Effect of Reducing Nitrogen Fertilization and Adding Organic Fertilizer on Net Photosynthetic Rate, Root Nodules and Yield in Peanut
Abstract
:1. Introduction
2. Results
2.1. Effect of Nitrogen Fertilization with Organic Fertilizer on Photosynthetic Characteristics of Peanut
2.2. Effect of Nitrogen Reduction with Organic Fertilizer on Peanut Root Nodules
2.3. Effect of Nitrogen Reduction with Organic Fertilizer on Yield Traits of Peanut
2.4. Effect of Nitrogen Reduction Combined with Manure on Fertilizer Contribution Rate
2.5. Linear Analysis of Net Photosynthetic Rate, Root Nodules and Yield
3. Discussion
3.1. Response of Plant Morphology and Photosynthetic Characteristics to Different Fertilization Treatments
3.2. Response of Peanut Root Tumor Number and Root Tumor Fresh Weight to Nitrogen Reduction with Organic Fertilizer Application
3.3. Effect of Nitrogen Reduction and Organic Fertilizer Application on Peanut Yield and Fertilizer Contribution Rate
4. Method and Material
4.1. Growth Conditions
4.2. Materials
4.3. Experiment Design
4.4. Methods
4.4.1. Measurement of Photosynthetic Rate and SPAD Values
4.4.2. Root Nodules Determination
4.4.3. Yield and Yield Components
4.4.4. Data Processing
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lin, Y.C.; Hu, Y.G.; Ren, C.Z.; Guo, L.C.; Wang, C.L.; Jiang, Y.; Wang, X.J.; Phendukani, H.; Zeng, Z.H. Effects of nitrogen application on chlorophyll fluorescence parameters and leaf gas exchange in Naked Oat. J. Integr. Agric. 2013, 12, 2164–2171. [Google Scholar] [CrossRef] [Green Version]
- Yuan, H.; Ge, T.; Zhou, P.; Liu, S.; Roberts, P.; Zhu, H.; Zou, Z.; Tong, C.; Wu, J. Soil microbial biomass and bacterial and fungal community structures responses to long-term fertilization in paddy soils. J. Soils Sediments 2013, 13, 877–886. [Google Scholar] [CrossRef]
- Zhao, J.; Ni, T.; Li, J.; Lu, Q.; Fang, Z.; Huang, Q.; Zhang, R.; Li, R.; Shen, B.; Shen, Q. Effects of organic–inorganic compound fertilizer with reduced chemical fertilizer application on crop yields, soil biological activity and bacterial community structure in a rice–wheat cropping system. Appl. Soil Ecol. 2016, 99, 1–12. [Google Scholar] [CrossRef]
- Wei, W.; Yan, Y.; Cao, J.; Christie, P.; Zhang, F.; Fan, M. Effects of combined application of organic amendments and fertilizers on crop yield and soil organic matter: An integrated analysis of long-term experiments. Agric. Ecosyst. Environ. 2016, 225, 86–92. [Google Scholar] [CrossRef] [Green Version]
- Chadwick, D.; Jia, W.; Tong, Y.; Yu, G.; Shen, Q.; Chen, Q. Improving manure nutrient management towards sustainable agricultural intensification in China. Agric. Ecosyst. Environ. 2015, 209, 34–46. [Google Scholar] [CrossRef]
