The Genus Diospyros: A Review of Novel Insights into the Biological Activity and Species of Mozambican Flora
Abstract
:1. Introduction
2. Results
2.1. Ethnomedical Use of Diospyros Species of Mozambican Flora
Species | Part Used | Preparation Method | Traditional Use | Country | Ref. |
---|---|---|---|---|---|
D. abyssinica | |||||
leaf | decoction | malaria | Mali | [4,27] | |
wound healing | |||||
fruit (dry) | decoction | astringent and cholagogue | |||
gastrointestinal disorders | |||||
bark | unspecified | astringent and antipyretic | |||
root | decoction | antihelminthic | |||
abdominal pain, dysentery, and diarrhea | |||||
leaf | juice | snake bite | Mali, Guinea Zimbabwe | [28] | |
bark | astringent | ||||
bark | decoction | internal injuries | Kenya | [29] | |
laxative | |||||
rash | |||||
malaria and ringworm | |||||
leaf | squeeze and apply | ringworm | Uganda | [30] | |
seed | wound healing | ||||
leaf | juice | tropical ulcer (skin and soft tissue polymicrobial infection, feet, or lower legs localized) | [31] | ||
tuber | decoction | upset stomach | [32] | ||
D. anitae | |||||
root | unspecified | dental hygiene | Mozambique | [33] | |
healing of oral wounds | |||||
D. ferrea | |||||
fruit | unspecified | diarrhea and sore throats | India | [34] | |
internal bleeding | |||||
renal lithiasis | |||||
root | unspecified | anti-hemorrhagic | [35,36] | ||
infertility | |||||
bark | oral hygiene | ||||
skin diseases | |||||
D. kabuyeana | |||||
root | unspecified | antiviral | Tanzania | [37] | |
D. loureiroana subsp. loureiroana | |||||
root | chewing stick | oral hygiene | South Africa East Africa | [4] | |
D. lycioides subsp. sericea | |||||
root bark | decoction | bloody feces | South Africa South Central Zimbabwe | [38,39,40] | |
dysentery | |||||
headache | |||||
root | chewing stick | infertility | Namibia Zambia | [41] | |
D. mafiensis | |||||
root | unspecified | diarrhea | Mozambique Tanzania | [42] | |
leprosy | |||||
skin diseases (including fungal infections) | |||||
D. mespiliformis | |||||
leaf | decoction | analgesic and antipyretic | Central Southern Eastern Western Africa | [27,43,44,45,46,47] | |
antihelminthic | |||||
dermatomycosis | |||||
fungal infections | |||||
induction of childbirth | |||||
hemostatic agent | |||||
malaria, pneumonia, and trypanosomiasis | |||||
sexually transmitted diseases | |||||
leaf and bark | decoction | diarrhea and dysentery | |||
leprosy | |||||
oral infections | |||||
whooping cough | |||||
leaf | decoction | bruises, bedsores, rash, and wounds | |||
ringworm | |||||
root | chewing stick | oral hygiene | |||
leaf, bark and root | decoction | toothache | Burkina Faso | [48] | |
leaf | decoction | antipyretic | Ghana | [27] | |
dermatitis | |||||
diarrhea and dysentery | |||||
malaria | |||||
fruit | decoction | headache | |||
pneumonia | |||||
rheumatism | |||||
stem bark | decoction | malaria and pneumonia | |||
root | decoction | infection with fever | |||
leaf | decoction | antipyretic | Nigeria | [49,50,51] | |
antidote for a variety of poisonous substances | |||||
diarrhea and dysentery | |||||
haemostatic agent | |||||
oral infections | |||||
wound healing | |||||
root | decoction | malaria and oral candida infection (used as mouthwash, management of HIV/AIDS opportunistic diseases) | Zambia | [44,52] | |
root | infusion | abdominal pain, body and heart pain | South Central Zimbabwe | [53] | |
seed | unspecified | antibacterial | Guinea | [4] | |
D. quiloensis | |||||
stem bark | decoction | malaria | Zambia | [44] | |
sexually transmitted diseases | |||||
D. rotundifolia | |||||
root | not report | diarrhea | South African | [22] | |
D. squarrosa | |||||
root | not report | sexually transmitted diseases | Tanzania | [37] | |
D. usambarensis | |||||
root bark | unspecified | schistosomiasis | Malawi | [54] | |
root | chewing stick | oral hygiene | Tanzania | [55,56] | |
decoction | fungal infections and overt symptoms of type 2 diabetes (i.e., polyuria, polydipsia, excessive thirst, and sweating) | ||||
D. verrucosa | |||||
root | unspecified | leprosy | Tanzania | [4,57] | |
D. villosa | |||||
leaf | unspecified | gastrointestinal disorders | South African | [24] | |
painful fractures | |||||
root | decoction | gastrointestinal disorders | Mozambique | [4,25,58] | |
laxative | |||||
musculoskeletal system | |||||
toothbrush | oral hygiene | ||||
decoction | wounds (skin/subcutaneous tissue) | ||||
D. villosa var. parvifolia | |||||
leaf | infusion | emetic | South Africa | [59] | |
root | antihelminthic emetic and flatulence gastrointestinal disorders | ||||
D. whyteana | |||||
root | unspecified | antibacterial | South Africa | [60] | |
dysmenorrhea | |||||
rash | |||||
D. zombensis | |||||
root bark | unspecified | schistosomiasis | Malawi | [4,61] |
2.2. Chemical Composition of Mozambican Diospyros Species
Species | Part Used | Chemical Class | Compounds | Extract | Ref. |
---|---|---|---|---|---|
D. abyssinica | |||||
root bark | naphthoquinone | plumbagin (2-methyl-5-hydroxy-1,4-naphthoquinone) | P. ether, CF, DCM, H2O, MeOH, EtOH 80% | [28] | |
stem bark | naphthoquinone | diospyrin, isodiospyrin | [64,65] | ||
leaf | triterpenoid | betulinic acid, betulin and lupeol | MeOH | ||
D. consolatae | |||||
n.r | triterpenoid | betulinic acid, betulin and lupeol | n.r | [4] | |
n.r | naphthoquinone | diosindigo A | n.r | [4] | |
D. dichrophylla | |||||
seed | naphthoquinone | isodiospyrin | Hex | [66] | |
D. ferrea | |||||
leaf | triterpenoid | pregnenolone and androstan-6-one | MeOH | [67] | |
n.r | β-sitosterol | n.r | [4] | ||
leaf | monoterpenoid | citronellol | MeOH | [67] | |
leaf | diterpenoid | phytol | MeOH | [67] | |
thunbergol | EtOAc | ||||
leaf | triterpenoid | betulin, α-amyrin, friedelan-3-one and olen-12-ene | EtOAc | [67] | |
fruit | triterpenoid | friedelin, epifriedelinol, lupeol, lupenone, and betulin | n-Hex | [68] | |
fruit | triterpenoid | β-sitosterol and stigmasterol | n-Hex | [68] | |
root fruit | naphthoquinone | 7-methyljuglone, isodiospyrin, diosindigo A and 8-hydroxyisodiospyrin | CF, n-Hex | [68,69] | |
root | phenol | gallic acid | EtOH | [70] | |
leaf | triterpenoid | friedelin, friedelin-3-ol, taraxerol and taraxerone | EtOH | [4] | |
n.r | triterpenoid | ursolic acid | n.r | [4] | |
D. inhacaensis | |||||
stem | naphthoquinone | 7-methyljuglone and diospyrin | n.r | [71] | |
D. kirkii | |||||
n.r | triterpenoid | bauerenol, betulin and lupeol | n.r | [4] | |
n.r | β-sitosterol | n.r | [4] | ||
n.r | naphthoquinone | diosindigo A | n.r | [4] | |
D. lycioides | |||||
branche | naphthalene | Diospyroside A, B, C and D | MeOH | [72] | |
naphthoquinone | 7-methyljuglone and juglone | MeOH | [41] | ||
triterpenoid | lupeol and ursolic acid | n.r | [53] | ||
fruit | naphthoquinone | isodiospyrin and bisisodiospyrin | n.r | [71] | |
root, stem | naphthoquinone | 7-methyljuglone and isodiospyrin | CF | [71] | |
n.r | naphthoquinone | mamegakinone, methylnaphthazarin and 8-hydroxyisodiospyrin | n.r | [4] | |
D. mafiensis | |||||
root bark | naphthoquinone | diosquinone, diosindigo A, 7-methyljuglone, 3-hydroxiquinone, and 6,8-bisdiosquinone | CF, DCM, MeOH | [42,73,74] | |
stem bark | naphthoquinone | 7-methyljuglone and diosindigo A | [73] | ||
leaf | triterpenoid | α-amyrin, lupeol and betulinic acid | CF, MeOH | [75] | |
bark | naphthoquinone | diosquinone, isodiospyrin, and plumbagin | Ee | [4,52] | |
stem bark | triterpenoid | lupeol, betulin, betulinic acid, α-amyrin, and bauerenol | CF | [4,76] | |
D. mespiliformis | |||||
stem bark, leaf, bark | triterpenoid | betulinic acid, betulin, lupeol, bauerenol, and α-amyrin | CF, MeOH | [4,76] | |
leaf | flavonoid | 7-O-(4″′-O-acetyl)-allopyranosyl(1″′ → 2″)- β-glucopyranoside, along with eight flavonoid metabolites—luteolin 3′,4′,6,8-tetramethyl ether, luteolin 4′-O-β-neohesperidoside, luteolin 7-O-β-glucoside, luteolin, quercetin, quercetin 3-O-β-glucoside, quercetin 3-O-α-rhamnoside, and rutin | n.r | [77] | |
root | naphthoquinone | diosquinone, and plumbagin | P. ether | [78] | |
root, bark | naphthoquinone | diospyrin | MeOH | [79] | |
fruit | naphthoquinone | plumbagin | MeOH | [79] | |
D. natalensis | |||||
root, stem | naphthoquinone | 7-methyljuglone, and diospyrin | n.r | [4] | |
n.r | triterpenoid | betulinic acid, α-amyrin, and lupeol | n.r | [4] | |
n.r | fatty acid | heptacosanoic acid | n.r | [4] | |
D. quiloensis | |||||
n.r | naphthalene | 4,5,6,8-tetramethoxy naphthaldhyde, 5-hydroxy-4,6,8-trimethoxy naphthaldehyde, 4,5,6-trimethoxynaphthalehyde, 4,5-dimethoxynaphthaldehyde, and 5-hydroxy-4-methoxy-2-naphthaldehyde | MeOH | [4] | |
D. rotundifolia | |||||
n.r | triterpenoid | betulin and lupeol | n.r | [4] | |
root | naphthoquinone | 7-methyljuglone, neodiospyrin and rotundiquinone | n.r | [71] | |
