Fruit Photosynthesis: More to Know about Where, How and Why
Abstract
:1. Introduction
2. Anatomical and Physiological Characteristics of Fruits
2.1. Cuticular Structure
2.2. Stomata Density and Functionality
2.3. Light Diffusion inside the Fruits
2.4. Chloroplasts and Photosynthetic Pigments
2.5. Assimilation and Refixation of Internal CO2
3. Biochemical Pathways Proposed for Fruit Photosynthesis
4. Possible Roles of Photosynthesis in Fruits
4.1. The Relationship between Photosynthesis and Metabolism in Fruits
4.2. The Particular Case of Photosynthesis in Seeds
4.2.1. Possible Functions of O2, ATP and NADPH from the Photochemical Phase
4.2.2. Intermediates from Photosynthesis Used in Seed Metabolism and RuBisCO as a CO2 Rescue Mechanism
4.3. Photosynthesis and the Vascular System of Fruits
4.4. Ecological Advantages of Green Fruits and Seeds
5. Concluding Remarks and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodriguez-Casado, A. The Health Potential of Fruits and Vegetables Phytochemicals: Notable Examples. Crit. Rev. Food Sci. Nutr. 2016, 56, 1097–1107. [Google Scholar] [CrossRef]
- Nath, P.; Bouzayen, M.; Mattoo, A.K.; Pech, J. Fruit Ripening: Physiology, Signalling and Genomics; CAB books; CABI: Wallingford, UK, 2014. [Google Scholar]
- Lorts, C.M.; Briggeman, T.; Sang, T. Evolution of fruit types and seed dispersal: A phylogenetic and ecological snapshot. J. Syst. Evol. 2008, 46, 396–404. [Google Scholar] [CrossRef]
- Kou, X.; Wu, M. Characterization of climacteric and non-climacteric fruit ripening. In Plant Senescence; Humana Press: New York, NY, USA, 2018; pp. 89–102. [Google Scholar]
- Busatto, N.; Tadiello, A.; Trainotti, L.; Costa, F. Climacteric ripening of apple fruit is regulated by transcriptional circuits stimulated by cross-talks between ethylene and auxin. Plant Signal. Behav. 2017, 12, e1268312. [Google Scholar] [CrossRef] [Green Version]
- Alexander, L.; Grierson, D. Ethylene biosynthesis and action in tomato: A model for climacteric fruit ripening. J. Exp. Bot. 2002, 53, 2039–2055. [Google Scholar] [CrossRef]
- Symons, G.M.; Chua, Y.-J.; Ross, J.J.; Quittenden, L.J.; Davies, N.W.; Reid, J.B. Hormonal changes during non-climacteric ripening in strawberry. J. Exp. Bot. 2012, 63, 4741–4750. [Google Scholar] [CrossRef] [Green Version]
- Chervin, C.; El-Kereamy, A.; Roustan, J.P.; Latché, A.; Lamon, J.; Bouzayen, M. Ethylene seems required for the berry development and ripening in grape, a non-climacteric fruit. Plant Sci. 2004, 167, 1301–1305. [Google Scholar] [CrossRef] [Green Version]
- Aschan, G.; Pfanz, H. Non-foliar photosynthesis—A strategy of additional carbon acquisition. Flora 2003, 198, 81–97. [Google Scholar] [CrossRef]
- Brazel, A.J.; Ó’Maoileídigh, D.S. Photosynthetic activity of reproductive organs. J. Exp. Bot. 2019, 70, 1737–1753. [Google Scholar] [CrossRef] [PubMed]
- Simkin, A.J.; Faralli, M.; Ramamoorthy, S.; Lawson, T. Photosynthesis in non-foliar tissues: Implications for yield. Plant J. 2020, 101, 1001–1015. [Google Scholar] [CrossRef] [PubMed]
- Breia, R.; Vieira, S.; Da Silva, J.M.; Gerós, H.; Cunha, A. Mapping grape berry photosynthesis by chlorophyll fluorescence imaging: The effect of saturating pulse intensity in different tissues. Photochem. Photobiol. 2013, 89, 579–585. [Google Scholar] [CrossRef] [PubMed]
- Sui, X.; Shan, N.; Hu, L.; Zhang, C.; Yu, C.; Ren, H.; Turgeon, R.; Zhang, Z. The complex character of photosynthesis in cucumber fruit. J. Exp. Bot. 2017, 68, 1625–1637. [Google Scholar] [CrossRef] [Green Version]
- Aschan, G.; Pfanz, H.; Vodnik, D.; Batič, F. Photosynthetic performance of vegetative and reproductive structures of green hellebore (Helleborus viridis L. agg.). Photosynthetica 2005, 43, 55–64. [Google Scholar] [CrossRef]
- Proietti, P.; Famiani, F.; Tombesi, A. Gas exchange in olive fruit. Photosynthetica 1999, 36, 423–432. [Google Scholar] [CrossRef]
- Vemmos, S.N.; Petri, E.; Stournaras, V. Seasonal changes in photosynthetic activity and carbohydrate content in leaves and fruit of three fig cultivars (Ficus carica L.). Sci. Hortic. 2013, 160, 198–207. [Google Scholar] [CrossRef]
- Blanke, M. Photosynthesis of strawberry fruit. In IV International Strawberry Symposium; International Society for Horticultural Science: Coimbatore, India, 2002; Volume 567, pp. 373–376. [Google Scholar] [CrossRef]
- Clément, C.; Mischler, P.; Burrus, M.; Audran, J.-C. Characteristics of the Photosynthetic Apparatus and CO2-Fixation in the Flower Bud of Lilium. I. Corolla. Int. J. Plant Sci. 1997, 158, 794–800. [Google Scholar] [CrossRef]
- Clément, C.; Mischler, P.; Burrus, M.; Audran, J.-C. Characteristics of the Photosynthetic Apparatus and CO2-Fixation in the Flower Bud of Lilium. II. Anther. Int. J. Plant Sci. 1997, 158, 801–810. [Google Scholar] [CrossRef]
- Antlfinger, A.E.; Wendel, L.F. Reproductive effort and floral photosynthesis in Spiranthes cernua (Orchidaceae). Am. J. Bot. 1997, 84, 769–780. [Google Scholar] [CrossRef]
- Nilsen, E.T.; Sharifi, M.R. Seasonal acclimation of stem photosynthesis in woody legume species from the Mojave and Sonoran deserts of California. Plant Physiol. 1994, 105, 1385–1391. [Google Scholar] [CrossRef] [Green Version]
- Alessio, G.A.; Pietrini, F.; Brilli, F.; Loreto, F. Characteristics of CO2 exchange between peach stems and the atmosphere. Funct. Plant Biol. 2005, 32, 787–795. [Google Scholar] [CrossRef]
- Nilsen, E.T.; Karpa, D.; Mooney, H.A.; Field, C. Patterns of stem photosynthesis in two invasive legumes (Spartium junceum, Cytisus socparius) of the California coastal region. Am. J. Bot. 1993, 80, 1126–1136. [Google Scholar] [CrossRef]
- Tikhonov, K.G.; Khristin, M.S.; Klimov, V.V.; Sundireva, M.A.; Kreslavski, V.D.; Sidorov, R.A.; Tsidendambayev, V.D.; Savchenko, T.V. Structural and functional characteristics of photosynthetic apparatus of chlorophyll-containing grape vine tissue. Russ. J. Plant Physiol. 2017, 64, 73–82. [Google Scholar] [CrossRef]
- Kitaya, Y.; Yabuki, K.; Kiyota, M.; Tani, A.; Hirano, T.; Aiga, I. Gas exchange and oxygen concentration in pneumatophores and prop roots of four mangrove species. Trees 2002, 16, 155–158. [Google Scholar] [CrossRef]
