Deficit Irrigation Applied to Lemon Trees Grafted on Two Rootstocks and Irrigated with Desalinated Seawater
Abstract
:1. Introduction
2. Results
2.1. Soil and Plant Water Status
2.2. Plant Growth
2.3. Accumulation and Partitioning of Phytotoxic Elements
2.4. Physiological Responses and Oxidative Stress
3. Discussion
3.1. Osmotic Effects of Deficit Irrigation in Plants Previously Irrigated with DSW
3.2. Accumulation of Phytotoxic Elements in the Plant
3.3. Physiological and Biochemical Responses of Rootstocks to Salt/Drought Stresses
4. Materials and Methods
4.1. Experimental Design
4.2. Soil and Plant Water Status
4.3. Plant Growth
4.4. Plant Gas Exchange and Chlorophyll Fluorescence
4.5. Soil and Plant Mineral Analysis
4.6. Osmolytes, Chlorophyll and H2O2 Determination
4.7. Assay of Enzyme Activity Content
4.8. Endogenous Phytohormones
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. World Food and Agriculture—Statistical Yearbook; FAO: Rome, Italy, 2020. [Google Scholar]
- Soares, D.; Paço, T.A.; Rolim, J. Assessing climate change impacts on irrigation water requirements under Mediterranean conditions—A review of the methodological approaches focusing on maize crop. Agronomy 2023, 13, 117. [Google Scholar] [CrossRef]
- Yetik, A.K.; Sen, B. Evaluation of the Impacts of Climate Change on Irrigation Requirements of Maize by CROPWAT Model. Gesunde Pflanz. 2022, 1–9. [Google Scholar] [CrossRef]
- Godde, C.M.; Mason-D’Croz, D.; Mayberry, D.E.; Thornton, P.K.; Herrero, M. Impacts of climate change on the livestock food supply chain; a review of the evidence. Glob. Food Secur. 2021, 28, 100488. [Google Scholar] [CrossRef] [PubMed]
- Fader, M.; Shi, S.; von Bloh, W.; Bondeau, A.; Cramer, W. Mediterranean irrigation under climate change: More efficient irrigation needed to compensate for increases in irrigation water requirements. Hydrol. Earth Syst. Sci. 2016, 20, 953–973. [Google Scholar] [CrossRef] [Green Version]
- Mamais, L.; Oligschläger, C.; Khabarov, N. Aquifer Management in Spain: A Case Study; European Association of Remote Sensing Companies: Brussels, Belgium, 2020; p. 65. [Google Scholar]
- García-Sanchez, F.; Syvertsen, J.P.; Gimeno, V.; Botia, P.; Perez-Perez, J.G. Responses to flooding and drought stress by two citrus rootstock seedlings with different water use efficiency. Physiol. Plant 2007, 130, 532–542. [Google Scholar] [CrossRef]
- Bates, B.C.; Kundzewicz, Z.W.; Wu, S.; Palutikof, J.P. Climate Change and Water. Technical Paper of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2008; p. 210. [Google Scholar]
- Martínez-Alvarez, V.; Martin-Gorriz, B.; Soto-García, M. Seawater desalination for crop irrigation—A review of current experiences. Desalination 2016, 381, 58–70. [Google Scholar] [CrossRef]
- Martínez-Alvarez, V.; González-Ortega, M.J.; Martin-Gorriz, B.; Soto-García, M.; Maestre-Valero, J.F. The use of desalinated seawater for crop irrigation in the Segura River basin (South-Eastern Spain). Desalination 2017, 422, 153–164. [Google Scholar] [CrossRef]