stem | naphthoquinone | 7-methyljuglone and diospyrin | n.r | [71] | |
D. squarrosa | |||||
n.r | naphthoquinone | 7-methyljuglone | n.r | [4] | |
D. usambarensis | |||||
root | naphthoquinone | 7-methyljuglone, isodiospyrin, diosindigo A and B, bis-isodiospyrin and mamegakinone | MeOH | [54,80] | |
stem bark | naphthoquinone | 7-methyljuglone and diosindigo A | MeOH | [54] | |
D. verrucosa | |||||
root bark | naphthoquinone | diosindigo A, 7-methyljuglone, diosquinone and isodiospyrin | n.r | [57] | |
root bark | triterpenoid | betulinic acid and betulin | |||
stem bark | naphthoquinone | diosindigo A, 7-methyljuglone, diosquinone and isodiospyrin | n.r | [57] | |
stem bark | triterpenoid | betulinic acid and betulin | n.r | [57] | |
D. whyteana | |||||
n.r | naphthoquinone | 7-methyljuglone | n.r | [4] | |
D. zombensis | |||||
bark | triterpenoid | oleanolic acid | MeOH | [4] | |
root bark | naphthoquinone | 7-methyljuglone, diosquinone, isodiospyrin and mamegakinona | P. ether, MeOH | [4,61] |
2.3. In Vitro and In Vivo Biological Activity of Mozambican Diospyros Species and Marker Compounds
2.3.1. Anti-Inflammatory and Analgesic Activity
2.3.2. Antihyperglycemic Activity
2.3.3. Antifungal Activity
2.3.4. Antiparasitic Activity
2.3.5. Antioxidant Activity
Biological Activity/ Species | PU | Extract/ Compound | Results | Microorganism/ Assay | Control | Ref. |
---|---|---|---|---|---|---|
Analgesic | ||||||
D. mespiliformis | SB | CF/lupeol 25 mg/kg, p.o | Pi1 2.2 ± 0.2/ asa =1.0 ± 0.3 Pi2 1.98 ± 0.1/ asa =1.15 ± 0.1 | Biphasic, Wistar rats | acetylsalicylic acid (asa), 100 mg/kg, p.o. | [76] |
D. ferrea | L | CF MeOH | 100–300 mg/Kg significant activity | Tail flick method, adult Wistar albino rats | ibuprofen | [100] |
D. ferrea | R | CF MeOH | 100–200 mg/Kg significant activity | Tail flick method, adult Wistar albino rats | ibuprofen | [101] |
Anti-inflammatory | ||||||
D. abyssinica | Rb | H2O (1) MeOH (2) | 1—IC50 = 16 ± 1 μg/mL 2—IC50 = 86 ± 7 μg/mL | LOX, using soybean lipoxygenase type 1-B | quercetin, IC50 value 11.5 ± 0.6 μg/mL | [27] |
D. ferrea | L | CF MeOH | 100–300 mg/Kg = 26.2–28.2% 100–300 mg/Kg = 29.6–37.6% | PIPE, adult male Wistar rats | ibuprofen 41.1% | [100] |
D. ferrea | R | CF MeOH | 100–200 mg/Kg = 37% | PIPE, adult Wistar albino rats | ibuprofen | [101] |
D. mespiliformis | Sb | DCM Fraction maximally at 400 mg/kg | Modulation of serum concentrations of Tumour Necrosis Factor alpha and Interleukin 1 beta and 6 | Cytokine inhibition, Plasmodium berghei-infected mice | artemether-lumefantrine | [98] |
L | Hex Fraction 5 μg/mL(1) 10 μg/mL (2) | 1—IC50 = 31.21 ± 0.84 μg/mL 2—IC50 = 32.05 ± 2.79 μg/mL | LOX, Wistar rats | quercetin, IC50 value 1–46.02 ± 5.46 μg/mL 2–32.05 ± 2.79 μg/mL | [51] | |
Antihyperglycemic | ||||||
D. ferrea | L | MeOH 21 days | 400 mg/kg, i.p, significant antihyperglycemic activity | Streptozotocin induced diabetic Wistar rats | glibenclamide, 0.5 mg/Kg, p.o. | [91] |
Antifungal | ||||||
D. abyssinica | R | MeOH | Actives in test controlled by conidial suspension | BA, C. albicans C. cucumerinum | methylthiazolyltetrazolium chloride (MTT) | [94] |
D. ferrea | W | 1-isodiospyrin 2-plumbagin | 1—active against three fungi 2—active against eight fungi | HMBC | Phomopsis sp. reference spectrum for both H1 and C13 | [102] |
D. mafiensis | Rb | 3-hydroxy- diosquinone | MIC50 = 14.9 µg/mL MIC50 = 39.1 µg/mL | CCA, A. flavus, A. parasiticus | A. parasiticus B62 | [42] |
Rb | 3-hydroxy- diosquinone | Reduced total aflatoxin, 1.145 to 32 ng/plac | ELISA, A. parasiticus, A. flavus | A. parasiticus B62 | [42] | |
Rb | diosquinone | MIC50 >100 µg/mL | CCA, A. flavus, A. parasiticus | A. parasiticus B62 | [42] | |
Rb | diosquinone | Reduced total aflatoxin 1.145 to 45 ng/plac | ELISA, A. flavus, A. parasiticus | A. parasiticus B62 | [42] | |
Rb | P. ether, DCM (E) Fraction (F) | E = 5 mg/disc IZ: 7–20 mm F = 0.2 mg/disc IZ: 19–20 mm | DD, C. albicans | miconazole 20 µg/disc IZ: 29 mm | [103] | |
D. mespiliformis | Rb L | Ace | MIC = 0.16 μg/mL | BD, C. albicans, M. canis | amphotericin B MIC = 0.02 μg/mL | [93] |
L | DCM:MeOH | MIC = 0.10–0.50 mg/mL | BD, M. canis, T. mentagrophytes | tetrazolium violet | [47] | |
L | H2O | MIC = 0.08 μg/mL | BD, M. canis | amphotericin B MIC = 0.02 μg/mL | [93] | |
B | Ace | IZ: 7 mm (1) IZ: 12 mm (2) | ADD, 1-C. albicans, 2-C. neoformans | nystatin | [96] | |
D. usambarensis | Rb | 7-methyljuglone | MIC = 0.025 μg/mL | BA, C. cucumerinum | miconazole MIC = 0.001 μg/mL | [92] |
Rb | isodiospyrin | MIC = 10 μg/mL | BA, C. cucumerinum | miconazole MIC = 0.001 μg/mL | [54] | |
D. villosa | R | EtOH 70% Fraction | MIC = 312.5 μg/mL MIC = 62.5–312.5 μg/mL | BD, C. albicans | not reported | [104] |
Antiparasitic | ||||||
D. abyssinica | L | EtOAc | IC50 = 51.3 ± 8.8 μg/mL | BD, P. falciparum (FcB1) | chloroquine | [31] |
B | EtOAc | IC50 = 1.5 μg/mL | L. donovani | pentamidine | [65] | |
IC50 = 5.6 μg/mL | P. falciparum | chloroquine | ||||
B | diospyrin isodiospyrin | IC50 = 0.5 μM | L. donovani | pentamidine IC50 = 7 μM | [94] | |
B | diospyrin isodiospyrin | IC50 = 1.5 μM | P. falciparum (FcB1) | chloroquine IC50 = 0.1 μM | [94] | |
R | DCM MeOH | MIC = 500 mg/L | Culex, Anopheles larvae | not identified | [94] | |
D. bussei | R | MeOH | IC50 = 65.7 ± 2.7 μg/mL | T. brucei (Lister 427) | pentamidine IC50 = 0.000509 μM | [99] |
D. kabuyeana | L | MeOH | IC50 = 3.32 μg/mL | T. brucei (Lister 427) | pentamidine IC50 = 0.000509 μM | [99] |
D. loureiriana | Rb Sb L | MeOH | IC50 = 1.68 ± 0.77 μg/mL IC50 = 11.53 ± 1.99 μg/mL IC50 = 19.10 ± 4.41 μg/mL | P. falciparum (3D7) | chloroquine IC50 = 0. 0045 μM | [105] |
[105] | ||||||
[105] | ||||||
D. mespiliformis | S | EtoAC (1) DCM (2) MeOHfraction (3) | 1—IC50 = 3.18 μg/mL 2—IC50 = 0.78 μg/mL 3—IC50 = 0.55 μg/mL | Plasmodium berghei-infected mice | artesunate and chloroquine diphosphate | [98] |
D. natalensis | Sb | MeOH | IC50 = 2.85 μg/mL | T. brucei (Lister 427) | pentamidine IC50 = 0.000509 μM | [99] |
D. squarrosa | Rb | MeOH | IC50 = 5.38 μg/mL | T. brucei (Lister 427) | pentamidine IC50 = 0.000509 μM | [99] |
D. verrucosa | Sb | MeOH | IC50 = 1.28 μg/mL | T. brucei (Lister 427) | pentamidine IC50 = 0.000509 μM | [99] |
R | MeOH | IC50 = 2.23 μg/mL | T. brucei (Lister 427) | |||
L | MeOH | IC50 = 2.99 μg/mL | T. brucei (Lister 427) | |||
D. usambarensis | Rb | 7-methyljuglone | Efficiency schistosomiasis MIC = 5 ppm | Biomphalaria glabrata | not identified | [54] |
Antioxidant | ||||||
D. abyssinica | Rb | EtOH (1) MeOH (2) H2O (3) | 1-EC50 = 16.0 ± 2 μg/mL 2-EC50 = 16.6 ± 0.4 μg/mL 3-EC50 = 21 and 29 ± 2 μg/mL | DPPH | quercetin EC50 value 3.4 ± 0.3 μg/mL | [27] |
D. lycioides | L | Ace | 𝑅𝑓 = 0.54; 0.60; 0.83; 0.89 | DPPH on TLC plates | phenolic compounds | [38] |
D. mespiliformis | F | MeOH | 87.36% at 1 mg/mL | DPPH | vitamin E | [106] |
R | MeOH | IC50 = 3.47 ± 0.05 μg/mL | DPPH | ascorbic acid 2.36 ± 0.30 μg/mL trolox 3.43 ± 0.78 μg/mL | [51] | |
F | MeOH | IC50 = 6.94 ± 0.49 μg/mL | DPPH | [51] | ||
B | MeOH | IC50 = 7.82 ± 0.76 μg/mL | DPPH | [51] | ||
L | EtOAc Fraction | IC50 = 1.08 ± 0.04 μg/ml | DPPH | ascorbic acid 5.08 ± 0.12 μg/mL | [51] | |
D. villosa | Sb | MeOH | IC50 = 9.53 μg/mL | DPPH | ascorbic acid 10.3 μg/mL | [107] |
L | CF (1) Hex (2) | 1-IC50 = 10.7 μg/mL 2-IC50 = 11.8 μg/mL | DPPH | ascorbic acid 10.3 μg/mL | [107] |
2.3.6. Cytotoxicity, Genotoxicity, and Toxicity of Mozambican Diospyros Species
Species | Parts Used | Extract | Toxicity Assay | Results | Ref. |
---|---|---|---|---|---|
D. abyssinica | |||||
leaf | EtOAc | Cytotoxicity against MRC-5 human diploid embryonic cells, Taxotere® as standard | IC50 = 6.0 ± 5.0 μg/mL | [31] | |
leaf | EtOAc | Cytotoxicity against KB human tumor cell lines (squamous cell carcinoma of the mouth), Taxotere® as standard | >85% cell inhibition IC50 = 1.0 ± 2.0 μg/mL | [31] | |
bark | EtOAc | Cytotoxicity against human KB cell (1) and Rhabditis pseudoelongata (2) | (1) LD50 = 10 μg/mL (2) LD50 = 1 μg/mL | [65] | |
D. dichhropylla | |||||
seed | DCM:MeOH (1) isodiospyrin (2) | Cytotoxicity using Brine shrimp test (Artemia salina) | 1-(LC50 = 29 μg/mL) 2-(LC50 = 0.13 μg/mL) | [66] | |
D. ferrea | |||||
leaf | MeOH | In vivo—acute oral toxicity using male Wistar albino rats | LD50 = 2000 mg/kg | [91] | |
fruit | isodiospyrin (1) 8′-hydroxyisodiospyrin (2) | Cytotoxicity strong against Hep-3B, KB, COLO-205, and HeLa cancer cells | 1(ED50 = 0.17, 1.72, 0.16 and 0.21 μg/mL) 2(ED50 = 1.31, 1.75, 1.96 and 1.79 μg/mL) | [68] | |
D. lycioides | |||||
leaf | Ace | Cytotoxicity against BUD-8 cell (human fibroblast cells) in real-time xCELLigence system and 7.4 μg/mL curcumin (control) | IC50 = 500 and 1000 μg/mL | [38] | |