- Rich, S.M.; Ludwig, M.; Colmer, T.D. Photosynthesis in aquatic adventitious roots of the halophytic stem-succulent Tecticornia pergranulata (formerly Halosarcia pergranulata). Plant Cell Environ. 2008, 31, 345–350. [Google Scholar] [CrossRef]
- Blanke, M.M.; Lenz, F. Fruit photosynthesis. Plant Cell Environ. 1989, 12, 31–46. [Google Scholar] [CrossRef]
- Garrido, A.; Breia, R.; Serôdio, J.; Cunha, A. Impact of the Light Microclimate on Photosynthetic Activity of Grape Berry (Vitis vinifera): Insights for Radiation Absorption Mitigations’ Measures. In Theory and Practice of Climate Adaptation; Springer: Cham, Switzerland, 2018; pp. 419–441. [Google Scholar]
- Garrido, A.; Serôdio, J.; De Vos, R.; Conde, A.; Cunha, A. Influence of foliar kaolin application and irrigation on photosynthetic activity of grape berries. Agronomy 2019, 9, 685. [Google Scholar] [CrossRef] [Green Version]
- Garrido, A.; Engel, J.; Mumm, R.; Conde, A.; Cunha, A.; De Vos, R.C.H. Metabolomics of Photosynthetically Active Tissues in White Grapes: Effects of Light Microclimate and Stress Mitigation Strategies. Metabolites 2021, 11, 205. [Google Scholar] [CrossRef]
- Garrido, A.; De Vos, R.C.; Conde, A.; Cunha, A. Light microclimate-driven changes at transcriptional level in photosynthetic grape berry tissues. Plants 2021, 10, 1769. [Google Scholar] [CrossRef] [PubMed]
- Garrido, A.; Conde, A.; De Vos, R.; Cunha, A. The influence of light microclimate on the lipid profile and associated transcripts of photosynthetically active grape berry seeds. Front. Plant Sci. 2023, 13, 1022379. [Google Scholar] [CrossRef]
- Teixeira, A.; Noronha, H.; Sebastiana, M.; Fortes, A.M.; Gerós, H. A proteomic analysis shows the stimulation of light reactions and inhibition of the Calvin cycle in the skin chloroplasts of ripe red grape berries. Front. Plant Sci. 2022, 13, 1014532. [Google Scholar] [CrossRef] [PubMed]
- Lara, I.; Belge, B.; Goulao, L.F. A focus on the biosynthesis and composition of cuticle in fruits. J. Agric. Food Chem. 2015, 63, 4005–4019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trivedi, P.; Nguyen, N.; Hykkerud, A.L.; Häggman, H.; Martinussen, I.; Jaakola, L.; Karppinen, K. Developmental and environmental regulation of cuticular wax biosynthesis in fleshy fruits. Front. Plant Sci. 2019, 10, 431. [Google Scholar] [CrossRef] [Green Version]
- Zarrouk, O.; Pinheiro, C.; Misra, C.S.; Fernández, V.; Chaves, M.M. Fleshy fruit epidermis is a protective barrier under water stress. In Water Scarcity and Sustainable Agriculture in Semiarid Environment; Academic Press: Cambridge, MA, USA, 2018; pp. 507–533. [Google Scholar] [CrossRef]
- Albert, Z.; Ivanics, B.; Molnár, A.; Miskó, A.; Tóth, M.; Papp, I. Candidate genes of cuticle formation show characteristic expression in the fruit skin of apple. Plant Growth Regul. 2013, 70, 71–78. [Google Scholar] [CrossRef]
- Becker, T.; Knoche, M. Deposition, strain, and microcracking of the cuticle in developing “Riesling” grape berries. Vitis—J. Grapevine Res. 2012, 51, 1–6. [Google Scholar]
- Segado, P.; Domínguez, E.; Heredia, A. Ultrastructure of the Epidermal Cell Wall and Cuticle of Tomato Fruit (Solanum lycopersicum L.) during Development. Plant Physiol. 2016, 170, 935–946. [Google Scholar] [CrossRef] [Green Version]
- Casado, C.G.; Heredia, A. Ultrastructure of the cuticle during growth of the grape berry (Vitis vinifera). Physiol. Plant. 2001, 111, 220–224. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Sun, L.; Xie, L.; He, Y.; Luo, T.; Sheng, L.; Luo, Y.; Zeng, Y.; Xu, J.; Deng, X.; et al. Regulation of cuticle formation during fruit development and ripening in “Newhall” navel orange (Citrus sinensis Osbeck) revealed by transcriptomic and metabolomic profiling. Plant Sci. 2016, 243, 131–144. [Google Scholar] [CrossRef]
- Banks, N.H.; Nicholson, S.E. Internal atmosphere composition and skin permeance to gases of pepper fruit. Postharvest Biol. Technol. 2000, 18, 33–41. [Google Scholar] [CrossRef]
- Atkins, C.A.; Kuo, J.; Pate, J.S. Photosynthetic Pod Wall of Pea (Pisum sativum L.): Distribution of Carbon Dioxide-fixing Enzymes in Relation to Pod Structure. Plant Physiol. 1977, 60, 779–786. [Google Scholar] [CrossRef] [Green Version]
- Blanke, M.M.; Leyhe, A. Stomatal Activity of the Grape Berry cv. Riesling, Müller-Thurgau and Ehrenfelser. J. Plant Physiol. 1987, 127, 451–460. [Google Scholar] [CrossRef]
- Hiratsuka, S.; Suzuki, M.; Nishimura, H.; Nada, K. Fruit photosynthesis in Satsuma mandarin. Plant Sci. 2015, 241, 65–69. [Google Scholar] [CrossRef]
- Blanke, M.M. Stomata of Currant Fruits. Angew. Bot. 1993, 67, 85–89. [Google Scholar]
- Blanke, M.M. Photosynthesis of Avocado Fruit. In Proceedings of the World Avocado Congress, Orange, CA, USA, 21–26 April 1992; pp. 179–189. [Google Scholar]
- Ma, Q.; Behboudian, M.H.; Turner, N.C.; Palta, J.A. Gas exchange by pods and subtending leaves and internal recycling of CO2 by pods of chickpea (Cicer arietinum L.) subjected to water deficits. J. Exp. Bot. 2001, 52, 123–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanke, M.M. Stomata of the pea pod. Angew. Bot. 1990, 64, 275–279. [Google Scholar]
- Palliotti, A.; Cartechini, A. Developmental changes in gas exchange activity in flowers, berries, and tendrils of field-grown Cabernet Sauvignon. Am. J. Enol. Vitic. 2001, 52, 317–323. [Google Scholar] [CrossRef]
- Konarska, A. Characteristics of fruit (Prunus domestica L.) skin: Structure and antioxidant content. Int. J. Food Prop. 2015, 18, 2487–2499. [Google Scholar] [CrossRef]
- Vignati, E.; Lipska, M.; Dunwell, J.M.; Caccamo, M.; Simkin, A.J. Fruit Development in Sweet Cherry. Plants 2022, 11, 1531. [Google Scholar] [CrossRef]
- de Oliveira Lino, L.; Génard, M.; Signoret, V.; Quilot-Turion, B. Physical host factors for brown rot resistance in peach fruit. In Proceedings of the International Symposium on Innovation in Integrated and Organic Horticulture (INNOHORT), Leuven, Belgium, 12 August 2016; pp. 105–112. [Google Scholar]
- Blanke, M.M.; Holthe, P.A. Bioenergetics, maintenance respiration and transpiration of pepper fruits. J. Plant Physiol. 1997, 150, 247–250. [Google Scholar] [CrossRef]