- Imbernón-Mulero, A.; Gallego-Elvira, B.; Martínez-Alvarez, V.; Martin-Gorriz, B.; Molina-del-Toro, R.; Jodar-Conesa, F.J.; Maestre-Valero, J.F. Boron Removal from Desalinated Seawater for Irrigation with an On-Farm Reverse Osmosis System in Southeastern Spain. Agronomy 2022, 12, 611. [Google Scholar] [CrossRef]
- Maas, E.V. Salinity and citriculture. Tree Physiol. 1993, 12, 195–216. [Google Scholar] [CrossRef]
- Storey, R.; Walker, R.R. Citrus and salinity. Sci. Hort. 1999, 78, 39–81. [Google Scholar] [CrossRef]
- Garcia-Sanchez, F.; Syvertsen, J.P. Salinity tolerance of Cleopatra mandarin and Carrizo citrange citrus rootstock seedling is affected by CO2 enrichment during growth. J. Am. Soc. Hortic. Sci. 2006, 131, 24–31. [Google Scholar] [CrossRef] [Green Version]
- Navarro, J.M.; Antolinos, V.; Robles, J.M.; Botía, P. Citrus irrigation with desalinated seawater under a climate change scenario. Front. Plant Sci. 2022, 13, 909083. [Google Scholar] [CrossRef]
- Syvertsen, J.P.; Garcia-Sanchez, F. Multiple abiotic stresses occurring with salinity stress in citrus. Environ. Exp. Bot. 2014, 103, 128–137. [Google Scholar] [CrossRef]
- Ashraf, M. Breeding for salinity tolerance in plants. Crit. Rev. Plant Sci. 1994, 13, 17–42. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of Salinity Tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [Green Version]
- Tanou, G.; Job, C.; Rajjou, L.; Arc, E.; Belghazi, M.; Diamantidis, G.; Molassiotis, A.; Job, D. Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity stress. Plant J. 2009, 60, 795–804. [Google Scholar] [CrossRef]
- Halliwell, B. Oxidative damage, lipid peroxidation and antioxidant protection in chloroplasts. Chem. Phys. Lipids 1987, 44, 327–340. [Google Scholar] [CrossRef]
- Munns, R. Plant Adaptations to Salt and Water Stress: Differences and Commonalities. Adv. Bot. Res. 2011, 57, 1–32. [Google Scholar]
- Gowda, V.R.; Henry, A.; Yamauchi, A.; Shashidhar, H.E.; Serraj, R. Root biology and genetic improvement for drought avoidance in rice. Field Crop. Res. 2011, 122, 1–13. [Google Scholar] [CrossRef]
- Hu, H.; Xiong, L. Genetic engineering and breeding of drought-resistant crops. Annu. Rev. Plant Biol. 2014, 65, 715–741. [Google Scholar] [CrossRef]
- Ruiz-Sánchez, M.C.; Domingo, R.; Savé, R.; Biel, C.; Torrecillas, A. Effects of water stress and rewatering on leaf water relations of lemon plants. Biol. Plant. 1997, 39, 623–631. [Google Scholar] [CrossRef]
- Ziogas, V.; Tanou, G.; Morianou, G.; Kourgialas, N. Drought and Salinity in Citriculture: Optimal Practices to Alleviate Salinity and Water Stress. Agronomy 2021, 11, 1283. [Google Scholar] [CrossRef]
- Berthomieu, P.; Conejero, G.; Nublat, A.; Brackenbury, W.J.; Lambert, C.; Savio, C.; Uozumi, N.; Oiki, S.; Yamada, K.; Cellier, F.; et al. Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. EMBO J. 2003, 22, 2004–2014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Pérez, J.G.; Romero, P.; Navarro, J.M.; Botía, P. Response of sweet orange cv ‘Lane late’ to deficit irrigation in two rootstocks. I: Water relations, leaf gas exchange and vegetative growth. Irrig. Sci. 2008, 26, 415–425. [Google Scholar] [CrossRef]