leaf | Ace | Cytotoxicity against HeLa cells mobility assayed using the wound healing assay and 7.4 μg/mL curcumin (control) | Nontoxic to the normal cell at 300 μg/mL | [38] | |
D. loureiriana | |||||
root bark | MeOH | Cytotoxicity against human embryonic kidney cells (HEK293), estimated growth inhibition at 400 μg/ml | IC50 = 100.34 ± 9.85 μg/mL | [105] | |
stem bark | IC50 = 57.26 ± 0.53 μg/mL | [105] | |||
D. mafiensis | |||||
root bark | P. ether (1) DCM (2) EtOH (3) fraction P. ether (4) fraction DCM (5) | Cytotoxicity using brine shrimp larvae test (Artemia salina) Standard cyclophosphamide LC50 value of 17.78 µg/mL | 1-LC50 = 25.12 µg/mL 2-LC50 = 69.18 µg/mL 3-LC50 = 120.23 µg/mL 4-LC50 ≤ 8–45.71 µg/mL 5-LC50 = 5.08 µg/mL | [103] | |
D. mespiliformis | |||||
stem bark root bark | EtOH | In vivo—acute oral toxicity using Wistar rats of both sexes | LD50 = 570 mg/kg Acute toxicity is moderate | [49] | |
leaf | MeOH | in vivo—acute oral administration using rats | LD50 ≥ 5 g/kg | [108,109] | |
stem bark | |||||
leaf | EtOAc fraction | In vivo—sub-chronic toxicity using rats | LD50 = 750 g/kg | [108] | |
stem bark | LD50 = 500 g/kg | ||||
root | diosquinone | Cytotoxicity against human glioblastoma cell lines (1) and hormone-dependent human prostate cancer (2) | 1-ED50 = 0.18 μg/mL 2-ED50 = 4.50 μg/mL | [84] | |
D. whyteana | |||||
twigs | DCM | Genotoxicity against mutagens mitomycin C (MMC) using the Ames test (Salmonella typhimurium TA98) | protective effect non-genotoxic at 500–2500 μg/mL | [60] | |
leaf | DCM HydroMeOH 90% | Genotoxicity using the Ames test (Salmonella typhimurium TA98) | shift mutations of lowest dose is 0.50 μg/mL higher doses are toxic | [110] | |
D. villosa | |||||
root | HydroEtOH 70% | In vivo—acute toxicity using mice | possible renal dysfunction development | [58] | |
D. zombensis | |||||
root bark | 7-methyljuglone (1) isodiospyrin (2) | Cytotoxicity against human colon carcinoma cells | 1-LD50 of 7.0 × 10−2 μg/mL 2-LD50 of 3.8 × 10−2 μg/mL | [61] |
2.3.7. Antibacterial Activity
Species | Parts Used | Test | Extract/ Compound | MIC (μg/mL) | Microorganism | Control (MIC) μg/mL | Ref. |
---|---|---|---|---|---|---|---|
D. abyssinica | |||||||
bark | BD | EtOAc | 12 | S. aureus ATCC 6538 | DMSO | [65] | |
D. bussei | |||||||
leaf stem bark | BD | MeOH | 125 | E. coli ATCC 8740 | ciprofloxacin 0.63 | [99] | |
leaf | BD | MeOH | 8000 | S. aureus ATCC 25923 | ciprofloxacin 2.5 | ||
B. cereus ATCC 11775 | ciprofloxacin 0.08 | ||||||
root bark | BD | MeOH | 500 | E. coli ATCC 8740 | ciprofloxacin 0.63 | ||
D. kabuyeana | |||||||
leaf | BD | MeOH | 8000 | S. aureus ATCC 25923 | ciprofloxacin 2.5 | [99] | |
leaf | BD | MeOH | 4000 | B. cereus ATCC 11775 | ciprofloxacin 0.08 | ||
stem bark | BD | MeOH | 1000 | ||||
leaf stem bark | BD | MeOH | 125 | E. coli ATCC 8740 | ciprofloxacin 0.63 | ||
D. lycioides | |||||||
branche | BD | MeOH | 1250 | S. sanguis, P. gingivalis, S. mutans, P. intermedia | alkaloid sanguinarine | [41] | |
branche | BD | Diospyroside A | 39 | S. sanguis, P. intermedia | alkaloid sanguinarine | [41] | |
78–1250 | P. gingivalis, S. mutans | ||||||
branche | BD | Diospyroside B | 39–78 | S. sanguis, P. gingivalis | alkaloid sanguinarine | [41] | |
156–625 | P. intermedia, S. mutans | ||||||
branche | BD | Diospyroside C | 39–156 | P. intermedia, S. mutans | alkaloid sanguinarine | [41] | |
312–625 | P. gingivalis, S, sanguis | ||||||
branche | BD | Diospyroside D | 156–312 | S. mutans, P. intermedia, P. gingivalis, S. sanguis | alkaloid sanguinarine | [41] | |
branche | BD | juglone | 19–78 | P. intermedia, S. mutans, | alkaloid sanguinarine | [41] | |
39 | S. sanguis, P. gingivalis | ||||||
branche | BD | 7-methyljuglone | 39–156 | P. gingivalis, S. mutans | alkaloid sanguinarine | [41] | |
78 | S. sanguis, P. intermedia | ||||||
leaf | BA | EtOAc | 0.10–0.16 * | P. aeruginosa ATCC 27853 | p-iodonitrotetrazolium chloride | [38] | |
Ace | 0.12–0.17 * | ||||||
leaf | BA | EtOAc | 0.16–0.36 * | S. aureus ATCC 29213 | p-iodonitrotetrazolium chloride | [38] | |
Ace | 0.20–0.45 * | ||||||
MeOH | 0.16–0.27 * | ||||||
leaf | BA | EtOAc | 0.05–0.45 * | E. faecalis ATCC 29212 | p-iodonitrotetrazolium chloride | [38] | |
Ace | 0.05–0.45 * | ||||||
MeOH | 0.05–0.45 * | ||||||
D. mafiensis | |||||||
root bark | DCM | S. aureus B. anthracis IZ: 12 mm | S. typhi, S. boydii, E. coli, K. pneumoniae S. aureus, V. cholerae Proteus sp., B. anthracis | gentamycin ampicillin (20 µg/disc) | [103] | ||
root bark | P. ether-Fraction | IZ: 10–15 mm | S. typhi, S. boydii, E. coli, K. pneumoniae S. aureus, V. cholerae Proteus sp., B. anthracis | gentamycin ampicillin (20 µg/disc) | [103] | ||
D. mespiliformis | |||||||
leaf | ADD | MeOH | 167 | S. aureus | isoniazid 5.0 | [50] | |
root | ADD | MeOH | 250 | S. aureus | isoniazid 5.0 | [50] | |
leaf | BD | EtOH | 12,500–25,000 | Salmonella spp., Shigella spp., Campylobacter spp. | ciprofloxacin, cefixime, and gentamicin | [95] | |
leaf | BD | Hex (F1) nBOH (F2) EtOAc (F3) H2O (F4) | (1)78.125–312.5 (2)156.25 (3)78.125–156.25 (4)625–2500 | 1-P. aeroginosa 2-S. aureus 3-E. coli 4-S. typhimurium | gentamicin 19.53 gentamicin 19.53 gentamicin 19.53 gentamicin 19.53 | [97] | |
leaf | 625 | ||||||
root | 625 (1) >2500 (2 to 4) | ||||||
leaf | AD | H2O HydroMeOH 10% | 250–500 125–500 | H. influenzae (6 ci) | ampicillin 0.12–15.6 | [112] | |
H2O HydroMeOH 10% | 125–250 62.5–125 | S. aureus (5 ci) | ampicillin 0.06–0.12 | ||||
H2O HydroMeOH 10% | 250–250 125–125 | S. pneumoniae (3 ci) | ampicillin 0.015–0.12 | ||||
H2O HydroMeOH 10% | 250–250 125–125 | S. pyogenes (8 ci) | ampicillin 0.015–0.06 | ||||
H2O HydroMeOH 10% | 250–500 125–250 | M. catarrhalis (5 ci) | ampicillin 0.12–1.9 | ||||
leaf | BD | flavonol O-rhamnoside | 9770 | S. aureus | not identified | [77] | |
root | AD | diosquinone | 3–30 | S. aureus NCT 6571 S. aureus E3T | ampicillin 5 | [78] | |
diosquinone | 15–16 | E. coli KL16 P. aeruginosa NCT 6750 | gentamicin 2 | ||||
leaf | DD | methylated flavone | IZ: 34 mm | E. coli | not identified | [78] | |
leaf | AWD | EtOH-Fraction | IZ: 20 mm IZ: 18 mm IZ: 16 mm | S. aureus, Shigella spp. P. aeruginosa | septrin 15 mm spetrin 16 mm spetrin 15 mm | [113] | |
D. natalensis | |||||||
leaf | BD | MeOH | 250 | S. aureus ATCC 25923 | ciprofloxacin 0.08 | [99] | |
leaf | MeOH | 1000 | B. cereus ATCC 11775 | ciprofloxacin 2.5 | |||
leaf | MeOH | 500 | E. coli ATCC 8740 | ciprofloxacin 0.63 | |||
root bark | MeOH | 1000 | E. coli ATCC 8740 | ciprofloxacin 0.63 | |||
stem bark | MeOH | 250 | E. coli ATCC 8740 | ciprofloxacin 0.63 | |||
D. rotundifolia | |||||||
not reported | Ace | 230–1770 | S. aureus, E. faecalis, E. coli and P. aeruginosa | not reported | [22] | ||
D. squarrosa | |||||||
leaf | BD | MeOH | 4000 | B. cereus ATCC 11775 | ciprofloxacin 2.5 | [99] | |
MeOH | 250 | E. coli ATCC 8740 | ciprofloxacin 0.63 | ||||
root bark | BD | MeOH | 1000 | S. aureus ATCC 25923 | ciprofloxacin 0.08 | ||
MeOH | 4000 | B. cereus ATCC 11775 | ciprofloxacin 2.5 | ||||
stem bark | BD | MeOH | 500 | E. coli ATCC 8740 | ciprofloxacin 0.63 | ||
D. verrucosa | |||||||
leaf | BD | MeOH | 1000 | S. aureus ATCC 25923 | ciprofloxacin 0.08 | [99] | |
MeOH | 2000 | B. cereus ATCC 11775 | ciprofloxacin 2.5 | ||||
MeOH | 500 | E. coli ATCC 8740 | ciprofloxacin 0.63 | ||||
root bark stem bark | BD | MeOH | <6.25 | E. coli ATCC 8740 | ciprofloxacin 0.63 | [82] | |
D. villosa | |||||||
root | BD | HydroEtOH 70% Ee Fractions | 62.5–312.5 15.6–62.5 31.2–62.5 | E. faecalis ATCC 435628 | not reported | [104] | |
E. coli ATCC 25922 | not reported | ||||||
M. luteus ATCC 10240 | not reported | ||||||
S. aureus ATCC 25923 | not reported | ||||||
leaf | DD | AgNPs | IZ: 15 mm | E. coli ATCC 25922 | ciprofloxacin 37 mm gentamicin 20 mm | [107] | |
AgNPs 80 °C | IZ: 18 mm | S. aureus ATCC 700698 | ciprofloxacin 6 mm gentamicin 11 mm | ||||
AgNPs | IZ: 16 mm | S. epidermidis ATCC 12228 | |||||
AgNPs | IZ: 16 mm | ciprofloxacin 28 mm gentamicin 20 | |||||
Ace | 0.05–0.45 * | ||||||
MeOH | 0.05–0.45 * |
2.4. Secondary Metabolites of Mozambican Diospyros Species as Potential Antimicrobial Agents
2.4.1. Naphtoquinones
Antibacterial Activity
Antiparasitic Activity
2.4.2. Triterpenoids
Antibacterial and Antifungal Activities
Antiparasitic Activity
2.4.3. Tannins
Antibacterial and Antifungal Activities
Antiparasitic Activity
3. Materials and Methods
3.1. Search Strategy
3.2. Study Selection
3.2.1. Criteria for Inclusion and Exclusion of Data
Inclusion Criteria
- ▪
- Related to the Diospyros genus, in particular species of the genus Diospyros present in Mozambican Flora;
- ▪
- Abstract or full text in English;
- ▪
- Studies on Diospyros species concerning their medicinal importance.