- Andrews, A.K.; Svec, L.V. Photosynthetic activity of soybean pods at different growth stages compared to leaves. Can. J. Plant Sci. 1975, 55, 501–505. [Google Scholar] [CrossRef]
- Singal, H.R.; Talwar, G.; Dua, A.; Singh, R. Pod photosynthesis and seed dark CO2 fixation support oil synthesis in developing Brassica seeds. J. Biosci. 1995, 20, 49–58. [Google Scholar] [CrossRef]
- Cochrane, M.; Duffus, C. Morphology and ultrastructure of immature cereal grains in relation to transport. Ann. Bot. 1979, 44, 67. [Google Scholar] [CrossRef]
- Tambussi, E.A.; Bort, J.; Guiamet, J.J.; Nogués, S.; Araus, J.L. The photosynthetic role of ears in C3 cereals: Metabolism, water use efficiency and contribution to grain yield. CRC Crit. Rev. Plant Sci. 2007, 26, 1–16. [Google Scholar] [CrossRef]
- Llorente, B.; D’Andrea, L.; Rodríguez-Concepción, M. Evolutionary recycling of light signaling components in fleshy fruits: New insights on the role of pigments to monitor ripening. Front. Plant Sci. 2016, 7, 263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemaire-Chamley, M.; Petit, J.; Garcia, V.; Just, D.; Baldet, P.; Germain, V.; Rothan, C. Changes in transcriptional profiles are associated with early fruit tissue specialization in tomato. Plant Physiol. 2005, 139, 750–769. [Google Scholar] [CrossRef] [Green Version]
- Blanke, M.M.; Notton, B.A. Light transmission into apple fruit and leaves. Sci. Hortic. 1992, 51, 43–53. [Google Scholar] [CrossRef]
- Chen, L.S.; Cheng, L. The sun-exposed peel of apple fruit has a higher photosynthetic capacity than the shaded peel. Funct. Plant Biol. 2007, 34, 1038–1048. [Google Scholar] [CrossRef] [PubMed]
- Marcelis, L.F.M.; Hofman-Eijer, L.R.B. The contribution of fruit photosynthesis to the carbon requirement of cucumber fruits as affected by irradiance, temperature and ontogeny. Physiol. Plant. 1995, 93, 476–483. [Google Scholar] [CrossRef]
- Allen, D.K.; Ohlrogge, J.B.; Shachar-Hill, Y. The role of light in soybean seed filling metabolism. Plant J. 2009, 58, 220–234. [Google Scholar] [CrossRef]
- Furbank, R.T.; White, R.; Palta, J.A.; Turner, N.C. Internal recycling of respiratory CO2 in pods of chickpea (Cicer arietinum L.): The role of pod wall, seed coat, and embryo. J. Exp. Bot. 2004, 55, 1687–1696. [Google Scholar] [CrossRef] [Green Version]
- Phan, C.T. Chloroplasts of the peel and the internal tissues of apple-fruits. Experientia 1973, 29, 1555–1557. [Google Scholar] [CrossRef]
- Hardie, W.J.; Aggenbach, S.J.; Jaudzems, V.G. The plastids of the grape pericarp and their significance in isoprenoid synthesis. Aust. J. Grape Wine Res. 1996, 2, 144–154. [Google Scholar] [CrossRef]
- Hetherington, S.E. Profiling photosynthetic competence in mango fruit. J. Hortic. Sci. 1997, 72, 755–763. [Google Scholar] [CrossRef]
- Nedbal, L.; Soukupová, J.; Whitmarsh, J.; Trtílek, M. Postharvest imaging of chlorophyll fluorescence from lemons can be used to predict fruit quality. Photosynthetica 2000, 38, 571–579. [Google Scholar] [CrossRef]
- Carrara, S.; Pardossi, A.; Soldatini, G.F.; Tognoni, F.; Guidi, L. Photosynthetic activity of ripening tomato fruit. Photosynthetica 2001, 39, 75–78. [Google Scholar] [CrossRef]
- Bron, I.U.; Ribeiro, R.V.; Azzolini, M.; Jacomino, A.P.; Machado, E.C. Chlorophyll fluorescence as a tool to evaluate the ripening of “Golden” papaya fruit. Postharvest Biol. Technol. 2004, 33, 163–173. [Google Scholar] [CrossRef]
- Calvo, B.O.; Parapugna, T.L.; Lagorio, M.G. Variability in chlorophyll fluorescence spectra of eggplant fruit grown under different light environments: A case study. Photochem. Photobiol. Sci. 2017, 16, 711–720. [Google Scholar] [CrossRef]
- Cronje, P.J.R.; Barry, G.H.; Huysamer, M. Canopy position affects pigment expression and accumulation of flavedo carbohydrates of ‘Nules Clementine’ mandarin fruit, thereby affecting rind condition. J. Am. Soc. Hortic. Sci. 2013, 138, 217–224. [Google Scholar] [CrossRef] [Green Version]
- Hörtensteiner, S.; Kräutler, B. Chlorophyll breakdown in higher plants. Biochim. Biophys. Acta-Bioenerg. 2011, 1807, 977–988. [Google Scholar] [CrossRef] [Green Version]
- Seifert, B.; Pflanz, M.; Zude, M. Spectral shift as advanced index for fruit chlorophyll breakdown. Food Bioprocess Technol. 2014, 7, 2050–2059. [Google Scholar] [CrossRef] [Green Version]
- Egea, I.; Bian, W.; Barsan, C.; Jauneau, A.; Pech, J.C.; Latché, A.; Li, Z.; Chervin, C. Chloroplast to chromoplast transition in tomato fruit: Spectral confocal microscopy analyses of carotenoids and chlorophylls in isolated plastids and time-lapse recording on intact live tissue. Ann. Bot. 2011, 108, 291–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Andrea, L.; Amenós, M.; Rodríguez-Concepción, M. Confocal laser scanning microscopy detection of chlorophylls and carotenoids in chloroplasts and chromoplasts of tomato fruit. Methods Mol. Biol. 2014, 1153, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Sanxter, S.; Yamamoto, H.; Fisher, D.; Chan, H. Development and decline of chloroplasts in exocarp of Carica papaya. Can. J. Bot. 1992, 70, 364–373. [Google Scholar] [CrossRef]
- Kozukue, N.; Friedman, M. Tomatine, chlorophyll, β-carotene and lycopene content in tomatoes during growth and maturation. J. Sci. Food Agric. 2003, 83, 195–200. [Google Scholar] [CrossRef]
- Nagy, A.; Riczu, P.; Tamás, J. Spectral evaluation of apple fruit ripening and pigment content alteration. Sci. Hortic. 2016, 201, 256–264. [Google Scholar] [CrossRef] [Green Version]
- De Castro, R.D.; Marraccini, P. Cytology, biochemistry and molecular changes during coffee fruit development. Braz. J. Plant Physiol. 2006, 18, 175–199. [Google Scholar] [CrossRef] [Green Version]
- Kapoor, L.; Simkin, A.J.; George Priya Doss, C.; Siva, R. Fruit ripening: Dynamics and integrated analysis of carotenoids and anthocyanins. BMC Plant Biol. 2022, 22, 1–22. [Google Scholar] [CrossRef]
- Simkin, A.J.; Kapoor, L.; Doss, C.G.P.; Hofmann, T.A.; Lawson, T.; Ramamoorthy, S. The role of photosynthesis related pigments in light harvesting, photoprotection and enhancement of photosynthetic yield in planta. Photosynth. Res. 2022, 152, 23–42. [Google Scholar] [CrossRef]