- García-Sánchez, F.; Jifon, J.; Carvajal, M.; Syvertsen, J.P. Gas exchange, chlorophyll and nutrient contents in relation to Na+ and Cl− accumulation in ‘Sunburst’ mandarin grafted on different rootstock. Plant Sci. 2002, 162, 705–712. [Google Scholar] [CrossRef]
- Gimeno, V.; Simon, I.; Nieves, M.; Martinez, V.; Camara-Zapata, J.M.; Garcia, A.L.; García-Sánchez, F. The physiological and nutritional responses to an excess of boron by Verna lemon trees that were grafted on four contrasting rootstocks. Trees 2012, 26, 1513–1526. [Google Scholar] [CrossRef]
- Mesquita, G.L.; Zambrosi, F.C.B.; Tanaka, F.A.O.; Boaretto, R.M.; Quaggio, J.A.; Ribeiro, R.V.; Mattos, D., Jr. Anatomical and physiological responses of citrus trees to varying boron availability are dependent on rootstock. Front. Plant Sci. 2016, 7, 224. [Google Scholar] [CrossRef] [Green Version]
- Syvertsen, J.P.; Graham, J.H. Hydraulic conductivity of roots, mineral nutrition, and leaf gas exchange of citrus rootstocks. J. Am. Soc. Hortic. Sci. 1985, 110, 865–869. [Google Scholar] [CrossRef]
- Zekri, M.; Parsons, L.R. Salinity tolerance in citrus rootstock: Effect of salt on root and leaf mineral concentrations. Plant Soil 1992, 147, 171–181. [Google Scholar] [CrossRef]
- Syvertsen, J.P.; Lloyd, J. Citrus. In Handbook of Environmental Physiology of Fruit Crops; Schaffer, B., Andersen, P.C., Eds.; Crops. CRC Press: Boca Raton, FL, USA, 1994; Volume 2, pp. 65–99. [Google Scholar]
- Pérez-Pérez, J.G.; Romero, P.; Navarro, J.M.; Botía, P. Response of sweet orange cv ‘Lane late’ to deficit irrigation in two rootstocks. II: Flowering, fruit growth, yield and fruit quality. Irrig. Sci. 2008, 26, 519–529. [Google Scholar] [CrossRef]
- Robles, J.M.; Botía, P.; Pérez-Pérez, J.G. Sour orange rootstock increases water productivity in defict irrigated ‘Verna’ lemon trees compared with Citrus macrophylla. Agric. Water Manag. 2017, 186, 98–107. [Google Scholar] [CrossRef]
- Pedrero, F.; Maestre-Valero, J.F.; Mounzer, O.; Nortes, P.A.; Alcobendas, R.; Romero-Trigueros, C.; Bayona, J.M.; Alarcon, J.J.; Nicolas, E. Response of Young ‘Star Ruby’ grapefruit trees to regulated deficit irrigation with saline reclaimed water. Agric. Water Manag. 2015, 158, 51–60. [Google Scholar] [CrossRef]
- Romero-Trigueros, C.; Cabañero, J.J.; Tortosa, P.A.; Gambín., J.M.; Maestre-Valero, J.F.; Nicolás, E. Medium-long term effects of saline reclaimed water and regulated deficit irrigation on fruit quality of citrus. J. Sci. Food Agric. 2020, 100, 1350–1357. [Google Scholar] [CrossRef]
- Pérez-Pérez, J.G.; Robles, J.M.; Tovar, J.C.; Botía, P. Response to drought and salt stress of lemon ‘Fino 49’ under field conditions: Water relations, osmotic adjustment and gas exchange. Sci. Hortic. 2009, 122, 83–90. [Google Scholar] [CrossRef]