- Han, S.; Wu, J.; Zhang, X.M.; Hu, P.; Yu, Y.B.; Li, M.; Wu, H.; Tang, S. Effects of increasing application of organic fertilizer on subsoil fertility betterment in paddy field. J. Agric. Resour. Environ. 2018, 35, 334–341. [Google Scholar]
- Zhao, T.C.; He, A.B.; Khan, M.N.; Yin, Q.; Song, S.K.; Nie, L.X. Coupling of reduced inorganic fertilizer with plant-based organic fertilizer as a promising fertilizer management for colored rice in tropical regions. J. Integr. Agric. 2023, in press. [Google Scholar] [CrossRef]
- Moe, K.; Moh, S.M.; Htwe, A.Z.; Kajihara, Y.; Yamakawa, T. Effects of integrated organic and inorganic fertilizers on yield and growth parameters of rice varieties. Rice Sci. 2019, 26, 309–318. [Google Scholar] [CrossRef]
- Sharma, N.; Shukla, Y.R.; Singh, K.; Mehta, D.K. Soil fertility, nutrient uptake and yield of bell pepper as influenced by conjoint application of organic and inorganic fertilizers. Commun. Soil Sci. Plant Anal. 2020, 51, 1626–1640. [Google Scholar]
- Huang, J.; Keshavarz Afshar, R.; Tao, A.; Chen, C. Efficacy of starter N fertilizer and rhizobia inoculant in dry pea (Pisum sativum Linn.) production in a semi-arid temperate environment. Soil Sci. Plant Nutr. 2017, 63, 248–253. [Google Scholar]
- Wu, Z.F.; Chen, D.X.; Zheng, Y.M.; Wang, C.B.; Sun, X.W.; Li, X.D.; Wang, X.X.; Shi, C.R.; Feng, H.; Yu, T.Y. Supply characteristics of different nitrogen sources and nitrogen use efficiency of peanut. Chin. J. Oil Crop Sci. 2016, 38, 207–213. [Google Scholar]
- Etesami, H. Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: Mechanisms and future prospects. Ecotoxicol. Environ. Saf. 2018, 147, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Kaschuk, G.; Nogueira, M.A.; Luca, M.J.D.; Hungria, M. Response of determinate and indeterminate soybean cultivars to basal and topdressing N fertilization compared to sole inoculation with Bradyrhizobium. Field Crops Res. 2016, 195, 21–27. [Google Scholar] [CrossRef]
- Reid, T.E.; Kavamura, V.N.; Abadie, M.; Torres-Ballesteros, A.; Mauchline, T.H. Inorganic chemical fertilizer application to wheat reduces the abundance of putative plant growth-promoting rhizobacteria. Front. Microbiol. 2021, 12, 458. [Google Scholar] [CrossRef]
- Sharma, M.P.; Jaisinghani, K.; Sharma, S.K.; Bhatia, V.S. Effect of native soybean rhizobia and AM fungi in the improvement of nodulation, growth, soil enzymes and physiological status of soybean under microcosm conditions. Agric. Res. 2012, 1, 346–351. [Google Scholar] [CrossRef]
- Shekhawat, K.; Singh, Y. Effect of nitrogen sources, sulphur and boron on growth parameters and productivity of spring sunflower. Indian J. Plant Physiol. 2009, 14, 290–298. [Google Scholar]