- Lado, J.; Zacarías, L.; Rodrigo, M.J. Regulation of carotenoid biosynthesis during fruit development. In Carotenoids in Nature; Springer: Cham, Switzerland, 2016; pp. 161–198. [Google Scholar]
- Crupi, P.; Coletta, A.; Antonacci, D. Analysis of carotenoids in grapes to predict norisoprenoid varietal aroma of wines from apulia. J. Agric. Food Chem. 2010, 58, 9647–9656. [Google Scholar] [CrossRef] [PubMed]
- Young, P.R.; Lashbrooke, J.G.; Alexandersson, E.; Jacobson, D.; Moser, C.; Velasco, R.; Vivier, M.A. The genes and enzymes of the carotenoid metabolic pathway in Vitis vinifera L. BMC Genom. 2012, 13, 243. [Google Scholar] [CrossRef] [Green Version]
- Joubert, C.; Young, P.R.; Eyéghé-Bickong, H.A.; Vivier, M.A. Field-Grown Grapevine Berries Use Carotenoids and the Associated Xanthophyll Cycles to Acclimate to UV Exposure Differentially in High and Low Light (Shade) Conditions. Front. Plant Sci. 2016, 7, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Mendes-Pinto, M.M. Carotenoid breakdown products the-norisoprenoids-in wine aroma. Arch. Biochem. Biophys. 2009, 483, 236–245. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Lu, C. Photosynthetic pigment composition and photosystem II photochemistry of wheat ears. Plant Physiol. Biochem. 2004, 42, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Caley, C.Y.; Duffus, C.M.; Jeffcoat, B. Photosynthesis in the Pericarp of Developing Wheat Grains. J. Exp. Bot. 1990, 41, 303–307. [Google Scholar] [CrossRef]
- Wahid, A.; Rasul, E.; Rao, R.A.; Iqbal, R.M. Photosynthesis in leaf, stem, flower and fruit. In Handbook of Photosynthesis; CRC Press: Boca Raton, FL, USA, 2005; pp. 479–497. [Google Scholar]
- Lopez, Y.; Riaño, N.; Mosquera, P.; Cadavid, A.; Arcila, J. Activities of Phosphoenolpyruvate Carboxylase and Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase in Leaves and Fruit Pericarp Tissue of Different Coffee (Coffea sp.) Genotypes. Photosynthetica 2000, 38, 215–220. [Google Scholar] [CrossRef]
- Hiratsuka, S.; Yokoyama, Y.; Nishimura, H.; Miyazaki, T.; Nada, K. Fruit Photosynthesis and Phosphoenolpyruvate Carboxylase Activity as Affected by Lightproof Fruit Bagging in Satsuma Mandarin. J. Am. Soc. Hortic. Sci. 2012, 137, 215–220. [Google Scholar] [CrossRef] [Green Version]
- Diakou, P.; Moing, A.; Ollat, N.; Rothan, C.; Gaudillère, J. Role of phosphoenolpyruvate carboxylase in the acidification of grape berries. Acta Hortic. 2000, 526, 339–344. [Google Scholar] [CrossRef]
- Blanke, M.M. Fruit photosynthesis and pome fruit quality. Acta Hortic. 1998, 466, 19–22. [Google Scholar] [CrossRef]
- Guillet, C.; Just, D.; Bénard, N.; Destrac-Irvine, A.; Baldet, P.; Hernould, M.; Causse, M.; Raymond, P.; Rothan, C. A fruit-specific phosphoenolpyruvate carboxylase is related to rapid growth of tomato fruit. Planta 2002, 214, 717–726. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Zhang, Y.; Xia, H.; Fan, S.; Song, J.; Lv, X.; Kong, L. Photosynthetic characteristics of non-foliar organs in main C3 cereals. Physiol. Plant. 2019, 166, 226–239. [Google Scholar] [CrossRef]
- Bort, J.; Brown, R.H.; Araus, J.L. Refixation of respiratory CO2 in the ears of C3 cereals. J. Exp. Bot. 1996, 47, 1567–1575. [Google Scholar] [CrossRef] [Green Version]
- Araus, J.L.; Bort, J.; Brown, R.H.; Bassett, C.L.; Cortadellas, N. Immunocytochemical localization of phosphoenolpyruvate carboxylase and photosynthetic gas-exchange characteristics in ears of Triticum durum Desf. Planta 1993, 191, 507–514. [Google Scholar] [CrossRef]
- Edwards, G.E.; Franceschi, V.R.; Ku, M.S.; Voznesenskaya, E.V.; Pyankov, V.I.; Andreo, C.S. Compartmentation of photosynthesis in cells and tissues of C4 plants. J. Exp. Bot. 2001, 52, 577–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sage, R.F. C4 photosynthesis in terrestrial plants does not require Kranz anatomy. Trends Plant Sci. 2002, 7, 283–285. [Google Scholar] [CrossRef] [PubMed]
- Henry, R.J.; Furtado, A.; Rangan, P. Pathways of Photosynthesis in Non-Leaf Tissues. Biology 2020, 9, 438. [Google Scholar] [CrossRef]
- Beriashvili, T.V.; Beriashvili, L. Metabolism of malic and tartaric acids in grape berries. Biochemistry 1996, 61, 1316–1321. [Google Scholar]
- Deluc, L.G.; Grimplet, J.; Wheatley, M.D.; Tillett, R.L.; Quilici, D.R.; Osborne, C.; Schooley, D.A.; Schlauch, K.A.; Cushman, J.C.; Cramer, G.R. Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development. BMC Genom. 2007, 8, 429. [Google Scholar] [CrossRef] [Green Version]
- Sweetman, C.; Deluc, L.G.; Cramer, G.R.; Ford, C.M.; Soole, K.L. Regulation of malate metabolism in grape berry and other developing fruits. Phytochemistry 2009, 70, 1329–1344. [Google Scholar] [CrossRef]
- Grimplet, J.; Wheatley, M.D.; Ben Jouira, H.; Deluc, L.G.; Cramer, G.R.; Cushman, J.C. Proteomic and selected metabolite analysis of grape berry tissues under well-watered and water-deficit stress conditions. Proteomics 2009, 9, 2503–2528. [Google Scholar] [CrossRef] [Green Version]
- Famiani, F.; Walker, R.P.; Tecsi, L.; Chen, Z.-H.H.; Proietti, P.; Leegood, R.C.; Técsi, L. An immunohistochemical study of the compartmentation of metabolism during the development of grape (Vitis vinifera L.) berries. J. Exp. Bot. 2000, 51, 675–683. [Google Scholar] [CrossRef] [Green Version]
- Deytieux, C.; Geny, L.; Lapaillerie, D.; Claverol, S.; Bonneu, M.; Donèche, B. Proteome analysis of grape skins during ripening. J. Exp. Bot. 2007, 58, 1851–1862. [Google Scholar] [CrossRef]
- Obiadalla-Ali, H.; Fernie, A.R.; Lytovchenko, A.; Kossmann, J.; Lloyd, J.R. Inhibition of chloroplastic fructose 1,6-bisphosphatase in tomato fruits leads to decreased fruit size, but only small changes in carbohydrate metabolism. Planta 2004, 219, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Carrari, F.; Baxter, C.; Usadel, B.; Urbanczyk-Wochniak, E.; Zanor, M.-I.; Nunes-Nesi, A.; Nikiforova, V.; Centero, D.; Ratzka, A.; Pauly, M.; et al. Integrated Analysis of Metabolite and Transcript Levels Reveals the Metabolic Shifts That Underlie Tomato Fruit Development and Highlight Regulatory Aspects of Metabolic Network Behavior. Plant Physiol. 2006, 142, 1380–1396. [Google Scholar] [CrossRef] [Green Version]