- Parvaiz, A.; Satyawati, S. Salt stress and phyto-biochemical responses of plants—A Review. Plant Soil Environ. 2008, 54, 88–99. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, M.; Foolad, M.R. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 2007, 59, 206–216. [Google Scholar] [CrossRef]
- Simón-Grao, S.; Nieves, M.; Martínez-Nicolás, J.J.; Cámara-Zapata, J.M.; Alfosea-Simón, M.; García-Sánchez, F. Response of three citrus genotypes used as rootstocks grown under boron excess conditions. Ecotoxicol. Environ. Saf. 2018, 159, 10–19. [Google Scholar] [CrossRef]
- Levy, Y.; Syvertsen, J. Irrigation water quality and salinity effects in citrus trees. Hortic. Rev. 2004, 30, 37–82. [Google Scholar]
- Grattan, S.R.; Díaz, F.J.; Pedrero, F.; Vivaldi, G.A. Assessing the suitability of saline wastewaters for irrigation of Citrus spp.: Emphasis on boron and specific-ion interactions. Agric. Water Manag. 2015, 157, 48–58. [Google Scholar] [CrossRef]
- García-Sánchez, F.; Botía, P.; Fernández-Ballester, G.; Cerdá, A.; Martínez, V. Uptake, transport, and concentration of chloride and sodium in three citrus rootstock seedlings. J. Plant Nut. 2005, 28, 1933–1945. [Google Scholar] [CrossRef]
- Romero-Trigueros, C.; Nortes, P.A.; Pedrero, F.; Mounzer, O.; Alarcón, J.J.; Bayona, J.M.; Nicolás, E. Assessment of the viability of using saline reclaimed water in grapefruit in medium to long term. Span. J. Agric. Res. 2014, 12, 1137–1148. [Google Scholar] [CrossRef] [Green Version]
- Embleton, T.W.; Jones, W.W.; Labanauskas, C.K.; Reuther, W. Leaf analysis as a diagnostic tool and guide to fertilization. In The Citrus Industry; Reuther, V., Ed.; University of California Press: Berkeley, CA, USA, 1973; Volume III, pp. 183–210. [Google Scholar]
- Simón-Grao, S.; Nieves, M.; Martínez-Nicolás, J.J.; Alfosea-Simón, M.; Cámara-Zapata, J.M.; Fernández-Zapata, J.C.; García-Sánchez, F. Arbuscular mycorrhizal symbiosis improves tolerance of Carrizo citrange to excess boron supply by reducing leaf B concentration and toxicity in the leaves and roots. Ecotoxicol. Environ. Saf. 2019, 173, 322–330. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Dai, Z.; Xia, J.; Chang, C.; Sun, H. Combined effect of salt and drought on boron toxicity in Puccinellia tenuiflora. Ecotox. Environ. Safe. 2018, 157, 395–402. [Google Scholar] [CrossRef] [PubMed]
- García-Sánchez, F.; Simón-Grao, S.; Martínez-Nicolás, J.J.; Alfosea-Simón, M.; Liu, C.; Chatzissavvidis, C.; Pérez-Pérez, J.G.; Cámara-Zapata, J.M. Multiple stresses occurring with boron toxicity and deficiency in plants. J. Hazard Mater. 2020, 397, 122713. [Google Scholar] [CrossRef]
- Gomez-Cadenas, A.; Vives, V.; Zandalinas, S.I.; Manzi, M.; Sanchez-Perez, A.M.; Perez-Clemente, R.M.; Arbona, V. Abscisic Acid: A Versatile Phytohormone in Plant Signaling and Beyond. Curr. Protein Pept. Sci. 2015, 16, 413–434. [Google Scholar] [CrossRef]
- Zandalinas, S.I.; Balfagón, D.; Arbona, V.; Gómez-Cadenas, A. Regulation of citrus responses to the combined action of drought and high temperatures depends on the severity of water deprivation. Physiol. Plant. 2018, 162, 427–438. [Google Scholar]