Exclusion Criteria
- ▪
- Duplicate scientific publications;
- ▪
- Not directly related to medicinal issues and others related but not with species of Mozambican Flora;
- ▪
- Containing irrelevant or incomplete information.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rauf, A.; Uddin, G.; Patel, S.; Khan, A.; Halim, S.A.; Bawazeer, S.; Ahmad, K.; Muhammad, N.; Mubarak, M.S. Diospyros, an under-Utilized, Multi-Purpose Plant Genus: A Review. Biomed. Pharmacother. 2017, 91, 714–730. [Google Scholar] [CrossRef] [PubMed]
- Fareed, N.; El-Kersh, D.M.; Youssef, F.S.; Labib, R.M. Unveiling Major Ethnopharmacological Aspects of Genus Diospyros in Context to Its Chemical Diversity: A Comprehensive Overview. J. Food Biochem. 2022, 46, e14413. [Google Scholar] [CrossRef]
- Nematollahi, A.; Aminimoghadamfarouj, N.; Wiart, C. Reviews on 1,4-Naphthoquinones from Diospyros L. J. Asian Nat. Prod. Res. 2012, 14, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Mallavadhani, U.V.; Panda, A.K.; Rao, Y.R. Review Article Number 134 Pharmacology and Chemotaxonomy of Diospyros. Phytochemistry 1998, 49, 901–951. [Google Scholar] [CrossRef] [PubMed]
- Wallnöfer, B. The Biology and Systematics of Ebenaceae: A Review. Ann. Naturhist. Mus. Wien 2001, 103 Bd, 485–512. [Google Scholar]
- White, F. Ebenaceae . Flora Zambesiaca 1983, 7, 269–271. [Google Scholar]
- Denk, T.; Bouchal, J.M. Dispersed Pollen and Calyx Remains of Diospyros (Ebenaceae) from the Middle Miocene “Plant Beds” of Søby, Denmark. GFF 2021, 143, 292–304. [Google Scholar] [CrossRef]
- Burrows, J.E.; Burrows, S.M.; Lötter, M.C.; Schmidt, E. Trees and Shrubs of Mozambique; Print Matters Heritage: Cape Town, South Africa, 2018; pp. 757–1114. [Google Scholar]
- The Plant List (2013). Version 1.1. Published on the Internet. Available online: http://www.theplantlist.org/1.1/cite/ (accessed on 27 January 2021).
- The WFO Plant List|World Flora Online. Available online: https://wfoplantlist.org/plant-list (accessed on 1 December 2022).
- Flora of Mozambique: Home Page. Available online: https://www.mozambiqueflora.com/ (accessed on 1 December 2022).
- Da Silva, M.C.; Izidine, S.; Amude, A.B. A Preliminary Checklist of the Vascular Plants of Mozambique. In Southern Africa Botanical Diversity Network 30; SABONET: Pretoria, South Africa, 2004; pp. 1–192. [Google Scholar]
- World Health Organization. WHO Global Report on Traditional and Complementary Medicine 2019; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- WHO Traditional Medicine Strategy: 2014–2023. Available online: https://www.who.int/publications/i/item/9789241506096 (accessed on 1 December 2022).
- Bandeira, S.O.; Gaspar, F.; Pagula, F.P. African Ethnobotany and Healthcare: Emphasis on Mozambique. Pharm. Biol. 2011, 39, 70–73. [Google Scholar] [CrossRef]
- Babula, P.; Adam, V.; Havel, L.; Kizek, R. Noteworthy Secondary Metabolites naphthoquinones—Their Occurrence, Pharmacological Properties and Analysis. Curr. Pharm. Anal. 2009, 5, 47–68. [Google Scholar] [CrossRef]
- Adeniyi, B.A.; Fong, H.H.S.; Pezzuto, J.M.; Luyengi, L.; Odelola, H.A. Antibacterial Activity of diospyrin, isodiospyrin and bisisodiospyrin from the root of Diospyros piscatoria (Gurke) (Ebenaceae). Phytother. Res. 2000, 14, 112–117. [Google Scholar] [CrossRef]
- Mahapatra, A.; Mativandlela, S.P.N.; Binneman, B.; Fourie, P.B.; Hamilton, C.J.; Meyer, J.J.M.; van der Kooy, F.; Houghton, P.; Lall, N. Activity of 7-methyljuglone Derivatives against Mycobacterium tuberculosis and as Subversive Substrates for Mycothiol Disulfide Reductase. Bioorg. Med. Chem. 2007, 15, 7638–7646. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Library Cataloguing-in-Publication Data Global Action Plan on Antimicrobial Resistance. Microbe Mag. 2015, 10, 354–355. [Google Scholar]
- Antimicrobial Resistance: A Global Threat|UNEP—UN Environment Programme. Available online: https://www.unep.org/explore-topics/chemicals-waste/what-we-do/emerging-issues/antimicrobial-resistance-global-threat (accessed on 14 January 2023).
- WHO World Health Statistics 2022: Monitoring Health for the SDGs, Sustainable Development Goals. Available online: https://www.who.int/publications/i/item/9789240051157 (accessed on 14 January 2023).
- Kaikabo, A.A.; Suleiman, M.M.; Samuel, B.B.; Eloff, J.N. Antibacterial Activity of Eleven South African Plants Use in Treatment of Diarrhoea in Folkloric Medicine. Afr. J. Tradit. Complement. Altern. Med. 2009, 6, 315–316. [Google Scholar]
- Bandeira, S.; Senkoro, A.; Barbosa, F.; Mualassace, D.; Figueiredo, E. The Terrestrial Environment Adjacent to Maputo Bay. In The Maputo Bay Ecosystem; Bandeira Salomão, P.J., Ed.; Western Indian Ocean Marine Science Association: Zanzibar Town, Tanzania, 2014; pp. 239–254. [Google Scholar]
- Iwalewa, E.O.; McGaw, L.J.; Naidoo, V.; Eloff, J.N. Inflammation: The Foundation of Diseases and Disorders. A Review of Phytomedicines of South African Origin Used to Treat Pain and Inflammatory Conditions. Afr. J. Biotechnol. 2007, 6, 2868–2885. [Google Scholar] [CrossRef]
- Conde, P.; Figueira, R.; Saraiva, S.; Catarino, L.; Romeiras, M.; Duarte, M.C. The Botanic Mission to Mozambique (1942–1948): Contributions to Knowledge of the Medicinal Flora of Mozambique. Hist. Cienc. Saude Manguinhos 2014, 21, 539–585. [Google Scholar] [CrossRef]
- Ribeiro, A.; Serrano, R.; Silva, I.B.M.D.; Gomes, E.T.; Pinto, J.F.; Silva, O. Silva Botanical Markers of Diospyros villosa Dried Root for Pharmacognostic Characterization. In Proceedings of the iMed.Ulisboa Meeting, Lisbon, Portugal, 15 May 2021; Book of Abstract: Lisbon, Portugal, 2021; pp. 57–191. [Google Scholar]
- Maiga, A.; Malterud, K.E.; Diallo, D.; Paulsen, B.S. Antioxidant and 15-Lipoxygenase Inhibitory Activities of the Malian Medicinal Plants Diospyros abyssinica (Hiern) F. White (Ebenaceae), Lannea velutina A. Rich (Anacardiaceae) and Crossopteryx febrifuga (Afzel) Benth. (Rubiaceae). J. Ethnopharmacol. 2006, 104, 132–137. [Google Scholar] [CrossRef]
- Nafiu, M.O.; Salawu, M.O.; Kazeem, M.I. Antioxidant Activity of African Medicinal Plants. In Medicinal Plant Research in Africa; Elsevier: Amsterdam, The Netherlands, 2013; pp. 787–803. [Google Scholar]
- Okello, S.V.; Nyunja, R.O.; Netondo, G.W.; Onyango, J.C. Ethnobotanical Study of Medicinal Plants Used by Sabaots of Mt. Elgon Kenya. Afr. J. Tradit. Complement. Altern. Med. 2010, 7, 1–10. [Google Scholar] [CrossRef]
- Namukobe, J.; Kasenene, J.M.; Kiremire, B.T.; Byamukama, R.; Kamatenesi-Mugisha, M.; Krief, S.; Dumontet, V.; Kabasa, J.D. Traditional Plants Used for Medicinal Purposes by Local Communities around the Northern Sector of Kibale National Park, Uganda. J. Ethnopharmacol. 2011, 136, 236–245. [Google Scholar] [CrossRef]
- Lacroix, D.; Prado, S.; Kamoga, D.; Kasenene, J.; Namukobe, J.; Krief, S.; Dumontet, V.; Mouray, E.; Bodo, B.; Brunois, F. Antiplasmodial and Cytotoxic Activities of Medicinal Plants Traditionally Used in the Village of Kiohima, Uganda. J. Ethnopharmacol. 2011, 133, 850–855. [Google Scholar] [CrossRef]
- Tugume, P.; Kakudidi, E.K.; Buyinza, M.; Namaalwa, J.; Kamatenesi, M.; Mucunguzi, P.; Kalema, J. Ethnobotanical Survey of Medicinal Plant Species Used by Communities around Mabira Central Forest Reserve, Uganda. J. Ethnobiol. Ethnomed. 2016, 12, 5. [Google Scholar] [CrossRef]
- Timberlake, J.; Golding, J.; Clarke, P. Niassa Botanical Expedition—June 2003. Prep. Soc. Para A Gestão E Desenvolv. Da Reserva Do Niassa Moçambique Biodivers. Found. Afr. 2004, 43, 3–20. [Google Scholar]
- Kadavul, K.; Dixit, A.K. Ethnomedicinal Studies of the Woody Species of Kalrayan & Shervarayan Hills, Eastern Chats, Tamil Nadu. Indian J. Tradit. Knowl. 2009, 8, 592–597. [Google Scholar]
- Vijayalakshmi, R.; Ravindhran, R. Pharmacognostical Studies on Root of Diospyros ferrea (Willd.) Bakh and Aerva lanata Linn., a Potent Indian Medicinal Plants. Asian J. Pharm. Clin. Res. 2013, 6, 323–327. [Google Scholar]
- Vijayalakshmi, R.; Ravindhran, R. HPTLC Method for Quantitative Determination of gallic acid in Ethanolic Root Academic Sciences Asian Journal of Pharmaceutical and Clinical Research. Asian J. Pharm. Clin. Res. 2012, 5, 170–174. [Google Scholar]
- Choi, C.W.; Song, S.B.; Oh, J.S.; Kim, Y.H. Antiproliferation Effects of Selected Tanzania Plants. Afr. J. Tradit. Complement. Altern. Med. 2015, 12, 96–102. [Google Scholar] [CrossRef]
- Bagla, V.P.; Lubisi, V.Z.; Ndiitwani, T.; Mokgotho, M.P.; Mampuru, L.; Mbazima, V. Antibacterial and Antimetastatic Potential of Diospyros lycioides Extract on Cervical Cancer Cells and Associated Pathogens. Evid.-Based Complement. Altern. Med. 2016, 2016, 1–10. [Google Scholar] [CrossRef]
- Miller, J.S. Zulu Medicinal Plants: An Inventory By A. Hutchings with A. H. Scott, G. Lewis, and A. B. Cunningham (University of Zululand). J. Nat. Prod. 1997, 60, 955. [Google Scholar] [CrossRef]
- Semenya, S.S.; Maroyi, A. Ethnobotanical Survey of Plants Used by Bapedi Traditional Healers to Treat Tuberculosis and Its Opportunistic Infections in the Limpopo Province, South Africa. S. Afr. J. Bot. 2019, 122, 401–421. [Google Scholar] [CrossRef]