- Powell, A.L.T.; Nguyen, C.V.; Hill, T.; Cheng, K.L.L.; Figueroa-Balderas, R.; Aktas, H.; Ashrafi, H.; Pons, C.; Fernández-Muñoz, R.; Vicente, A.; et al. Uniform ripening encodes a Golden 2-like transcription factor regulating tomato fruit chloroplast development. Science 2012, 336, 1711–1715. [Google Scholar] [CrossRef] [Green Version]
- Sagar, M.; Chervin, C.; Mila, I.; Hao, Y.; Roustan, J.P.; Benichou, M.; Gibon, Y.; Biais, B.; Maury, P.; Latché, A.; et al. Sl-ARF4, an Auxin Response Factor involved in the control of sugar metabolism during tomato fruit development. Plant Physiol. 2013, 113, 1362–1374. [Google Scholar] [CrossRef] [Green Version]
- Cocaliadis, M.F.; Fernández-Muñoz, R.; Pons, C.; Orzaez, D.; Granell, A. Increasing tomato fruit quality by enhancing fruit chloroplast function. A double-edged sword? J. Exp. Bot. 2014, 65, 4589–4598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simkin, A.J.; López-Calcagno, P.E.; Raines, C.A. Feeding the world: Improving photosynthetic efficiency for sustainable crop production. J. Exp. Bot. 2019, 70, 1119–1140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simkin, A.J. Genetic engineering for global food security: Photosynthesis and biofortification. Plants 2019, 8, 586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Driever, S.M.; Simkin, A.J.; Alotaibi, S.; Fisk, S.J.; Pippa, J.; Madgwick, C.A.S.; Jones, H.D.; Lawson, T.; Parry, M.A.J.; Raines, C.A. Increased SBPase activity improves photosynthesis and grain yield in wheat grown in greenhouse conditions. Philos. Trans. R. Soc. B 2017, 372, 1730. [Google Scholar] [CrossRef] [Green Version]
- Ding, F.; Wang, M.; Zhang, S.; Ai, X. Changes in SBPase activity influence photosynthetic capacity, growth, and tolerance to chilling stress in transgenic tomato plants. Sci. Rep. 2016, 6, 32741. [Google Scholar] [CrossRef] [Green Version]
- Birkhold, K.T.; Koch, K.E.; Darnell, R.L. Carbon and Nitrogen Economy of Developing Rabbiteye Blueberry Fruit. J. Am. Soc. Hortic. Sci. 1992, 117, 139–145. [Google Scholar] [CrossRef] [Green Version]
- Hetherington, S.E.; Smillie, R.M.; Davies, W.J. Photosynthetic activities of vegetative and fruiting tissues of tomato. J. Exp. Bot. 1998, 49, 1173–1181. [Google Scholar] [CrossRef]
- Lawson, T.; Milliken, A.L. Photosynthesis—Beyond the leaf. New Phytol. 2022, 238, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Ollat, N.; Gaudillere, J.P. Carbon balance in developing grapevine berries. In Proceedings of the V International Symposium on Grapevine Physiology, Jerusalem, Israel, 1 March 2000; Volume 526, pp. 345–350. [Google Scholar]
- Pavel, E.W.; DeJong, T.M. Estimating the photosynthetic contribution of developing peach (Prunus persica) fruits to their growth and maintenance carbohydrate requirements. Physiol. Plant. 1993, 88, 331–338. [Google Scholar] [CrossRef]
- Flinn, A.M.; Atkins, C.A.; Pate, J.S. Significance of photosynthetic and respiratory exchanges in the carbon economy of the developing pea fruit. Plant Physiol. 1977, 60, 412–418. [Google Scholar] [CrossRef]
- Araus, J.L.; Sanchez-Bragado, R.; Vicente, R. Improving crop yield and resilience through optimization of photosynthesis: Panacea or pipe dream? J. Exp. Bot. 2021, 72, 3936–3955. [Google Scholar] [CrossRef]
- Sanchez-Bragado, R.; Vicente, R.; Molero, G.; Serret, M.D.; Maydup, M.L.; Araus, J.L. New avenues for increasing yield and stability in C3 cereals: Exploring ear photosynthesis. Curr. Opin. Plant Biol. 2020, 56, 223–234. [Google Scholar] [CrossRef]
- Lytovchenko, A.; Eickmeier, I.; Pons, C.; Osorio, S.; Szecowka, M.; Lehmberg, K.; Arrivault, S.; Tohge, T.; Pineda, B.; Anton, M.T.; et al. Tomato Fruit Photosynthesis Is Seemingly Unimportant in Primary Metabolism and Ripening but Plays a Considerable Role in Seed Development. Plant Physiol. 2011, 157, 1650–1663. [Google Scholar] [CrossRef] [Green Version]
- Tijero, V.; Girardi, F.; Botton, A. Fruit Development and Primary Metabolism in Apple. Agronomy 2021, 11, 1160. [Google Scholar] [CrossRef]
- Hansen, P. 14C-Studies on Apple Trees. I. The Effect of the Fruit on the Translocation and Distribution of Photosynthates. Physiol. Plant. 1967, 20, 382–391. [Google Scholar] [CrossRef]
- Sha, J.; Wang, F.; Xu, X.; Chen, Q.; Zhu, Z.; Jiang, Y.; Ge, S. Studies on the translocation characteristics of 13C-photoassimilates to fruit during the fruit development stage in ‘Fuji’ apple. Plant Physiol. Biochem. 2020, 154, 636–645. [Google Scholar] [CrossRef] [PubMed]
- Degu, A.; Hochberg, U.; Sikron, N.; Venturini, L.; Buson, G.; Ghan, R.; Plaschkes, I.; Batushansky, A.; Chalifa-Caspi, V.; Mattivi, F.; et al. Metabolite and transcript profiling of berry skin during fruit development elucidates differential regulation between Cabernet Sauvignon and Shiraz cultivars at branching points in the polyphenol pathway. BMC Plant Biol. 2014, 14, 188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimplet, J.; Deluc, L.G.; Tillett, R.L.; Wheatley, M.D.; Schlauch, K.A.; Cramer, G.R.; Cushman, J.C. Tissue-specific mRNA expression profiling in grape berry tissues. BMC Genom. 2007, 8, 187. [Google Scholar] [CrossRef] [Green Version]
- du Plessis, K.; Young, P.R.; Eyéghé-Bickong, H.A.; Vivier, M.A. The Transcriptional Responses and Metabolic Consequences of Acclimation to Elevated Light Exposure in Grapevine Berries. Front. Plant Sci. 2017, 8, 1261. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Esteso, M.J.; Sellés-Marchart, S.; Lijavetzky, D.; Pedreño, M.A.; Bru-Martínez, R. A DIGE-based quantitative proteomic analysis of grape berry flesh development and ripening reveals key events in sugar and organic acid metabolism. J. Exp. Bot. 2011, 62, 2521–2569. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Sun, X.; Weiszmann, J.; Weckwerth, W. System-Level and Granger Network Analysis of Integrated Proteomic and Metabolomic Dynamics Identifies Key Points of Grape Berry Development at the Interface of Primary and Secondary Metabolism. Front. Plant Sci. 2017, 8, 1066. [Google Scholar] [CrossRef] [Green Version]