- Zandalinas, S.I.; Rivero, R.M.; Martínez, V.; Gómez-Cadenas, A.; Arbona, V. Tolerance of citrus plants to the combination of high temperatures and drought is associated to the increase in transpiration modulated by a reduction in abscisic acid levels. BMC Plant Biol. 2016, 16, 105. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Pérez, J.G.; Syvertsen, J.P.; Botía, P.; García-Sánchez, F. Leaf water relations and net gas exchange responses of salinized Carrizo citrange seedlings during drought stress and recovery. Ann. Bot. 2007, 100, 335–345. [Google Scholar] [CrossRef] [Green Version]
- Papadakis, I.E.; Dimassi, N.; Bosabalidis, A.M.; Therios, I.N.; Patakas, A.; Giannakoula, A. Boron toxicity in Clementine mandarin plants on two rootstocks. Plant Sci. 2004, 166, 539–547. [Google Scholar] [CrossRef]
- López-Climent, M.F.; Arbona, V.; Pérez-Clemente, R.M.; Gómez-Cadenas, A. Relationship between salt tolerance and photosynthetic machinery performance in citrus. Environ. Exp. Bot. 2008, 62, 176–184. [Google Scholar] [CrossRef]
- Han, S.; Tang, N.; Jiang, H.X.; Yang, L.T.; Li, Y.; Chen, L.S. CO2 assimilation, photosystem II photochemistry, carbohydrate metabolism and antioxidant system of Citrus leaves in response to boron stress. Plant Sci. 2009, 176, 143–153. [Google Scholar] [CrossRef]
- Yokota, A.; Takahara, K.; Akashi, K. Water Stress. In Physiology and Molecular Biology of Stress Tolerance in Plants; Rao, K.M., Raghavendra, A., Reddy, K.J., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 15–40. [Google Scholar]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef]
- Bassi, R.; Dall’Osto, L. Dissipation of Light Energy Absorbed in Excess: The Molecular Mechanisms. Ann. Rev. Plant Biol. 2021, 72, 47–76. [Google Scholar] [CrossRef]
- Cakmak, I.; Römheld, V. Boron deficiency-induced impairments of cellular functions in plants. Plant Soil 1997, 193, 71–83. [Google Scholar] [CrossRef]
- Arbona, V.; Flors, V.; Jacas, J.; Garcia-Agustin, P.; Gomez-Cadenas, A. Enzymatic and non-enzymatic antioxidant responses of Carrizo citrange, a salt-sensitive citrus rootstock, to different levels of salinity. Plant Cell Physiol. 2003, 44, 388–394. [Google Scholar] [CrossRef] [Green Version]
- Erdal, S.; Genc, E.; Karaman, A.; Khosroushahi, K.; Kizilkaya, M.; Demir, Y.; Yammis, D. Differential responses of two wheat varieties to increasing boron toxicity. Changes on antioxidant activity, oxidative damage and DNA profile. J. Environ. Prot. Ecol. 2014, 15, 1217–1229. [Google Scholar]
- Hoagland, D.R.; Arnon, D.I. The water-culture method for growing plants without soil. Circular 1950, 347, 32. [Google Scholar]
- Turner, N.C. Measurements of plant water status by pressure chamber technique. Irrig. Sci. 1988, 9, 289–308. [Google Scholar] [CrossRef]
- Bower, C.A.; Wilcox, L.V. Soluble Salts. In Methods of Soil Analysis. Part 2; American Society of Agronomy: Madison, WI, USA, 1965; pp. 935–936. [Google Scholar]