- Zhang, X.; Mao, J.W.; Si, X.Z.; Li, L.; Li, G.P. Effects of nitrogen application dates on yield and nitrogen use efficiency of summer peanut. Chin. J. Oil Crop Sci. 2015, 37, 897–901. [Google Scholar]
- Li, Y.D.; Huang, J.B.; Ye, C.; Shu, S.F.; Sun, B.F.; Chen, L.C.; Wang, K.J.; Cao, Z.S. Plant type and canopy light interception characteristics in double cropping rice canopy under different nitrogen rates. Acta Agron. Sin. 2019, 45, 1375–1385. [Google Scholar]
- Yang, J.S.; Li, S.X.; Zhang, Z.M.; Wu, J.X.; Fan, H. Effect of nitrogen application on canopy photosysthetic and dry matter accumulation of peanut. J. Nucl. Agric. Sci. 2014, 28, 154–160. [Google Scholar]
- Gohari, A.A.; Niyaki, S.A.N. Effects of iron and nitrogen fertilizers on yield and yield components of peanut (Arachis hypogaea L.) in Astaneh Ashrafiyeh, Iran. Am.-Eurasian J. Agric. Environ. Sci. 2010, 9, 256–262. [Google Scholar]
- Xie, J.X.; Ji, Y.F.; Liu, J.M.; Ye, A.L.; Sun, J.F.; Chen, Y. Effects of the amount of nitrogen fertilizer on the growth and yield in peanut. Peanut Sci. Technol. 2000, 2, 14–18. [Google Scholar]
- Wang, C.B.; Wu, Z.F.; Liu, J.H.; Yang, W.Q.; Lu, J.L.; Guo, F.; Cheng, B.; Zheng, Y.P.; Chen, D.X. Influence of N rates on nitrate accumulation and distribution in peanut. Plant Nutr. Fertil. Sci. 2007, 13, 915–919. [Google Scholar]
- Lombin, G.; Singh, L.; Yayock, J.Y. A decade of fertilizer research on groundnuts (Arachis hypogaea L) in the savannah zone of nigeria. Fertil. Res. 1985, 6, 157–170. [Google Scholar] [CrossRef]
- Divito, G.A.; Sadras, V.O. How do phosphorus, potassium and sulphur affect plant growth and biological nitrogen fixation in crop and pasture legumes? A meta-analysis. Field Crops Res. 2014, 156, 161–171. [Google Scholar] [CrossRef]
- Sato, T.; Onoma, N.; Fujikake, H.; Ohtake, N.; Sueyoshi, K.; Ohyama, T. Changes in four leghemoglobin components in nodules of hypernodulating soybean (Glycine max [L] Merr.) mutant and its parent in the early nodule developmental stage. Plant Soil 2001, 237, 129–135. [Google Scholar] [CrossRef]
- Tajima, R.; Morita, S.; Abe, J. Distribution pattern of root nodules in relation to root architecture in two leading cultivars of peanut (Arachis hypogaea L.) in Japan (crop morphology). Plant Prod. Sci. 2006, 9, 249–255. [Google Scholar] [CrossRef]
- Zheng, Y.M.; Wang, C.X.; Liu, Q.M.; Wu, Z.F.; Wang, C.B.; Sun, X.S.; Zheng, Y.P. Effect of nitrogen fertilizer regulation on root growth and nodulating ability of peanut. J. Nucl. Agric. Sci. 2017, 31, 2418–2425. [Google Scholar]
- Liu, Q.; Song, H.X.; Rong, X.M.; Peng, J.W.; Xie, G.X. Differences in nitrogen use efficiency among different rape varieties and their physiological basis. Plant Nutr. Fertil. Sci. 2008, 14, 113–119. [Google Scholar]