- Dai, Z.W.; Léon, C.; Feil, R.; Lunn, J.E.; Delrot, S.; Gomès, E. Metabolic profiling reveals coordinated switches in primary carbohydrate metabolism in grape berry (Vitis vinifera L.), a non-climacteric fleshy fruit. J. Exp. Bot. 2013, 64, 1345–1355. [Google Scholar] [CrossRef] [Green Version]
- Serrano, A.; Espinoza, C.; Armijo, G.; Inostroza-blancheteau, C.; Poblete, E.; Meyer-regueiro, C.; Arce, A.; Parada, F.; Santibáñez, C.; Arce-johnson, P.; et al. Omics Approaches for Understanding Grapevine Berry Development: Regulatory Networks Associated with Endogenous Processes and Environmental Responses. Front. Plant Sci. 2017, 8, 1486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zamboni, A.; di Carli, M.; Guzzo, F.; Stocchero, M.; Zenoni, S.; Ferrarini, A.; Tononi, P.; Toffali, K.; Desiderio, A.; Lilley, K.S.; et al. Identification of putative stage-specific grapevine berry biomarkers and omics data integration into networks. Plant Physiol. 2010, 154, 1439–1459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, L.; Zhong, G.Y.; Wu, B.; Yang, Y.; Li, S.; Liang, Z. Effects of sunlight on anthocyanin accumulation and associated co-expression gene networks in developing grape berries. Environ. Exp. Bot. 2019, 166, 10381. [Google Scholar] [CrossRef]
- Terrier, N.; Ageorges, A.; Abbal, P.; Romieu, C. Generation of ESTs from grape berry at various developmental stages. J. Plant Physiol. 2001, 158, 1575–1583. [Google Scholar] [CrossRef]
- Silva, F.; Iandolino, A.; Al-Kayal, F.; Bohlmann, M.C.; Cushman, M.A.; Lim, H.; Ergul, A.; Figueroa, R.; Kabuloglu, E.K.; Osborne, C.; et al. Characterizing the grape transcriptome. Analysis of expressed sequence tags from multiple Vitis species and development of a compendium of gene expression during berry development. Plant Physiol. 2005, 139, 574–597. [Google Scholar] [CrossRef] [Green Version]
- Terrier, N.; Glissant, D.; Grimplet, J.; Barrieu, F.; Abbal, P.; Couture, C.; Ageorges, A.; Atanassova, R.; Léon, C.; Renaudin, J.P.; et al. Isogene specific oligo arrays reveal multifaceted changes in gene expression during grape berry (Vitis vinifera L.) development. Planta 2005, 222, 832–847. [Google Scholar] [CrossRef] [PubMed]
- Pilati, S.; Perazzolli, M.; Malossini, A.; Cestaro, A.; Demattè, L.; Fontana, P.; Dal Ri, A.; Viola, R.; Velasco, R.; Moser, C. Genome-wide transcriptional analysis of grapevine berry ripening reveals a set of genes similarly modulated during three seasons and the occurrence of an oxidative burst at vèraison. BMC Genom. 2007, 8, 428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waters, D.L.E.; Holton, T.A.; Ablett, E.M.; Lee, L.S.; Henry, R.J. cDNA microarray analysis of developing grape (Vitis vinifera cv. Shiraz) berry skin. Funct. Integr. Genom. 2005, 5, 40–58. [Google Scholar] [CrossRef]
- Cheynier, V. Phenolic compounds: From plants to foods. Phytochem. Rev. 2012, 11, 153–177. [Google Scholar] [CrossRef]
- Shrikhande, A.J. Wine by-products with health benefits. Food Res. Int. 2000, 33, 469–474. [Google Scholar] [CrossRef]
- Weston, L.A. Grape and Wine Tannins and Phenolics—Their Roles in Flavor, Quality and Human Health. In Proceedings of the 29th Annual New York Wine Industry Workshop, New York, NY, USA, 2005; pp. 6–15. [Google Scholar]
- Montealegre, R.R.; Peces, R.R.; Vozmediano, L.C.; Gascueña, J.M.; Romero, E.G. Phenolic compounds in skins and seeds of ten grape Vitis vinifera varieties grown in a warm climate. J. Food Compos. Anal. 2006, 19, 687–693. [Google Scholar] [CrossRef]
- Simkin, A.J.; Kuntz, M.; Moreau, H.; McCarthy, J. Carotenoid profiling and the expression of carotenoid biosynthetic genes in developing coffee grain. Plant Physiol. Biochem. 2010, 48, 434–442. [Google Scholar] [CrossRef]
- Shackira, A.M.; Sarath, N.G.; Aswathi, K.P.R.; Pardha-Saradhi, P.; Puthur, J.T. Green seed photosynthesis: What is it? What do we know about it? Where to go? Plant Physiol. Rep. 2022, 27, 573–579. [Google Scholar] [CrossRef]
- Ruuska, S.A.; Schwender, J.; Ohlrogge, J.B. The capacity of green oilseeds to utilize photosynthesis to drive biosynthetic processes. Plant Physiol. 2004, 136, 2700–2709. [Google Scholar] [CrossRef] [Green Version]
- Rolletschek, H.; Radchuk, R.; Klukas, C.; Schreiber, F.; Wobus, U.; Borisjuk, L. Evidence of a key role for photosynthetic oxygen release in oil storage in developing soybean seeds. New Phytol. 2005, 167, 777–786. [Google Scholar] [CrossRef]
- Tschiersch, H.; Borisjuk, L.; Rutten, T.; Rolletschek, H. Gradients of seed photosynthesis and its role for oxygen balancing. Biosystems 2011, 103, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Galili, G.; Avin-Wittenberg, T.; Angelovici, R.; Fernie, A.R. The role of photosynthesis and amino acid metabolism in the energy status during seed development. Front. Plant Sci. 2014, 5, 447. [Google Scholar] [CrossRef] [PubMed]
- Buitink, J.; Leprince, O. Intracellular glasses and seed survival in the dry state. Comptes Rendus Biol. 2008, 331, 788–795. [Google Scholar] [CrossRef] [PubMed]
- van Dongen, J.T.; Roeb, G.W.; Dautzenberg, M.; Froehlich, A.; Vigeolas, H.; Minchin, P.E.H.; Geigenberger, P.; Van Dongen, J.T.; Roeb, G.W.; Dautzenberg, M.; et al. Phloem Import and Storage Metabolism Are Highly Coordinated by the Low Oxygen Concentrations within Developing Wheat Seeds. Am. Soc. Plant Biol. 2004, 135, 1809–1821. [Google Scholar] [CrossRef] [Green Version]
- Vigeolas, H.; Huhn, D.; Geigenberger, P. Nonsymbiotic Hemoglobin-2 Leads to an Elevated Energy State and to a Combined Increase in Polyunsaturated Fatty Acids and Total Oil Content When Overexpressed in Developing Seeds of Transgenic Arabidopsis Plants. Plant Physiol. 2011, 155, 1435–1444. [Google Scholar] [CrossRef]
- Vigeolas, H.; van Dongen, J.T.; Waldeck, P.; Huhn, D.; Geigenberger, P. Lipid Storage Metabolism Is Limited by the Prevailing Low Oxygen Concentrations within Developing Seeds of Oilseed Rape. Plant Physiol. 2003, 133, 2048–2060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rolletschek, H.; Koch, K.; Wobus, U.; Borisjuk, L. Positional cues for the starch/lipid balance in maize kernels and resource partitioning to the embryo. Plant J. 2005, 42, 69–83. [Google Scholar] [CrossRef]