- Bates, L.; Waldren, R.; Teare, I.D. Rapid determination of free proline for water stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Grieve, C.; Grattan, S. Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil 1983, 70, 303–307. [Google Scholar] [CrossRef]
- Inskeep, W.P.; Bloom, P.R. Extinction Coefficient of Chlorophyll a and b in N,N-Dimethylformamide and 80% Acetone. Plant Physiol. 1985, 77, 483–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velikova, V.; Yoranov, I.; Edreva, A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Sci. 2000, 151, 59–66. [Google Scholar] [CrossRef]
- Noctor, G.; Mhamdi, A.; Foyer, C.H. Oxidative stress and antioxidative systems: Recipes for successful data collection and interpretation. Plant Cell Environ. 2016, 39, 1140–1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olmos, E.; Piqueras, A.; Martinez-Solano, J.R.; Hellin, E. The subcellular localization of peroxidase and the implication of oxidative stress in hyperhydrated leaves of regenerated Carnation plants. Plant Sci. 1997, 130, 97–105. [Google Scholar] [CrossRef]
- Fridovich, I. Superoxide radical and superoxide dismutases. Annu. Rev. Biochem. 1995, 64, 97–112. [Google Scholar] [CrossRef]
- Großkinsky, D.K.; Albacete, A.; Jammer, A.; Krbez, P.; van der Graaff, E.; Pfeifhofer, H.; Roitsch, T. A rapid phytohormone and phytoalexin screening method for physiological phenotyping. Mol. Plant 2014, 7, 1053–1056. [Google Scholar] [CrossRef] [Green Version]
- Albacete, A.; Ghanem, M.E.; Martínez-Andújar, C.; Acosta, M.; Sánchez-Bravo, J.; Martínez, V.; Lutts, S.; Dodd, I.C.; Pérez-Alfocea, F. Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato (Solanum lycopersicum L.) plants. J. Exp. Bot. 2008, 59, 4119–4131. [Google Scholar] [CrossRef]
EC | Na+ | Cl− | B | K+ | Mg2+ | Ca2+ | SO42− | NO3− | ||
---|---|---|---|---|---|---|---|---|---|---|
BEFORE THE EXPERIMENT | ||||||||||
206 ± 16 | 59.8 ± 12 | 61 ± 14 | 0.30 ± 0.01 | 23 ± 1 | 16.5 ± 0.6 | 115 ± 3 | 57 ± 6 | 17 ± 2 | ||
Type of water (TW) | END OF THE EXPERIMENT | |||||||||
Citrus macrophylla (CM) | ||||||||||
Control | 376 ± 51 | 33.4 ± 7.8 | 34 ± 15 | 0.33 ± 0.02 | 179 ± 29 | 26.3 ± 3.8 | 167 ± 23 | 137 ± 22 | 501 ± 140 | |
DSW | 491 ± 64 | 144.1 ± 24.9 | 193 ± 52 | 1.26 ± 0.02 | 180 ± 19 | 26.8 ± 3.7 | 168 ± 20 | 153 ± 19 | 522 ± 102 | |
Irrigation (I) | ||||||||||
FI | 303 ± 22 | 57.7 ± 12 | 74 ± 15 | 0.70 ± 0.15 | 131 ± 8 | 18.1 ± 1.6 | 120 ± 7 | 106 ± 9 | 242 ± 36 | |
DI | 564 ± 49 | 119.8 ± 33.7 | 153 ± 52 | 0.90 ± 0.22 | 228 ± 18 | 35.0 ± 2.3 | 215 ± 15 | 184 ± 18 | 781 ± 89 | |
TW × I | ||||||||||
Control | FI | 258 ± 22 | 31.2 ± 11.1 a | 42 ± 8 | 0.30 ± 0.03 | 120 ± 6 | 18.1 ± 3.0 | 116 ± 12 | 98 ± 19 | 169 ± 17 |
DI | 493 ± 52 | 35.7 ± 12.6 a | 26 ± 9 | 0.36 ± 0.03 | 239 ± 30 | 34.5 ± 3.5 | 217 ± 25 | 176 ± 31 | 834 ± 131 | |
DSW | FI | 347 ± 20 | 84.3 ± 9.2 b | 106 ± 11 | 1.09 ± 0.08 | 141 ± 13 | 18.1 ± 1.8 | 123 ± 7 | 114 ± 4 | 316 ± 47 |
DI | 634 ± 73 | 203.9 ± 20.7 c | 280 ± 40 | 1.44 ± 0.16 | 218 ± 25 | 35.4 ± 3.4 | 213 ± 22 | 192 ± 24 | 729 ± 134 | |
ANOVA | ||||||||||
TW | * | *** | *** | *** | ns | ns | ns | ns | ns | |