- Cai, L.; Wei, G.-X.; van der Bijl, P.; Wu, C.D. Namibian Chewing Stick, Diospyros lycioides, Contains Antibacterial Compounds against Oral Pathogens. J. Agric. Food Chem. 2000, 48, 909–914. [Google Scholar] [CrossRef]
- Mmongoyo, J.A.; Nair, M.G.; Linz, J.E.; Wu, F.; Mugula, J.K.; Dissanayake, A.A.; Zhang, C.; Day, D.M.; Wee, J.M.; Strasburg, G.M. Bioactive Compounds in Diospyros mafiensis Roots Inhibit Growth, Sporulation and Aflatoxin Production by Aspergillus flavus and Aspergillus parasiticus. World Mycotoxin. J. 2017, 10, 237–248. [Google Scholar] [CrossRef]
- Adzu, B.; Amos, S.; Muazzam, I.; Inyang, U.S.; Gamaniel, K.S. Neuropharmacological Screening of Diospyros mespiliformis in Mice. J. Ethnopharmacol. 2002, 83, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Chinsembu, K.C. Ethnobotanical Study of Plants Used in the Management of HIV/AIDS-Related Diseases in Livingstone, Southern Province, Zambia. Evid.-Based Complement. Altern. Med. 2016, 2016, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Adzu, B.; Amos, S.; Dzarma, S.; Muazzam, I.; Gamaniel, K.S. Pharmacological Evidence Favouring the Folkloric Use of Diospyros mespiliformis Hochst in the Relief of Pain and Fever. J. Ethnopharmacol. 2002, 82, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Belemtougri, R.G.; Constantin, B.; Cognard, C.; Raymond, G.; Sawadogo, L. Effects of Two Medicinal Plants Psidium guajava L. (Myrtaceae) and Diospyros mespiliformis L. (Ebenaceae) Leaf Extracts on Rat Skeletal Muscle Cells in Primary Culture. J. Zhejiang Univ. Sci. B 2006, 7, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Mabona, U.; Viljoen, A.; Shikanga, E.; Marston, A.; Van Vuuren, S. Antimicrobial Activity of Southern African Medicinal Plants with Dermatological Relevance: From an Ethnopharmacological Screening Approach, to Combination Studies and the Isolation of a Bioactive Compound. J. Ethnopharmacol. 2013, 148, 45–55. [Google Scholar] [CrossRef]
- Tapsoba, H.; Deschamps, J.-P. Use of Medicinal Plants for the Treatment of Oral Diseases in Burkina Faso. J. Ethnopharmacol. 2006, 104, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Luka, J.; Badau, S.J.; Mbaya, A.W.; Gadzama, J.J.; Kumshe, H.A. Acute Toxicity Study and Effect of Prolonged Administration (28 Days) of Crude Ethanolic Root Extract of Diospyros mespiliformis Hochst (Ebenaceae) on Clinical, Haematological and Biochemical Parameters of Albino Rats. J. Ethnopharmacol. 2014, 153, 268–273. [Google Scholar] [CrossRef]
- Nworu, C.; Onuigbo, E.; Omeje, J.; Nsirim, K.; Ogbu, J.; Ngwu, M.; Chah, K.; Esimone, C. Anti-Mycobacterial Activity of Root and Leaf Extracts of Anthocleista djalonensis (Loganiaceae) and Diospyros mespiliformis (Ebenaceae). Int. J. Green Pharm. 2009, 3, 201. [Google Scholar] [CrossRef]
- Ebbo, A.A.; Sani, D.; Suleiman, M.M.; Ahmad, A.; Hassan, A.Z. Assessment of Antioxidant and Wound Healing Activity of the Crude Methanolic Extract of Diospyros mespiliformis Hochst. Ex A. DC. (Ebenaceae) and Its Fractions in Wistar Rats. South Afr. J. Bot. 2022, 150, 305–312. [Google Scholar] [CrossRef]
- Chinsembu, K.C. Plants and Other Natural Products Used in the Management of Oral Infections and Improvement of Oral Health. Acta Trop. 2016, 154, 6–18. [Google Scholar] [CrossRef]
- Maroyi, A. Traditional Use of Medicinal Plants in South-Central Zimbabwe: Review and Perspectives. J. Ethnobiol. Ethnomed. 2013, 9, 31. [Google Scholar] [CrossRef] [PubMed]
- Marston, A.; Msonthi, J.; Hostettmann, K. Naphthoquinones of Diospyros usambarensis Their Molluscicidal and Fungicidal Activities. Planta Med. 1984, 50, 279–280. [Google Scholar] [CrossRef] [PubMed]
- Hamza, O.J.M.; van den Bout-van den Beukel, C.J.P.; Matee, M.I.N.; Moshi, M.J.; Mikx, F.H.M.; Selemani, H.O.; Mbwambo, Z.H.; van der Ven, A.J.A.M.; Verweij, P.E. Antifungal Activity of Some Tanzanian Plants Used Traditionally for the Treatment of Fungal Infections. J. Ethnopharmacol. 2006, 108, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Moshi, M.J.; Mbwambo, Z.H. Experience of Tanzanian Traditional Healers in the Management of Non-Insulin Dependent Diabetes Mellitus. Pharm. Biol. 2002, 40, 552–560. [Google Scholar] [CrossRef]
- Khan, M.; Kishimba, M.; Locksley, H. Extractives from Ebenaceae: Constituents of the Root and Stem Barks of Diospyros verrucosa. Planta Med. 1987, 53, 498. [Google Scholar] [CrossRef]
- Ribeiro, A.; Serrano, R.; da Silva, I.B.M.; Gomes, E.T.; Pinto, J.F.; Silva, O. Diospyros villosa Root Monographic Quality Studies. Plants 2022, 11, 3506. [Google Scholar] [CrossRef]
- Aston Philander, L. An Ethnobotany of Western Cape Rasta Bush Medicine. J. Ethnopharmacol. 2011, 138, 578–594. [Google Scholar] [CrossRef]
- Verschaeve, L.; Kestens, V.; Taylor, J.L.S.; Elgorashi, E.E.; Maes, A.; van Puyvelde, L.; de Kimpe, N.; van Staden, J. Investigation of the Antimutagenic Effects of Selected South African Medicinal Plant Extracts. Toxicol. Vitr. 2004, 18, 29–35. [Google Scholar] [CrossRef]
- Gafner, F.; Chapuis, J.-C.; Msonthi, J.D.; Hostettmann, K. Cytotoxic Naphthoquinones, Molluscicidal Saponins and Flavonols from Diospyros zombensis. Phytochemistry 1987, 26, 2501–2503. [Google Scholar] [CrossRef]
- Yoshihira, K.; Tezuka, M.; Takahashi, C.; Natori, S. Four New Naphthoquinone Derivatives from Diospyros spp. Chem. Pharm. Bull 1971, 19, 851–854. [Google Scholar] [CrossRef]
- Matsumura, Y.; Kitabatake, M.; Ouji-Sageshima, N.; Yasui, S.; Mochida, N.; Nakano, R.; Kasahara, K.; Tomoda, K.; Yano, H.; Kayano, S.; et al. Persimmon-Derived Tannin Has Bacteriostatic and Anti-Inflammatory Activity in a Murine Model of Mycobacterium avium Complex (MAC) Disease. PLoS ONE 2017, 12, e0183489. [Google Scholar] [CrossRef] [PubMed]
- Zhong, S.-M.; Waterman, P.G.; Jeffreys, J.A.D. Naphthoquinones and Triterpenes from African Diospyros Species. Phytochemistry 1984, 23, 1067–1072. [Google Scholar] [CrossRef]
- Krief, S.; Huffman, M.A.; Sévenet, T.; Hladik, C.-M.; Grellier, P.; Loiseau, P.M.; Wrangham, R.W. Bioactive Properties of Plant Species Ingested by Chimpanzees (Pan Troglodytes Schweinfurthii) in the Kibale National Park, Uganda. Am. J. Primatol. 2006, 68, 51–71. [Google Scholar] [CrossRef] [PubMed]
- Cantrell, C.L.; Berhow, M.A.; Phillips, B.S.; Duval, S.M.; Weisleder, D.; Vaughn, S.F. Bioactive Crude Plant Seed Extracts from the NCAUR Oilseed Repository. Phytomedicine 2003, 10, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Prada, N.J.; Vishnauvardhan, Z.; Baratha, J. Gc-Ms Identification of Bioactive Compounds from Solvent Ex-Tracts of Diospyros ferrea (Willd.) Bakh, Leaf. Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci. 2019, 6, 93–98. [Google Scholar]
- Kuo, Y.H.; Li, S.Y.; Shen, C.C.; Yang, L.M.; Huang, H.C.; Liao, W.B.; Chang, C.I.; Kuo, Y.H.; Chen, C.F. Cytotoxic Constituents from the Fruit of Diospyros ferrea. Chin. Pharm. J. 1997, 49, 207–216. [Google Scholar]
- Tezuka, M.; Takahashi, C.; Kuroyanagi, M.; Satake, M.; Yoshihira, K.; Natori, S. New Naphthoquinones from Diospyros. Phytochemistry 1973, 12, 175–183. [Google Scholar] [CrossRef]
- Vijayalakshmi, R.; Ravindhran, R. Comparative Fingerprint and Extraction Yield of Diospyros ferrea (Willd.) Bakh. Root with Phenol Compounds (gallic acid), as Determined by Uv–Vis and Ft–Ir Spectroscopy. Asian Pac. J. Trop. Biomed. 2012, 2, S1367–S1371. [Google Scholar] [CrossRef]
- Van der Vijver, L.M.; Gerritsma, K.W. Naphthoquinones of Euclea and Diospyros Species. Phytochemistry 1974, 13, 2322–2323. [Google Scholar] [CrossRef]
- Théophile, O.; Christian, K.T.R.; Alain, Y.; Pascal, A.D.C.; Reine, B.G.S.; Diane, B.F.T.; Félicien, A.; Dominique, S.C.K. Natural Chemical Compounds from Plants Extract for Prevention and Treatment of Oral Infections: A Review. Int. J. Biosci. (IJB) 2022, 20, 21–38. [Google Scholar] [CrossRef]
- Khan, R.M.; Rwekika, E. 6″,8’-Bisdiosquinone from Diospyros mafiensis. Phytochemistry 1999, 50, 143–146. [Google Scholar] [CrossRef]
- Khan, M.R.; Rwekika, E. Naphthoquinones from the Barks of Three Species of the Genus Diospyros. Fitoterapia 1993, 64, 375. [Google Scholar]
- Khan, M.R.; Rwekika, E. Triterpenoids from the Leaves of Four Species of Family Ebenaceae. Fitoterapia 1992, 63, 375–376. [Google Scholar]
- Bulus, A.; Ben, A.C.; Florence, D.T.; Oluwakanyinsola, A.S.; Ogbaji, J.I. Isolation and Analgesic Property of Lupeol from Diospyros mespiliformis Stem Bark. J. Med. Plants Res. 2015, 9, 813–819. [Google Scholar] [CrossRef]
- Hawas, U.W.; El-Ansari, M.A.; El-Hagrassi, A.M. A New Acylated Flavone Glycoside, in vitro Antioxidant and Antimicrobial Activities from Saudi Diospyros mespiliformis Hochst. Ex A. DC (Ebenaceae) Leaves. Z. Für Naturforschung C 2022, 77, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Lajubutu, B.A.; Pinney, R.J.; Roberts, M.F.; Odelola, H.A.; Oso, B.A. Antibacterial Activity of Diosquinone and Plumbagin from the Root of Diospyros mespiliformis (Hostch) (Ebenaceae). Phytother. Res. 1995, 9, 346–350. [Google Scholar] [CrossRef]