- Wobus, U.; Sreenivasulu, N.; Borisjuk, L.; Rolletschek, H.; Panitz, R.; Gubatz, S.; Weschke, W. Molecular physiology and genomics of developing barley grains. Recent Res. Dev. Plant Mol. Biol. 2005, 2, 1–29. [Google Scholar]
- Rolletschek, H.; Weschke, W.; Weber, H.; Wobus, U.; Borisjuk, L. Energy state and its control on seed development: Starch accumulation is associated with high ATP and steep oxygen gradients within barley grains. J. Exp. Bot. 2004, 55, 1351–1359. [Google Scholar] [CrossRef]
- Patrick, J.W.; Offler, C.E. Compartmentation of transport and transfer events in developing seeds. J. Exp. Bot. 2001, 52, 551–564. [Google Scholar] [CrossRef]
- Sreenivasulu, N.; Altschmied, L.; Radchuk, V.; Gubatz, S.; Wobus, U.; Weschke, W. Transcript profiles and deduced changes of metabolic pathways in maternal and filial tissues of developing barley grains. Plant J. 2004, 37, 539–553. [Google Scholar] [CrossRef] [PubMed]
- Borisjuk, L.; Nguyen, T.H.; Neuberger, T.; Rutten, T.; Tschiersch, H.; Claus, B.; Feussner, I.; Webb, A.G.; Jakob, P.; Weber, H.; et al. Gradients of lipid storage, photosynthesis and plastid differentiation in developing soybean seeds. New Phytol. 2005, 167, 761–776. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Rogiers, S.Y.; Sadras, V.O.; Tyerman, S.D. Hypoxia in grape berries: The role of seed respiration and lenticels on the berry pedicel and the possible link to cell death. J. Exp. Bot. 2018, 69, 2071–2083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, N.G.; Davin, L.B.; Sarkanen, S. Lignin and Lignan Biosynthesis. In ACS Symposium Series; American Chemical Society: Washington, DC, USA, 1998; pp. 1–27. [Google Scholar]
- Cadot, Y.; Miñana-Castelló, M.T.; Chevalier, M. Anatomical, Histological, and Histochemical Changes in Grape Seeds from Vitis vinifera L. cv Cabernet franc during Fruit Development. J. Agric. Food Chem. 2006, 54, 9206–9215. [Google Scholar] [CrossRef]
- Goffman, F.D.; Alonso, A.P.; Schwender, J.; Shachar-Hill, Y.; Ohlrogge, J.B. Light enables a very high efficiency of carbon storage in developing embryos of rapeseed. Plant Physiol. 2005, 138, 2269–2279. [Google Scholar] [CrossRef] [Green Version]
- Rawsthorne, S. Carbon flux and fatty acid synthesis in plants. Prog. Lipid Res. 2002, 41, 182–196. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Nikovics, K.; To, A.; Lepiniec, L.; Fedosejevs, E.T.; Van Doren, S.R.; Baud, S.; Thelen, J.J. Docking of acetyl-CoA carboxylase to the plastid envelope membrane attenuates fatty acid production in plants. Nat. Commun. 2020, 92, 1982–1987. [Google Scholar] [CrossRef]
- Ristic, R.; Iland, P.G. Relationships between seed and berry development of Vitis Vinifera L. cv Shiraz: Developmental changes in seed morphology and phenolic composition. Aust. J. Grape Wine Res. 2005, 11, 43–58. [Google Scholar] [CrossRef]
- Angelovici, R.; Galili, G.; Fernie, A.R.; Fait, A. Seed desiccation: A bridge between maturation and germination. Trends Plant Sci. 2010, 15, 211–218. [Google Scholar] [CrossRef]
- Goffman, F.D.; Ruckle, M.; Ohlrogge, J.; Shachar-Hill, Y. Carbon dioxide concentrations are very high in developing oilseeds. Plant Physiol. Biochem. 2004, 42, 703–708. [Google Scholar] [CrossRef]
- Schwender, J.; Goffman, F.; Ohlrogge, J.B.; Shachar-Hill, Y. Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds. Nature 2004, 432, 779–782. [Google Scholar] [CrossRef]
- Vogt, T. Phenylpropanoid biosynthesis. Mol. Plant 2010, 3, 2–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemoine, R.; La Camera, S.; Atanassova, R.; Dédaldéchamp, F.; Allario, T.; Pourtau, N.; Bonnemain, J.-L.; Laloi, M.; Coutos-Thévenot, P.; Maurousset, L.; et al. Source-to-sink transport of sugar and regulation by environmental factors. Front. Plant Sci. 2013, 4, 272. [Google Scholar] [CrossRef] [Green Version]
- Keller, M. Photosynthesis and Respiration. In The Science of Grapevines, 2nd ed.; Academic Press: Cambridge, MA, USA, 2015; pp. 125–143. [Google Scholar]
- Hibberd, J.M.; Quick, W.P. Characteristics of C4 photosynthesis in stems and petioles of C3 flowering plants. Nature 2002, 415, 451–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.-Y.; Wang, X.-L.; Wang, X.-F.; Xia, G.-H.; Pan, Q.-H.; Fan, R.-C.; Wu, F.-Q.; Yu, X.-C.; Zhang, D.-P. A Shift of Phloem Unloading from Symplasmic to Apoplasmic Pathway Is Involved in Developmental Onset of Ripening in Grape Berry. Plant Physiol. 2006, 142, 220–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.Q.; Li, L.M.; Yang, P.P.; Gong, C.L. The role of hexokinases from grape berries (Vitis vinifera L.) in regulating the expression of cell wall invertase and sucrose synthase genes. Plant Cell Rep. 2014, 33, 337–347. [Google Scholar] [CrossRef]
- Dokoozlian, N. Grape berry growth and development. In Raisin Production Manual; University of California: Los Angeles, CA, USA, 2000; pp. 30–37. [Google Scholar]
- Walker, R.P.; Chen, Z.H.; Técsi, L.I.; Famiani, F.; Lea, P.J.; Leegood, R.C. Phosphoenolpyruvate carboxykinase plays a role in interactions of carbon and nitrogen metabolism during grape seed development. Planta 1999, 210, 9–18. [Google Scholar] [CrossRef]
- Cazetta, E.; Schaefer, H.M.; Galetti, M. Why are fruits colorful? The relative importance of achromatic and chromatic contrasts for detection by birds. Evol. Ecol. 2009, 23, 233–244. [Google Scholar] [CrossRef]
- Duan, Q.; Goodale, E.; Quan, R.C. Bird fruit preferences match the frequency of fruit colours in tropical Asia. Sci. Rep. 2014, 4, 5627. [Google Scholar] [CrossRef] [Green Version]
- Cipollini, M.L.; Levey, D.J. Why some fruits are green when they are ripe: Carbon balance in fleshy fruits. Oecologia 1991, 88, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, H.M. Why fruits go to the dark side. Acta Oecol. 2011, 37, 604–610. [Google Scholar] [CrossRef]
- Ma, W.; Guo, A.; Zhang, Y.; Wang, H.; Liu, Y.; Li, H. A review on astringency and bitterness perception of tannins in wine. Trends Food Sci. Technol. 2014, 40, 6–19. [Google Scholar] [CrossRef]
- Barbehenn, R.V.; Peter Constabel, C. Tannins in plant-herbivore interactions. Phytochemistry 2011, 72, 1551–1565. [Google Scholar] [CrossRef] [PubMed]