I | *** | *** | ** | * | ** | *** | *** | ** | *** | |
TW × I | ns | ** | ** | ns | ns | ns | ns | ns | ns | |
Type of water (TW) | Sour orange (SO) | |||||||||
Control | 447 ± 62 | 41.7 ± 8.6 | 35 ± 10 | 0.32 ± 0.02 | 199 ± 25 | 28.4 ± 4.4 | 192 ± 27 | 167 ± 28 | 609 ± 132 | |
DSW | 472 ± 61 | 127.6 ± 17.0 | 192 ± 29 | 0.90 ± 0.07 | 182 ± 17 | 24.6 ± 3.0 | 173 ± 18 | 145 ± 19 | 483 ± 98 | |
Irrigation (I) | ||||||||||
FI | 318 ± 24 | 68.1 ± 11.5 | 89 ± 21 | 0.53 ± 0.10 | 143 ± 14 | 18.4 ± 1.7 | 137 ± 11 | 118 ± 15 | 261 ± 44 | |
DI | 600 ± 32 | 101.2 ± 26.1 | 138 ± 46 | 0.69 ± 0.13 | 238 ± 10 | 34.7 ± 2.9 | 228 ± 19 | 194 ± 23 | 830 ± 55 | |
TW × I | ||||||||||
Control | FI | 305 ± 43 | 48.1 ± 14.8 a | 46 ± 17 a | 0.28 ± 0.02 | 140 ± 23 | 18.4 ± 3.3 | 134 ± 20 | 117 ± 27 | 279 ± 80 |
DI | 589 ± 19 | 35.4 ± 9.9 a | 24 ± 7 a | 0.36 ± 0.04 | 258 ± 8 | 38.4 ± 3.8 | 250 ± 27 | 217 ± 36 | 939 ± 43 | |
DSW | FI | 332 ± 27 | 88.1 ± 11.5 b | 132 ± 25 b | 0.79 ± 0.08 | 146 ± 19 | 18.3 ± 1.4 | 139 ± 12 | 119 ± 20 | 244 ± 47 |
DI | 611 ± 58 | 167.1 ± 13.6 c | 252 ± 31 c | 1.02 ± 0.07 | 219 ± 12 | 30.9 ± 3.7 | 206 ± 25 | 171 ± 28 | 722 ± 66 | |
ANOVA | ||||||||||
TW | ns | *** | *** | *** | ns | ns | ns | ns | ns | |
I | *** | * | * | * | ** | *** | *** | * | *** | |
TW × I | ns | ** | ** | ns | ns | ns | ns | ns | ns |
Control | DSW | |
---|---|---|
EC (μS cm−1) | 2000 | 3079 |
Cl− (mg L−1) | 1.8 | 300.1 |
Na+ (mg L−1) | 0.0 | 166.6 |
B (mg L−1) | 0.27 | 1.23 |
NO3− (mg L−1) | 992 | 1003 |
H2PO4− (mg L−1) | 192 | 192 |
SO42− (mg L−1) | 96.0 | 108.3 |
K+ (mg L−1) | 235.0 | 240.3 |
Ca2+ (mg L−1) | 160.0 | 179.3 |
Mg2+ (mg L−1) | 24.0 | 28.6 |
Cu (mg L−1) | 0.032 | 0.044 |
Zn (mg L−1) | 0.131 | 0.131 |
Mn (mg L−1) | 0.11 | 0.11 |
Fe (mg L−1) | 1.12 | 1.12 |
Dry Weight (g) | Root/ Shoot | New Stem Length | Foliar Area (cm2) | Mean Leaf Area (cm2) | Number of Leaves | Damaged Leaves (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Type of Water (TW) | Leaves | New Stem | Shoot | Root | Plant | |||||||
Citrus macrophylla (CM) | ||||||||||||
Control | 36.1 | 14.8 | 69.2 | 17.0 | 86.2 | 0.26 | 176 | 3987 | 31.7 | 125 | 0.9 | |
DSW | 30.0 | 10.3 | 59.2 | 18.2 | 76.8 | 0.31 | 185 | 3353 | 26.5 | 126 | 15.3 | |
Irrigation (I) | ||||||||||||
FI | 38.7 | 13.7 | 71.6 | 15.4 | 87.0 | 0.22 | 198 | 4496 | 31.3 | 144 | 8.1 | |
DI | 27.4 | 11.4 | 56.9 | 19.7 | 76.0 | 0.35 | 164 | 2844 | 26.9 | 106 | 8.1 | |
TW × I | ||||||||||||
Control | FI | 42.8 | 16.6 | 79.3 | 15.0 | 94.3 | 0.19 | 195 | 4951 | 34.3 | 146 | 0.3 |
DI | 29.5 | 13.0 | 59.2 | 19.0 | 78.2 | 0.32 | 158 | 3023 | 29.1 | 104 | 1.5 | |
DSW | FI | 34.5 | 10.8 | 63.9 | 15.9 | 79.7 | 0.25 | 200 | 4041 | 30.7 | 143 | 15.8 |
DI | 25.4 | 9.9 | 54.6 | 20.4 | 75.0 | 0.38 | 169 | 2665 | 24.7 | 109 | 14.7 | |
ANOVA | ||||||||||||
TW | * | ** | * | ns | ns | ns | ns | * | * | ns | *** | |
I | *** | ns | ** | ns | ns | ** | * | *** | ns | *** | ns | |
TW × I | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | |
Type of water (TW) | Sour orange (SO) | |||||||||||