- Sharma, V. Brief Review on the Genus Diospyros: A Rich Source of Naphthoquinones. Asian J. Adv. Basic Sci. 2017, 5, 34–53. [Google Scholar]
- Khan, M.; Kishimba, M.; Locksley, H. Naphthoquinones from the Root and Stem Barks of Diospyros usambarensis. Planta Med. 1989, 55, 581. [Google Scholar] [CrossRef]
- Hook, I.; Mills, C.; Sheridan, H. Bioactive naphthoquinones from Higher Plants. Stud. Nat. Prod. Chem. 2014, 41, 119–160. [Google Scholar] [CrossRef]
- Ebbo, A.A.; Mammam, M.; Suleiman, M.M.; Ahmed, A.; Bello, A. Preliminary Phytochemical Screening of Diospyros mespiliformis. Anat. Physiol. 2014, 4, 156–158. [Google Scholar] [CrossRef]
- Peyrat, L.-A.; Eparvier, V.; Eydoux, C.; Guillemot, J.-C.; Stien, D.; Litaudon, M. Chemical Diversity and Antiviral Potential in the Pantropical Diospyros Genus. Fitoterapia 2016, 112, 9–15. [Google Scholar] [CrossRef]
- Adeniyi, B.A.; Robert, M.F.; Chai, H.; Fong, H.H.S. In vitro Cytotoxicity Activity of diosquinone, a naphthoquinone epoxide. Phytother. Res. 2003, 17, 282–284. [Google Scholar] [CrossRef] [PubMed]
- Rauf, A.; Uddin, G.; Khan, H.; Arfan, M.; Siddiqui, B.S. Bioassay-Guided Isolation of Antibacterial Constituents from Diospyros lotus Roots. Nat. Prod. Res. 2016, 30, 426–428. [Google Scholar] [CrossRef]
- Ma, C.-Y.; Musoke, S.F.; Tan, G.T.; Sydara, K.; Bouamanivong, S.; Southavong, B.; Soejarto, D.D.; Fong, H.H.S.; Zhang, H.-J. Study of Antimalarial Activity of Chemical Constituents from Diospyros quaesita. Chem. Biodivers 2008, 5, 2442–2448. [Google Scholar] [CrossRef] [PubMed]
- Njanpa, C.A.N.; Wouamba, S.C.N.; Yamthe, L.R.T.; Dize, D.; Tchatat, B.M.T.; Tsouh, P.V.F.; Pouofo, M.N.; Jouda, J.B.; Ndjakou, B.L.; Sewald, N.; et al. Bio-Guided Isolation of Anti-Leishmanial Natural Products from Diospyros gracilescens L. (Ebenaceae). BMC Complement. Med. Ther. 2021, 21, 1–12. [Google Scholar] [CrossRef]
- Prachayasittikul, S.; Saraban, P.; Cherdtrakulkiat, R.; Ruchirawat, S.; Prachayasittikul, V. New Bioactive Triterpenoids and Antimalarial Activity of Diospyros rubra Lec. EXCLI J. 2010, 9, 1–10. [Google Scholar] [PubMed]
- Maitera, O.; Louis, H.; Oyebanji, O.; Anumah, A. Investigation of Tannin Content in Diospyros mespiliformis Extract Using Various Extraction Solvents. J. Anal. Pharm. Res. 2018, 7, 00200. [Google Scholar] [CrossRef]
- Maroyi, A. Diospyros lycioides Desf.: Review of Its Botany, Medicinal Uses, Pharmacological Activities and Phytochemistry. Asian Pac. J. Trop. Biomed. 2018, 8, 130. [Google Scholar] [CrossRef]
- Prada, N.J.; Vardhan, V.; Reddy, S. Antidiabetic Activity of Methanolic Leaf Extract of Diospyros ferrea (Willd) Bakh. in Streptozotocin Induced Diabetic Rats. Glob. J. Res. Anal. 2017, 6, 323–327. [Google Scholar] [CrossRef]
- Marston, A.; Maillard, M.; Hostettmann, K. Search for Antifungal, Molluscicidal and Larvicidal Compounds from African Medicinal Plants. J. Ethnopharmacol. 1993, 38, 209–214. [Google Scholar] [CrossRef]
- Shikwambana, N.; Mahlo, S.M. A Survey of Antifungal Activity of Selected South African Plant Species Used for the Treatment of Skin Infections. Nat. Prod. Commun. 2020, 15, 1934578X2092318. [Google Scholar] [CrossRef]
- Diallo, D.; Marston, A.; Terreaux, C.; Touré, Y.; Smestad Paulsen, B.; Hostettmann, K. Screening of Malian Medicinal Plants for Antifungal, Larvicidal, Molluscicidal, Antioxidant and Radical Scavenging Activities. Phytother. Res. 2001, 15, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Dougnon, V.; Hounsa, E.; Agbodjento, E.; Keilah, L.P.; Legba, B.B.; Sintondji, K.; Afaton, A.; Klotoe, J.R.; Baba-Moussa, L.; Bankole, H. Percentage Destabilization Effect of Some West African Medicinal Plants on the Outer Membrane of Various Bacteria Involved in Infectious Diarrhea. Biomed. Res. Int. 2021, 2021, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Samie, A.; Tambani, T.; Harshfield, E.; Green, E.; Ramalivhana, J.N.; Bessong, P.O. Antifungal Activities of Selected Venda Medicinal Plants against Candida albicans, Candida krusei and Cryptococcus neoformans Isolated from South African AIDS Patients. Afr. J. Biotechnol. 2010, 9, 2965–2976. [Google Scholar]
- Ebbo, A.A.; Sani, D.; Suleiman, M.M.; Ahmed, A.; Hassan, A.Z. Phytochemical Composition, Proximate Analysis and Antimicrobial Screening of the Methanolic Extract of Diospyros mespiliformis Hochst Ex a. Dc (Ebenaceae). Pharmacogn. J. 2019, 11, 362–368. [Google Scholar] [CrossRef]
- Olanlokun, J.O.; Adetutu, J.A.; Olorunsogo, O.O. In vitro Inhibition of Beta-Hematin Formation and in vivo Effects of Diospyros mespiliformis and Mondia Whitei Methanol Extracts on Chloroquine-Susceptible Plasmodium berghei-Induced Malaria in Mice. Interv. Med. Appl. Sci. 2021, 11, 197–206. [Google Scholar] [CrossRef]
- Christopher, R.; Mgani, Q.; Nyandoro, S.; Rousseau, A.; Vuuren, S.; Isaacs, M.; Hoppe, H. Antitrypanosomal, Antiplasmodial, and Antibacterial Activities of Extracts from Selected Diospyros and Annonaceae Species. J. Complement. Med. Res. 2018, 7, 161. [Google Scholar] [CrossRef]
- Rani, V.S.; Ramana, K.V. Evaluation of Anti-Inflammatory and Analgesic Activities of Diospyros ferrea Leaves. Res. J. Pharm. Biol. Chem. Sci. 2011, 2, 584–588. [Google Scholar]
- Ramana, K.V.; Rambabu, P.S.G. Evaluation of Anti-Inflammatory and Analgesic Activities of Diospyros ferrea Root. Adv. Pharmacol. Toxicol. 2010, 11, 37–40. [Google Scholar]
- Ito, Y. Antifungal Compounds from Trees of the Genus Diospyros with Complete Assignment of Nuclear Magnetic Resonance Data. Mokuzai Gakkaishi 1995, 41, 694–698. [Google Scholar]
- Munissi, J.J.E. Cytotoxic and Antimicrobial Activities of the Constituents of Ten Plant Species from Tanzania. Tanzan. J. Sci. 2019, 45, 44–52. [Google Scholar]
- Cirera, J.; da Silva, G.; Serrano, R.; Gomes, E.; Duarte, A.; Silva, O. Antimicrobial Activity of Diospyros villosa Root. Planta Med. 2010, 76, P454. [Google Scholar] [CrossRef]
- Begum, S.; Munissi, J.J.E.; Buriyo, A.S.; Makangara, J.J.; Lucantoni, L.; Avery, V.M.; Erdelyi, M.; Nyandoro, S.S. Antiplasmodial, Antimicrobial and Cytotoxic Activities of Extracts from Selected Medicinal Plants Growing in Tanzania. J. Biol. Act. Prod. Nat. 2020, 10, 165–176. [Google Scholar] [CrossRef]
- Hegazy, A.K.; Mohamed, A.A.; Ali, S.I.; Alghamdi, N.M.; Abdel-Rahman, A.M.; Al-Sobeai, S. Chemical Ingredients and Antioxidant Activities of Underutilized Wild Fruits. Heliyon 2019, 5, e01874. [Google Scholar] [CrossRef]
- Adu, O.T.; Naidoo, Y.; Lin, J.; Adu, T.S.; Sivaram, V.; Dewir, Y.H.; El-Banna, A.N. Phytochemical Screening and Biological Activities of Diospyros villosa (L.) De Winter Leaf and Stem-Bark Extracts. Horticulturae 2022, 8, 945. [Google Scholar] [CrossRef]
- Ebbo, A.A.; Sani, D.; Suleiman, M.M.; Ahmad, A.; Hassan, A.Z. Acute and Sub-Chronic Toxicity Evaluation of the Crude Methanolic Extract of Diospyros mespiliformis Hochst Ex a. Dc (Ebenaceae) and Its Fractions. Toxicol. Rep. 2020, 7, 1138–1144. [Google Scholar] [CrossRef] [PubMed]
- Mukhtar, Y.; Aliyu, B.S.; Zakari, S.M.; Aliko, A.A.; Habib, A.S.; Zubairu, S.M.; Bashir, R.A.; Tukur, S.; Jalingo, A.S.; Abubakar, F.S.; et al. Phytochemical, Pharmacognostic and Acute Toxicity Study of Diospyros mespiliformis (African Ebony) Stem Bark. Biosci. J. 2022, 10, 28–40. [Google Scholar]
- Elgorashi, E. Screening of Medicinal Plants Used in South African Traditional Medicine for Genotoxic Effects. Toxicol. Lett. 2003, 143, 195–207. [Google Scholar] [CrossRef]
- Cirera, J. Contribution to the Pharmacognostic Characterization of Diospyros villosa Root. Master’s Thesis, Universidade de Lisboa, Lisboa, Portugal, 2012. [Google Scholar]
- Sanogo, R.; Crisafi, G.; Germanò, M.P.; de Pasquale, R.; Bisignano, G. Evaluation of Malian Traditional Medicines: Screening for Antimicrobial Activity. Ltd. Phytother. Res. 1998, 12, 154–156. [Google Scholar] [CrossRef]
- Dangoggo, S.M.; Hassan, L.; Shina, I.S.; Manga, S. Phytochemical Analysis and Antibacterial Screening of Leaves of Diospyros mespiliformis and Ziziphus spina-christi. J. Chem. 2012, 1, 31–37. [Google Scholar]
- Peres, M.A.; Macpherson, L.M.D.; Weyant, R.J.; Daly, B.; Venturelli, R.; Mathur, M.R.; Listl, S.; Celeste, R.K.; Guarnizo-Herreño, C.C.; Kearns, C.; et al. Oral diseases: A global public health challenge. Lancet. 2019, 394, 249–260. [Google Scholar] [CrossRef] [PubMed]
- James, S.L.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.; et al. Global, Regional, and National Incidence, Prevalence, and Years Lived with Disability for 354 Diseases and Injuries for 195 Countries and Territories, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [Google Scholar] [CrossRef]
- Douglas, K. Ethnobotanical Medicinal Plants Used as Chewing Sticks among the Kenyan Communities. Br. J. Pharm. Res. 2016, 13, 1–8. [Google Scholar] [CrossRef]
- Mbaveng, A.T.; Kuete, V. Review of the Chemistry and Pharmacology of 7-Methyljugulone. Afr. Health Sci. 2014, 14, 201. [Google Scholar] [CrossRef]