- Borisjuk, L.; Rolletschek, H. The oxygen status of the developing seed. New Phytol. 2009, 182, 17–30. [Google Scholar] [CrossRef]
- Rolletschek, H.; Borisjuk, L.; Koschorreck, M.; Wobus, U.; Weber, H. Legume embryos develop in a hypoxic environment. J. Exp. Bot. 2002, 53, 1099–1107. [Google Scholar] [CrossRef] [Green Version]
- Rolletschek, H.; Weber, H.; Borisjuk, L. Energy status and its control on embryogenesis of legumes. Embryo photosynthesis contributes to oxygen supply and is coupled to biosynthetic fluxes. Plant Physiol. 2003, 132, 1196–1206. [Google Scholar] [CrossRef] [Green Version]
Species | Structure | PN (µmol CO2 m−2 s−1) | References |
---|---|---|---|
Fruit | |||
Cucumis sativus L. | Cucumber | 2.1–2.4 | [13] |
Helleborus viridis L. agg. | - | 0.1 | [14] |
Olea europaea L. (cv. Leccino) | Olive | approx. 9 a | [15] |
Ficus carica L. | Figs | 12.9–18.2 | [16] |
Fragaria ananassa L. | Strawberry | 1–4 | [17] |
Floral Parts | |||
Helleborus viridis L. agg. | Sepals | 2.3 | [14] |
Lilium hybrid L. (cv. Enchantment) | Anther | 2.3 | [18,19] |
Tepals | 1.8 | ||
Spiranthes cernua L. | Flower | 2.5 | |
Bud | 3.7 | [20] | |
Inflorescence | 0.2 | ||
Caesalpinia virgata Torr. | Stem | 7.8 | [21] |
Senna armafa L. | 5.8 | ||
Prunus persica L. | 0.4–1.0 | [22] | |
Spartium junceum L. | approx. 8 | [23] | |
Vitis vinifera L. | approx. 0.8 (Fv/Fm) | [24] | |
Roots | |||
Sonneratia alba Sm. | Pneumatophores | 0.6 | [25] |
Avicennia marina (Forssk.) | 0.2 | ||
Tecticornia pergranulata (J.M.Black) K.A.Sheph. and Paul G.Wilson | Aquatic adventitious | 0.5 | [26] |
Species | Fruit | Stomatal Density (Number mm−2) | Stage of Development | References |
---|---|---|---|---|
Vitis vinifera L. | Grape berry | 1–2 | Green and veraison | [44] |
<1 | After veraison | |||
Citrus unshiu Marc. | Satsuma mandarin | 200–300 | Until 63 DAFB a | [45] |
~30 | After 153 DAFB a | |||
Cucumis sativa L. | Cucumber | 12.5 | 9 days after anthesis | [13] |
Ribes nigrum L. | Black currant | 0.18–0.20 | Not referred | [46] |
Ribes rubrum L. | Red currant | 0.23–0.32 | ||
Malus domestica Borkh. | Apple | 10–20 | At petal fall | [27] |
Persea americana Mill. | Avocado | 50–75 | After anthesis | [47] |
<5 | At maturation | |||
Fragaria ananassa Duch. | Strawberries | 6 | After anthesis | [17] |
1–3 | Before red color | |||
<1 | Red fruit | |||
Cicer arietinum L. | Chickpea external pod wall | 31 ± 3 | Not referred | [48] |
Pisum sativum L. | Pea pod | 30–35 | At anthesis | [49] |
24–26 | Fully expanded pod |
Fruit | Stage of Development | Tissue | Fruit Photosynthesis Contribution to Total Carbon (%) | References |
---|---|---|---|---|
Grape berry | Several | Whole/attached fruit | 10 | [121] |
Tomato | Green (near mature) | Skin | 15 | [119] |
Blueberry | From anthesis through fruit ripening | Whole/attached fruit | 15 | [118] |
Mango | Mature (around 1–2 weeks before ripening) | Skin | 1 | [68] |
Peach | Several: from 24 days after flowering until harvest (in biweekly intervals) | Whole/attached fruit | 5–9 | [122] |
Pea pod | -- | -- | 16–20 | [123] |
Olive | Several: from full bloom to harvest | Whole fruit | 40 | [15] |
Coffee | -- | -- | 20–30 | [92] |
Cucumber | Mature (i.e., 9–10 days after anthesis) | Exocarp (i.e., skin) | 9.4 | [13] |
Putative Functions | Organ/Tissue | Species | References |
---|---|---|---|
Re-fixation (recycling) of CO2 contributing to carbon economy | Mandarin fruit | Citrus unshiu Marc. | [93] |
Avocado fruit (mesocarp) | Persea americana Mill. | [47] | |
Grape berry (skin and mesocarp) | Vitis vinifera L. | [94] | |
Apple | Malus domestica Borkh. | [95] | |
Tomato | Lycopersicon esculentum Mill. | [96] | |
Cucumber fruit | Cucumis sativa L. | [13] | |
Ears cereals: the green pericarp and internal surfaces of lemmas (facing the grain) | Several species | Reviewed by [58,97] | |
Ears of barley and durum wheat | Hordeum vulgare L. Triticum durum Desf. | [98] | |
Durum wheat (pericarp cells and glumes) | Triticum durum Desf. | [99] | |
Pods of chickpea (pod wall) | Cicer arietinum L. | [48,65] | |
Supply of oxygen | Legume seeds | (Several species) | Reviewed by [188] |
Broad bean | Vicia faba L. | [189,190] | |
Pea seed | Pisum sativum L. | ||
| Soybean seeds | Glycine max L. | [151] |
Barley grains | Hordeum vulgare L. | [160] | |
| Maize grains | Zea mays L. | [158] |
| Soybean seeds | Glycine max L. | [163] |
Supply of energy (ATP) and reduction power (NADPH) | Rapeseed | Brassica napus L. | [167] |
Soybean seeds | Glycine max L. | [150,151] | |
Broad bean | Vicia faba L. | [190] | |
Pea seed | Pisum sativum L. | ||
| Grape berry exocarp | Vitis vinifera L. | [12,31,107] |
Seed development (e.g., impact on seed set, composition and morphology) | Tomato seeds | Solanum lycopersicum L. | [126] |
Apple seeds | Malus domestica Borkh. | [127] | |
| Soybean pods | Glycine max L. | [55,64,150] |
Supply carbon intermediates to the biosynthesis of/metabolic pathways: | |||
| Grape berry pericarp | Vitis vinifera L. | [67] |
| Grape berry | Reviewed by [105] | |
| Red grape berry (at green stage) | [33] | |
| Grape berry exocarp (at green stage) | [30,31] | |
| Grape berry exocarp (at later stages) | ||
| Tomato | Lycopersicon esculentum L. | [109] |
| Tomato | Solanum lycopersicum L. | [112] |
| Tomate (ripe) | [111] | |
| Apple | Malus domestica Borkh. | [127] |
| Tomato | -- | Reviewed by [113] |
| Oil rape seed | Brassica napus L. | [173] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garrido, A.; Conde, A.; Serôdio, J.; De Vos, R.C.H.; Cunha, A. Fruit Photosynthesis: More to Know about Where, How and Why. Plants 2023, 12, 2393. https://doi.org/10.3390/plants12132393
Garrido A, Conde A, Serôdio J, De Vos RCH, Cunha A. Fruit Photosynthesis: More to Know about Where, How and Why. Plants. 2023; 12(13):2393. https://doi.org/10.3390/plants12132393
Chicago/Turabian StyleGarrido, Andreia, Artur Conde, João Serôdio, Ric C. H. De Vos, and Ana Cunha. 2023. "Fruit Photosynthesis: More to Know about Where, How and Why" Plants 12, no. 13: 2393. https://doi.org/10.3390/plants12132393