all influenced by BIO film residues, due to their high degradability. | [74] | |
Thinopyrum junceum L. | n.d. | 20 × 20 cm | Pot experiment | n.d. | − | − | Reduced the performance of the native species. | [81] | |
Carpobrotus sp. | n.d. | − | − | Favored the spread of the invasive species. | |||||
Ocimum basilicum L | 3.75 g of corn starch powder | 5 mm | Pot experiment | n.d. | − | − | Oxidative stress was induced in the aerial part of basil plants. | [91] | |
Sorghum saccharatum L. | 0.02, 0.095, 0.48, 2.38, and 11.9% (w/w) | 2.5 mm | Soil incubation | 0 | − | − | No effect on germination, but growth inhibition was observed. | [92] | |
Lepidium sativum L. | 0 | − | − | ||||||
Sinapis alba L. | 0 | − | − | ||||||
Lycopersicon esculentum Mill. | 100 and 1000 mg/kg of NPs | 1 cm2 | Pot experiment | − | n.d. | − | Tomato was more susceptible to specific BDM. | [93] | |
Lactuca sativa L. | − | n.d. | − | Lettuce is a reliable species to identify potential BDM ecotoxicity. | |||||
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV) | Z. mays | 0.01, 0.1, 1, or 10% | Pot experiment | n.d. | − | − | Significant changes in the soil metabolome and microbial community, likely associated with changing function, were observed. | [90] | |
Polylactic acid (PLA) | Hordeum vulgare L. | n.d. | 1 × 1 cm | Glass mesocosms | n.d. | 0 | − | No effect on root growth but shoot growth inhibition was observed. | [84] |
Cucumis sativus L. | 200 mg/L | 13, 48, and 500 μm | Hydroponic | n.d. | − | − | Inhibited the photosynthesis of seedlings and caused lipid peroxidation. | [76] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mészáros, E.; Bodor, A.; Kovács, E.; Papp, S.; Kovács, K.; Perei, K.; Feigl, G. Impacts of Plastics on Plant Development: Recent Advances and Future Research Directions. Plants 2023, 12, 3282. https://doi.org/10.3390/plants12183282
Mészáros E, Bodor A, Kovács E, Papp S, Kovács K, Perei K, Feigl G. Impacts of Plastics on Plant Development: Recent Advances and Future Research Directions. Plants. 2023; 12(18):3282. https://doi.org/10.3390/plants12183282
Chicago/Turabian StyleMészáros, Enikő, Attila Bodor, Etelka Kovács, Sarolta Papp, Kamilla Kovács, Katalin Perei, and Gábor Feigl. 2023. "Impacts of Plastics on Plant Development: Recent Advances and Future Research Directions" Plants 12, no. 18: 3282. https://doi.org/10.3390/plants12183282