- Padhye, S.; Dandawate, P.; Yusufi, M.; Ahmad, A.; Sarkar, F.H. Perspectives on Medicinal Properties of Plumbagin and Its Analogs. Med. Res. Rev. 2012, 32, 1131–1158. [Google Scholar] [CrossRef]
- Isnansetyo, A.; Putri Handayani, D.; Istiqomah, I.; Arif, A.; Kaneko, T. An Antibacterial Compound Purified from a Tropical Coastal Plant, Diospyros maritima. Biodiversitas 2021, 23, 135–142. [Google Scholar] [CrossRef]
- Karkare, S.; Chung, T.T.H.; Collin, F.; Mitchenall, L.A.; McKay, A.R.; Greive, S.J.; Meyer, J.J.M.; Lall, N.; Maxwell, A. The Naphthoquinone diospyrin Is an Inhibitor of DNA Gyrase with a Novel Mechanism of Action. J. Biol. Chem. 2013, 288, 5149–5156. [Google Scholar] [CrossRef] [PubMed]
- Kuete, V.; Tangmouo, J.G.; Marion Meyer, J.J.; Lall, N. Diospyrone, crassiflorone and plumbagin: Three Antimycobacterial and Antigonorrhoeal Naphthoquinones from Two Retrieved from Diospyros spp. Int. J. Antimicrob. Agents 2009, 34, 322–325. [Google Scholar] [CrossRef]
- Kuete, V.; Ngameni, B.; Tangmouo, J.G.; Bolla, J.-M.; Alibert-Franco, S.; Ngadjui, B.T.; Pagès, J.-M. Efflux Pumps Are Involved in the Defense of Gram-Negative Bacteria against the Natural Products Isobavachalcone and Diospyrone. Antimicrob. Agents Chemother. 2010, 54, 1749–1752. [Google Scholar] [CrossRef]
- Tangmouo, J.G.; Lontsi, D.; Ngounou, F.N.; Kuete, V.; Meli, A.L.; Manfouo, R.N.; Kamdem W., H.; Tane, P.; Beng, V.P.; Sondengam, B.L.; et al. Diospyrone, a new coumarinylbinaphthoquinone from Diospyros canaliculata (Ebenaceae): Structure and Antimicrobial Activity. Bull. Chem. Soc. Ethiop. 2005, 19, 81–88. [Google Scholar]
- Janeczko, M.; Kubiński, K.; Martyna, A.; Muzyczka, A.; Boguszewska-Czubara, A.; Czernik, S.; Tokarska-Rodak, M.; Chwedczuk, M.; Demchuk, O.M.; Golczyk, H.; et al. 1,4-Naphthoquinone Derivatives Potently Suppress Candida albicans Growth, Inhibit Formation of Hyphae and Show No Toxicity toward Zebrafish Embryos. J. Med. Microbiol. 2018, 67, 598–609. [Google Scholar] [CrossRef]
- Dzoyem, J.P.; Tangmouo, J.G.; Lontsi, D.; Etoa, F.X.; Lohoue, P.J. In vitro Antifungal Activity of Extract and Plumbagin from the Stem Bark of Diospyros crassiflora Hiern (Ebenaceae). Phytother. Res. 2007, 21, 671–674. [Google Scholar] [CrossRef] [PubMed]
- Dzoyem, J.P.; Kechia, F.A.; Kuete, V.; Pieme, A.C.; Akak, C.M.; Tangmouo, J.G.; Lohoue, P.J. Phytotoxic, Antifungal Activities and Acute Toxicity Studies of the Crude Extract and Compounds from Diospyros canaliculata. Nat. Prod. Res. 2011, 25, 741–749. [Google Scholar] [CrossRef] [PubMed]
- Surapuram, V.; Setzer, W.N.; McFeeters, R.L.; McFeeters, H. Antifungal Activity of Plant Extracts against Aspergillus niger and Rhizopus stolonifer. Nat. Prod. Commun. 2014, 9, 1934578X1400901. [Google Scholar] [CrossRef]
- Ilaria, C.; Queiroz, E.; Brusotti, G.; Favre-Godal, Q.; Caccialanza, G.; Moundipa, P.; Wolfender, J. Antifungal Compounds Isolated from Diospyros bipindensis. Planta Med. 2012, 78, PI427. [Google Scholar] [CrossRef]
- Cesari, I.; Queiroz, E.F.; Favre-Godal, Q.; Marcourt, L.; Caccialanza, G.; Moundipa, P.F.; Brusotti, G.; Wolfender, J.-L. Extensive Phytochemical Investigation of the Polar Constituents of Diospyros bipindensis Gürke Traditionally Used by Baka Pygmies. Phytochemistry 2013, 96, 279–287. [Google Scholar] [CrossRef]
- Cesari, I.; Hoerlé, M.; Simoes-Pires, C.; Grisoli, P.; Queiroz, E.F.; Dacarro, C.; Marcourt, L.; Moundipa, P.F.; Carrupt, P.A.; Cuendet, M.; et al. Anti-Inflammatory, Antimicrobial and Antioxidant Activities of Diospyros bipindensis (Gürke) Extracts and Its Main Constituents. J. Ethnopharmacol. 2013, 146, 264–270. [Google Scholar] [CrossRef]
- Wang, X.; Habib, E.; León, F.; Radwan, M.M.; Tabanca, N.; Gao, J.; Wedge, D.E.; Cutler, S.J. Antifungal Metabolites from the Roots of Diospyros virginiana by Overpressure Layer Chromatography. Chem. Biodivers 2011, 8, 2331–2340. [Google Scholar] [CrossRef]
- Prajoubklang, A.; Sirithunyalug, B.; Charoenchai, P.; Suvannakad, R.; Sriubolmas, N.; Piyamongkol, S.; Kongsaeree, P.; Kittakoop, P. Bioactive Deoxypreussomerins and Dimeric Naphthoquinones from Diospyros ehretioides Fruits: Deoxypreussomerins May Not Be Plant Metabolites But May Be from Fungal epiphytes or endophytes. Chem. Biodivers 2005, 2, 1358–1367. [Google Scholar] [CrossRef]
- Olasehinde, G.I.; Ojurongbe, O.; Adeyeba, A.O.; Fagade, O.E.; Valecha, N.; Ayanda, I.O.; Ajayi, A.A.; Egwari, L.O. In vitro Studies on the Sensitivity Pattern of Plasmodium falciparum to Anti-Malarial Drugs and Local Herbal Extracts. Malar. J. 2014, 13, 63. [Google Scholar] [CrossRef]
- Hazra, B.; Ghosh, R.; Banerjee, A.; Kirby, G.C.; Warhurst, D.C.; Phillipson, J.D. In vitro Antiplasmodial Effects of diospyrin, a Plant-Derived naphthoquinoid, and a Novel Series of Derivatives. Phytother. Res. 1995, 9, 72–74. [Google Scholar] [CrossRef]
- Uliassi, E.; Fiorani, G.; Krauth-Siegel, R.L.; Bergamini, C.; Fato, R.; Bianchini, G.; Carlos Menéndez, J.; Molina, M.T.; López-Montero, E.; Falchi, F.; et al. Crassiflorone Derivatives That Inhibit Trypanosoma brucei glyceraldehyde-3-phosphate dehydrogenase (Tb GAPDH) and Trypanosoma cruzi trypanothione reductase (Tc TR) and Display Trypanocidal Activity. Eur. J. Med. Chem. 2017, 141, 138–148. [Google Scholar] [CrossRef] [PubMed]
- Kantamreddi, V.S.S.; Wright, C.W. Investigation of Indian Diospyros Species for Antiplasmodial Properties. Evid.-Based Complement. Altern. Med. 2008, 5, 187–190. [Google Scholar] [CrossRef] [PubMed]
- Rajarajeshwari, N.; Ganapaty, S.; Harish Kumar, D.H. In vitro Anthelmintic Activity of Five Rare Species of Diospyros. Int. J. Pharm. Sci. 2010, 2, 445–447. [Google Scholar]
- Amar Dev, M.J.; Rajarajeshwari, N.; Ganapaty, S.; Parixit, B.; Brun, R. Antiprotozoal and Anthelmintic Naphthoquinones from Three Unexplored Species of Diospyros. J. Nat. Remedies 2012, 12, 129–134. [Google Scholar]
- Yue, X.; Yang, H.; Wang, T.; Dong, S.; Sun, Z.; Wang, Y.; Luo, X.; Chen, B.; Yao, G.; Gao, Y.; et al. Molecules and Medical Function of Diospyros lotus L. Therm. Sci. 2020, 24, 1705–1712. [Google Scholar] [CrossRef]
- Ayoub, A.; Singh, J.; Hameed, F.; Mushtaq, M. Evaluation of Secondary Metabolites (Antibacterial and Antioxidant Activity) of Amlok (Diospyros lotus L) Fruit Extracts of Jammu Region. J. Pharm. Res. Int. 2021, 32, 8–19. [Google Scholar] [CrossRef]
- Yang, H.-Q.; Chen, G.-H.; Dong, S.; Sun, Z.; Wang, Y.; Luo, X.; Chen, B.; Yao, G.; Gao, Y.; Lv, C.; et al. Chemical Constituents and Medical Function of Leaves of Diospyros lotus L. Therm. Sci. 2020, 24, 1633–1639. [Google Scholar] [CrossRef]
- Rouf, R.; Uddin, S.J.; Shilpi, J.A.; Toufiq-Ur-Rahman, M.; Ferdous, M.M.; Sarker, S.D. Anti-Diarrhoeal Properties of Diospyros peregrina in the Castor Oil-Induced Diarrhoea Model in Mice. Ars. Pharm. 2006, 47, 81–89. [Google Scholar]
- Dewanjee, S.; Kundu, M.; Maiti, A.; Majumdar, R.; Majumdar, A.; Mandel, S.C. In Vitro Evaluation of Antimicrobial Activity of Crude Extract from Plants Diospyros peregrina, Coccinia grandis and Swietenia macrophylla. Trop. J. Pharm. Res. 2007, 6, 773–778. [Google Scholar] [CrossRef]
- Sinha, B.N.; Bansal, S.K.; Pattnaik, A.K. Phytochemical and Antimicrobial Activity of Extracts, Fractions and Betulin, 7-Methyl Juglone Obtained from Diospyros paniculata. J. Nat. Remedies 2009, 9, 99–102. [Google Scholar]
- Rao, N.H.; Lakshmidevi, N.; Pammi SV, N.; Kollu, P.; Ganapaty, S.; Lakshmi, P. Green Synthesis of Silver Nanoparticles Using Methanolic Root Extracts of Diospyros paniculata and Their Antimicrobial Activities. Mater. Sci. Eng. C 2016, 62, 553–557. [Google Scholar] [CrossRef]
- Hu, J.-F.; Garo, E.; Goering, M.G.; Pasmore, M.; Yoo, H.-D.; Esser, T.; Sestrich, J.; Cremin, P.A.; Hough, G.W.; Perrone, P.; et al. Bacterial Biofilm Inhibitors from Diospyros dendo. J. Nat. Prod. 2006, 69, 118–120. [Google Scholar] [CrossRef]
- Yogeeswari, P.; Sriram, D. Betulinic acid and Its Derivatives: A Review on Their Biological Properties. Curr. Med. Chem. 2005, 12, 657–666. [Google Scholar] [CrossRef] [PubMed]
- Baglin, I.; Mitaine-Offer, A.C.; Nour, M.; Tan, K.; Cave, C.; Lacaille-Dubois, M.A. A Review of Natural and Modified betulinic, ursolic and echinocystic acid derivatives as Potential Antitumor and Anti-HIV Agents. Mini-Rev. Med. Chem. 2003, 3, 525–539. [Google Scholar] [CrossRef]
- Fouokeng, Y.; Feumo Feusso, H.M.; Mbosso Teinkela, J.E.; Siwe Noundou, X.; Wintjens, R.; Isaacs, M.; Hoppe, H.C.; Krause, R.W.M.; Azebaze, A.G.B.; Vardamides, J.C. In vitro Antimalarial, Antitrypanosomal and HIV-1 Integrase Inhibitory Activities of Two Cameroonian Medicinal Plants: Antrocaryon klaineanum (Anacardiaceae) and Diospyros conocarpa (Ebenaceae). South Afr. J. Bot. 2019, 122, 510–517. [Google Scholar] [CrossRef]
- Juárez-Méndez, M.T.; Borges-Argáez, R.; Ayora-Talavera, G.; Escalante-Rebolledo, S.E.; Escalante-Erosa, F.; Cáceres-Farfán, M. Diospyros anisandra Phytochemical Analysis and Anti-Hemagglutinin-Neuraminidase Activity on Influenza AH1N1pdm09 Virus. Nat. Prod. Res. 2022, 36, 2666–2672. [Google Scholar] [CrossRef]