- Jiang, P.; Xu, F.X.; Xiong, H.; Zhang, L.; Zhu, Y.C.; Guo, X.Y.; Chen, L.; Ming, J. Effect of reduced nitrogen application on grain yield and nitrogen use efficiency of hybrid mid-season rice under two yield levels. J. Nucl. Agric. Sci. 2020, 1, 153–162. [Google Scholar]
- Yang, W.B.; Li, D.X.; Fu, H.Q.; Li, H. Screening of peanut varieties with high nitrogen efficiency and its evaluation indices in seedling stage. J. Peanut Sci. 2015, 44, 7–12. [Google Scholar]
- Zheng, Y.M.; Sun, X.S.; Wang, C.B.; Zheng, Y.P. Differences in nitrogen utilization characteristics of different peanut genotypes in high fertility soils. J. Appl. Ecol. 2016, 27, 3977–3986. [Google Scholar]
- Qiao, Y.F.; Han, X.Z. Effects of long-term fertilization on root phenotype and nodulation of soybean. Soybean Sci. 2011, 30, 119–122. [Google Scholar]
- Bi, L.D.; Yao, S.H.; Zhang, B. Impacts of long-term chemical and organic fertilization on soil puddlability in subtropical China. Soil Tillage Res. 2015, 152, 94–103. [Google Scholar] [CrossRef]
D40 | D85 | D125 | ||||
---|---|---|---|---|---|---|
Item | NN | NFW | NN | NFW | NN | NFW |
CK-0 | 154.33 ± 14.98 a | 0.26 ± 0.0085 a | 360.67 ± 43.29 a | 1.40 ± 0.1699 a | 153.67 ± 69.37 c | 0.34 ± 0.1554 d |
CK | 73.00 ± 12.29 e | 0.12 ± 0.0205 f | 159.67 ± 35.57 f | 0.62 ± 0.1097 e | 225.33 ± 61.52 abc | 0.5 ± 0.1369 abcd |
T1 | 112.67 ± 10.69 cd | 0.19 ± 0.0083 cd | 212.33 ± 10.5 e | 0.83 ± 0.0409 d | 208.00 ± 48.51 bc | 0.46 ± 0.1084 bcd |
T2 | 106.67 ± 9.07 cd | 0.18 ± 0.0152 d | 237 ± 20.66 de | 0.92 ± 0.0803 cd | 230.00 ± 58.03 abc | 0.51 ± 0.1286 abcd |
T3 | 99.33 ± 4.93 d | 0.17 ± 0.0082 e | 251 ± 24.88 de | 0.98 ± 0.0968 cd | 291.33 ± 76.17 ab | 0.65 ± 0.1717 ab |
T4 | 118.33 ± 8.96 bc | 0.20 ± 0.0152 c | 240.33 ± 4.51 de | 0.93 ± 0.0176 cd | 329.33 ± 81.30 a | 0.74 ± 0.1814 a |
T5 | 139.33 ± 7.37 ab | 0.23 ± 0.0042 ab | 259.33 ± 14.29 d | 1.01 ± 0.0056 cd | 165.00 ± 41.33 c | 0.37 ± 0.092 cd |
T6 | 146.67 ± 13.87 a | 0.25 ± 0.0209 a | 277.33 ± 37.5 cd | 1.08 ± 0.1459 bc | 221.33 ± 61.52 abc | 0.49 ± 0.1291 bcd |
T7 | 116.67 ± 6.66 cd | 0.20 ± 0.011 cd | 313.67 ± 17.39 bc | 1.22 ± 0.0674 b | 272.33 ± 75.43 abc | 0.61 ± 0.1649 abc |
T8 | 124.00 ± 16 bc | 0.21 ± 0.0267 bc | 330.00 ± 31.76 ab | 1.28 ± 0.1239 ab | 276.67 ± 72.67 abc | 0.62 ± 0.1624 abc |
Mean | 119.1 | 0.1989 | 264.13 | 1.03 | 237.3 | 0.5386 |
SD | 23.93 | 0.0399 | 59.05 | 0.23 | 55.48 | 0.1243 |
CV/% | 20.09 | 20.07 | 22.35 | 22.41 | 23.38 | 23.51 |
Year | Treatment | 100-Pod Weight/g | 100-Seed Weight/g | Kernel Rate/% | Yield/kg·hm−2 |
---|---|---|---|---|---|