- Cetina-Montejo, L.; Ayora-Talavera, G.; Borges-Argáez, R. Zeylanone Epoxide Isolated from Diospyros anisandra Stem Bark Inhibits Influenza Virus in vitro. Arch. Virol. 2019, 164, 1543–1552. [Google Scholar] [CrossRef]
- Liu, M.; Yang, K.; Wang, J.; Zhang, J.; Qi, Y.; Wei, X.; Fan, M. Young Astringent Persimmon Tannin Inhibits Methicillin-Resistant Staphylococcus aureus Isolated from Pork. LWT 2019, 100, 48–55. [Google Scholar] [CrossRef]
- Maugeri, A.; Lombardo, G.E.; Cirmi, S.; Süntar, I.; Barreca, D.; Laganà, G.; Navarra, M. Pharmacology and Toxicology of tannins. Arch. Toxicol. 2022, 96, 1257–1277. [Google Scholar] [CrossRef] [PubMed]
- Arakawa, H.; Takasaki, M.; Tajima, N.; Fukamachi, H.; Igarashi, T. Antibacterial Activities of Persimmon Extracts Relate with Their Hydrogen Peroxide Concentration. Biol. Pharm. Bull. 2014, 37, 1119–1123. [Google Scholar] [CrossRef] [PubMed]
- Thatoi, H.N.; Panda, S.K.; Rath, S.K.; Dutta, S.K. Antimicrobial Activity and Ethnomedicinal Uses of Some Medicinal Plants from Similipal Biosphere Reserve, Orissa. Asian J. Plant Sci. 2008, 7, 260–267. [Google Scholar] [CrossRef]
- Dutta, S.; Panda, S.; Dubey, D. Anticandidal Activity of Diospyros melanoxylon Roxb. Bark from Similipal Biosphere Reserve, Orissa, India. Int. J. Green Pharm. 2010, 4, 102. [Google Scholar] [CrossRef]
- Supriya, K.A.; Growther, L. In-vitro Antioxidant and Antibacterial Activity of Different Extracts of Diospyros melanoxylon Roxb. Int. J. Pharm. Sci. Res. 2019, 10, 1820–1827. [Google Scholar]
- Kanta Rath, S.; Kumar Patra, J.; Gouda, S.; Kumar Sahoo, S.; Thatoi, H.; Kumar Dutta, S. Evaluation of Antioxidant Potential, Phytochemical Analysis and Chromatographic Separation of Bark Extracts of Diospyros melanoxylon Roxb. J. Biol. Act. Prod. Nat. 2014, 4, 377–390. [Google Scholar] [CrossRef]
- Kamaraj, C.; Rahuman, A.A.; Siva, C.; Iyappan, M.; Kirthi, A.V. Evaluation of Antibacterial Activity of Selected Medicinal Plant Extracts from South India against Human Pathogens. Asian Pac. J. Trop. Dis. 2012, 2, S296–S301. [Google Scholar] [CrossRef]
- Wangensteen, H.; Klarpås, L.; Alamgir, M.; Samuelsen, A.; Malterud, K. Can Scientific Evidence Support Using Bangladeshi Traditional Medicinal Plants in the Treatment of Diarrhoea? A Review on Seven Plants. Nutrients 2013, 5, 1757–1800. [Google Scholar] [CrossRef]
- Vijayan, G.S.; Chandra, J. Effect of Methanolic and Ethyl Acetate Leaf Extract of Diospyros discolor against gram positive and gram negative bacteria. J. Pharm. Sci. 2015, 8, 389–392. [Google Scholar]
- Dhawefi, N.; Jedidi, S.; Rtibi, K.; Jridi, M.; Sammeri, H.; Abidi, C.; Zouari, N.; Sebai, H. Antidiarrheal, Antimicrobial, and Antioxidant Properties of the Aqueous Extract of Tunisian Persimmon (Diospyros kaki Thunb.) Fruits. J. Med. Food 2021, 24, 1100–1112. [Google Scholar] [CrossRef]
- Tomiyama, K.; Mukai, Y.; Saito, M.; Watanabe, K.; Kumada, H.; Nihei, T.; Hamada, N.; Teranaka, T. Antibacterial Action of a Condensed tannin Extracted from Astringent Persimmon as a Component of Food Addictive Pancil PS-M on Oral Polymicrobial Biofilms. Biomed. Res. Int. 2016, 2016, 1–7. [Google Scholar] [CrossRef]
- Tahir, L.; Aslam, A.; Ahmed, S. Antibacterial Activities of Diospyros blancoi, Phoenix Dactylifera and Morus nigra against Dental Caries Causing Pathogens: An in vitro Study. Pak. J. Pharm. Sci. 2017, 30, 163–169. [Google Scholar] [PubMed]
- Senthilkumar, S.; Ashok, M.; Kashinath, L.; Sanjeeviraja, C.; Rajendran, A. Phytosynthesis and Characterization of TiO2 Nanoparticles Using Diospyros ebenum Leaf Extract and Their Antibacterial and Photocatalytic Degradation of Crystal Violet. Smart Sci. 2018, 6, 1–9. [Google Scholar] [CrossRef]
- Bharadwaj, K.K.; Rabha, B.; Pati, S.; Choudhury, B.K.; Sarkar, T.; Gogoi, S.K.; Kakati, N.; Baishya, D.; Kari, Z.A.; Edinur, H.A. Green Synthesis of Silver Nanoparticles Using Diospyros malabarica Fruit Extract and Assessments of Their Antimicrobial, Anticancer and Catalytic Reduction of 4-Nitrophenol (4-NP). Nanomaterials 2021, 11, 1999. [Google Scholar] [CrossRef]
- Polash, S.A.; Hamza, A.; Hossain, M.M.; Tushar, M.H.; Takikawa, M.; Shubhra, R.D.; Saiara, N.; Saha, T.; Takeoka, S.; Sarker, S.R. Diospyros malabarica Fruit Extract Derived Silver Nanoparticles: A Biocompatible Antibacterial Agent. Front. Nanotechnol. 2022, 4, 888444. [Google Scholar] [CrossRef]
- Ueda, K.; Kawabata, R.; Irie, T.; Nakai, Y.; Tohya, Y.; Sakaguchi, T. Inactivation of Pathogenic Viruses by Plant-Derived tannins: Strong Effects of Extracts from Persimmon (Diospyros kaki) on a Broad Range of Viruses. PLoS ONE 2013, 8, e55343. [Google Scholar] [CrossRef]
- Kamimoto, M.; Nakai, Y.; Tsuji, T.; Shimamoto, T.; Shimamoto, T. Antiviral Effects of Persimmon Extract on Human Norovirus and Its Surrogate, Bacteriophage MS2. J. Food Sci. 2014, 79, M941–M946. [Google Scholar] [CrossRef]
- Dewanjee, S.; Maiti, A.; Kundu, M.; Mandal, S.C. Evaluation of Anthelmintic Activity of Crude Extracts of Diospyros peregrina, Coccinia grandis, Schima wallichii. Dhaka Univ. J. Pharm. Sci. 1970, 6, 121–123. [Google Scholar] [CrossRef]
First Discription Year | Scientific Name | Author | Common Name English/Local | MD 1 | IUCN 2 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N | Z | T | MS | GI | M | CD | Np | |||||
1980 | D. anitae | F.White | malawi star apple/- | LC | ||||||||
1911 | D. bussei | Gürke | coral star-berry/- | NT | ||||||||
1935 | D. consolatae | Chiov. | -/novolo | LC | ||||||||
1963 | D. dichrophylla | (Gand.) De Winter | poison star-apple/- | LC | ||||||||
1933 | D. ferrea | (Willd.) Bakh. | -/- | A | ||||||||
1962 | D. inhacaensis | F.White | coastal jackal-berry/dodo | LC | ||||||||
1988 | D. kabuyeana | F.White | -/- | LC | ||||||||
1873 | D. kirkii | Hiern | large-leaved jackal-berry/ cula, fuma, jacualala, mucula, murriba, tendje | LC | ||||||||
1980 | D. mafiensis | F.White | -/- | NT | ||||||||
1844 | D. mespiliformis | Hochst. ex A.DC. | african ebony, jackal-berry/ muribariba, mucula, muquéué, murriparipa, mutona, mussuma | ∇ | LC | |||||||
1956 | D. quiloensis | (Hiern) F.White | crocodile-bark jackal-berry/ midodo, murodo | LC | ||||||||
1873 | D. rotundifolia | Hiern | dune star-apple/ impapa, mapiti, munhentze | Δ | NE | |||||||
1861 | D. senensis | Klotzsch | spiny jackal-berry/ matamba, mudalima, tombatica | LC | ||||||||
1861 | D. squarrosa | Klotzsch | rigid star-berry/cachenz’ere, mpomopo, senzasicana, sicana | LC | ||||||||
1980 | D. truncatifolia | Caveney | square-leaved star apple/ impope, mpope | LC | ||||||||
1873 | D. verrucosa | Hiern | warty star-apple/djacola, mkonhomo, nkalanongo, riparipa | LC | ||||||||
1961 | D. whyteana | (Hiern) P.White | bladder-nut/- | LC | ||||||||
1963 | D. zombensis | (B.L.Burtt) F.White | malawi star-apple/- | LC | ||||||||
1891 | D. abyssinica subsp. abyssinica | (Hiern) F.White | giant diospyros/- | LC | ||||||||
1988 | D. abyssinica subsp. attenuata * | (Hiern) F.White | giant diospyros/- | LC | ||||||||
1980 | D. abyssinica subsp. chapmaniorum | (Hiern) F.White | giant diospyros/- | LC | ||||||||
1837 | D. loureiriana subsp. loureiriana a | G.Don | dye star-apple, sand star-apple/chipongoti, nhandima | LC | ||||||||
1805 | D. lycioides Desf. subsp. sericea | (Bernh.) De Winter | eastern blue-bush, red star-apple/chitomatomana, m’dima | LC | ||||||||
1968 | D. natalensis subsp. natalensis * | (Harv.) Brenan | acorn jackal-berry/- | A | ||||||||
2009 | D. natalensis subsp. nummularia | (Harv.) Brenan Jordaan | acorn diospyros, acorn jackal-berry, granite jackal-berry **/- | A | ||||||||
b D. usambarensis subsp. usambarensis /rufescens | F.White | -/aboba, kidanko, mpome, nhamudima, popa | LC | |||||||||
c D. villosa (L.) var. villosa | De Winter | hairy star-apple/nhachibabane, nhaurratane, chicanela, chicumbela, chibabane | A | |||||||||
c D. villosa var. parvifolia | (De Winter) De Winter | hairy star-apple/- | A | |||||||||
d D. consolatae-rotundifolia intermediates | - | - | A | |||||||||
d D. kirkii-mespiliformis intermediates | - | - | A | |||||||||
d D. sp. no. 1 sensu FZ | - | - | A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribeiro, A.; Serrano, R.; da Silva, I.B.M.; Gomes, E.T.; Pinto, J.F.; Silva, O. The Genus Diospyros: A Review of Novel Insights into the Biological Activity and Species of Mozambican Flora. Plants 2023, 12, 2833. https://doi.org/10.3390/plants12152833
Ribeiro A, Serrano R, da Silva IBM, Gomes ET, Pinto JF, Silva O. The Genus Diospyros: A Review of Novel Insights into the Biological Activity and Species of Mozambican Flora. Plants. 2023; 12(15):2833. https://doi.org/10.3390/plants12152833
Chicago/Turabian StyleRibeiro, Adriana, Rita Serrano, Isabel B. Moreira da Silva, Elsa T. Gomes, João F. Pinto, and Olga Silva. 2023. "The Genus Diospyros: A Review of Novel Insights into the Biological Activity and Species of Mozambican Flora" Plants 12, no. 15: 2833. https://doi.org/10.3390/plants12152833