CK-0 | 163.48 ± 3.81 c | 52.98 ± 1.37 c | 0.65 ± 0.01 b | 3637.32 ± 59.62 d | |
CK | 177.91 ± 3.97 a | 68.36 ± 1.59 a | 0.77 ± 0.01 a | 6976.08 ± 110.28 a | |
T1 | 165.81 ± 2.92 b | 64.25 ± 1.56 b | 0.78 ± 0.02 a | 5632.66 ± 98.26 b | |
T2 | 164.97 ± 2.91 b | 64.35 ± 1.52 b | 0.78 ± 0.02 a | 5694.12 ± 98.26 b | |
2018 | T3 | 165.38 ± 2.54 b | 65.71 ± 1.61 b | 0.79 ± 0.01 a | 7216.83 ± 185.35 a |
T4 | 166.32 ± 2.57 b | 66.26 ± 1.76 b | 0.80 ± 0.01 a | 7249.25 ± 176.34 a | |
T5 | 164.76 ± 3.28 b | 64.02 ± 1.85 b | 0.77 ± 0.02 a | 4430.25 ± 86.68 c | |
T6 | 165.15 ± 3.57 b | 64.08 ± 1.82 b | 0.78 ± 0.02 a | 4430.25 ± 157.36 c | |
T7 | 166.67 ± 3.29 b | 65.26 ± 2.54 b | 0.78 ± 0.01 a | 4506.33 ± 128.31 c | |
T8 | 167.24 ± 4.05 b | 65.95 ± 2.60 b | 0.79 ± 0.01 a | 4955.75 ± 114.35 c | |
CK-0 | 162.05 ± 3.51 d | 55.11 ± 1.11 c | 0.67 ± 0.005 d | 4076.3 ± 205.01 f | |
CK | 169.85 ± 3.55 ab | 61.53 ± 1.36 a | 0.72 ± 0.004 bc | 6873.89 ± 345.95 ab | |
T1 | 164.47 ± 2.87 bcd | 58.97 ± 1.47 b | 0.71 ± 0.005 c | 5449.49 ± 279.23 cde | |
T2 | 168.63 ± 3.76 abc | 61.05 ± 1.56 ab | 0.72 ± 0.004 bc | 6258.98 ± 314.97 bcd | |
2019 | T3 | 171.24 ± 3.74 a | 63.02 ± 1.42 a | 0.72 ± 0.006 ab | 7229.25 ± 229.78 a |
T4 | 172.24 ± 3.61 a | 62.46 ± 1.55 a | 0.72 ± 0.004 bc | 7272.38 ± 314.08 bc | |
T5 | 163.11 ± 3.42 cd | 58.89 ± 1.39 b | 0.72 ± 0.005 bc | 4665.03 ± 219.57 ef | |
T6 | 166.89 ± 2.91 abcd | 60.37 ± 1.31 ab | 0.72 ± 0.004 bc | 5298.74 ± 397.81 de | |
T7 | 169.64 ± 2.98 ab | 62.38 ± 1.39 a | 0.73 ± 0.004 a | 5650.71 ± 289.79 bcd | |
T8 | 170.6 ± 2.83 a | 62.76 ± 1.64 a | 0.73 ± 0.008 a | 6692.33 ± 372.54 cde |
Year | SOM | AN | OP | AK | PH |
---|---|---|---|---|---|
g·kg−1 | mg·kg−1 | mg·kg−1 | mg·kg−1 | ||
2018 | 12.5 | 91.84 | 28.56 | 95.39 | 6.0 |
2019 | 13.1 | 92.37 | 27.75 | 95.98 | 6.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, G.; Liu, Q.; Zhang, Z.; Ci, D.; Zhang, J.; Xu, Y.; Guo, Q.; Xu, M.; He, K. Effect of Reducing Nitrogen Fertilization and Adding Organic Fertilizer on Net Photosynthetic Rate, Root Nodules and Yield in Peanut. Plants 2023, 12, 2902. https://doi.org/10.3390/plants12162902
Zhang G, Liu Q, Zhang Z, Ci D, Zhang J, Xu Y, Guo Q, Xu M, He K. Effect of Reducing Nitrogen Fertilization and Adding Organic Fertilizer on Net Photosynthetic Rate, Root Nodules and Yield in Peanut. Plants. 2023; 12(16):2902. https://doi.org/10.3390/plants12162902
Chicago/Turabian StyleZhang, Guanchu, Qiangbo Liu, Zhimeng Zhang, Dunwei Ci, Jialei Zhang, Yang Xu, Qing Guo, Manlin Xu, and Kang He. 2023. "Effect of Reducing Nitrogen Fertilization and Adding Organic Fertilizer on Net Photosynthetic Rate, Root Nodules and Yield in Peanut" Plants 12, no. 16: 2902. https://doi.org/10.3390/plants12162902