Control | 32.1 | 15.4 | 72.7 | 22.3 | 95.0 | 0.31 | 178 | 3196 | 29.1 | 112 | 0.9 | |
DSW | 28.6 | 11.6 | 56.7 | 19.8 | 74.7 | 0.32 | 140 | 2894 | 29.8 | 89 | 18.8 | |
Irrigation (I) | ||||||||||||
FI | 35.1 | 15.1 | 68.2 | 20.8 | 87.3 | 0.28 | 171 | 3585 | 29.1 | 115 | 9.7 | |
DI | 25.7 | 11.9 | 61.1 | 21.3 | 82.4 | 0.35 | 148 | 2505 | 29.8 | 86 | 10.0 | |
TW × I | ||||||||||||
Control | FI | 35.6 | 16.3 | 77.0 | 20.0 | 97.0 | 0.26 | 203 | 3649 | 30.0 | 126 | 0.3 |
DI | 28.6 | 14.4 | 68.4 | 24.5 | 92.9 | 0.36 | 154 | 2743 | 28.2 | 98 | 1.5 | |
DSW | FI | 34.5 | 13.9 | 59.4 | 21.5 | 77.5 | 0.31 | 138 | 3521 | 28.3 | 105 | 19.1 |
DI | 22.8 | 9.3 | 53.9 | 18.0 | 71.9 | 0.34 | 143 | 2267 | 31.4 | 74 | 18.5 | |
ANOVA | ||||||||||||
TW | ns | * | * | ns | ns | ns | ns | ns | ns | ns | *** | |
I | ** | * | * | ns | ns | * | ns | ** | ns | * | ns | |
TW × I | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Type of Water (TW) | A (μmol m−2 s−1) | gs (mol m−2 s−1) | E (mmol m−2 s−1) | F’v/F’m | ΦPSII | qP | NPQ | A/ΦPSII | Chlorophyll (mg g−1 DW) | |
---|---|---|---|---|---|---|---|---|---|---|
Citrus macrophylla (CM) | ||||||||||
Control | 2.12 | 0.0092 | 0.472 | 0.634 | 0.487 | 0.763 | 1.925 | 4.23 | 9.8 | |
DSW | 1.82 | 0.0076 | 0.282 | 0.665 | 0.541 | 0.804 | 1.077 | 3.40 | 10.1 | |
Irrigation (I) | ||||||||||
FI | 2.25 | 0.0091 | 0.418 | 0.699 | 0.566 | 0.809 | 1.489 | 3.72 | 10.7 | |
DI | 1.69 | 0.0076 | 0.336 | 0.600 | 0.462 | 0.758 | 1.513 | 3.91 | 9.2 | |
TW × I | ||||||||||
Control | FI | 2.57 | 0.0087 | 0.506 | 0.698 | 0.541 | 0.773 | 2.292 c | 4.22 | 10.3 |
DI | 1.66 | 0.0096 | 0.438 | 0.570 | 0.433 | 0.752 | 1.558 b | 4.25 | 9.2 | |
DSW | FI | 1.92 | 0.0096 | 0.331 | 0.700 | 0.591 | 0.844 | 0.685 a | 3.22 | 11.0 |
DI | 1.73 | 0.0056 | 0.234 | 0.630 | 0.492 | 0.764 | 1.468 b | 3.57 | 9.2 | |
ANOVA | ||||||||||
TW | ns | ns | ns | ns | ns | ns | *** | * | ns | |
I | * | ns | ns | ** | * | ns | ns | ns | ** | |
TW × I | ns | ns | ns | ns | ns | ns | *** | ns | ns | |
Type of water (TW) | Sour orange (SO) | |||||||||
Control | 2.05 | 0.0085 | 0.346 | 0.651 | 0.517 | 0.786 | 1.017 | 4.11 | 9.4 | |
DSW | 1.36 | 0.0052 | 0.130 | 0.698 | 0.584 | 0.810 | 1.353 | 2.38 | 8.2 | |
Irrigation (I) | ||||||||||
FI | 1.68 | 0.0070 | 0.250 | 0.765 | 0.630 | 0.808 | 1.065 | 2.89 | 9.2 | |
DI | 1.72 | 0.0068 | 0.226 | 0.583 | 0.471 | 0.788 | 1.304 | 3.59 | 8.5 | |
TW × I | ||||||||||
Control | FI | 2.15 | 0.0085 | 0.340 | 0.756 | 0.606 | 0.774 | 0.860 | 3.92 | 9.8 |
DI | 1.94 | 0.0085 | 0.352 | 0.545 | 0.428 | 0.798 | 1.174 | 4.30 | 9.1 | |
DSW | FI | 1.21 | 0.0054 | 0.160 | 0.774 | 0.654 | 0.843 | 1.271 | 1.87 | 8.5 |
DI | 1.51 | 0.0051 | 0.100 | 0.622 | 0.514 | 0.777 | 1.435 | 2.88 | 7.8 | |
ANOVA | ||||||||||
TW | * | ns | * | ns | ns | ns | * | * | * | |
I | ns | ns | ns | * | ns | ns | ns | ns | ns | |
TW × I | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Type of Water (TW) | APX (nmol mg−1 Protein min−1) | CAT (μmol mg−1 Protein min−1) | Peroxidase (nmol mg−1 Protein min−1) | GR (nmol mg−1 Protein min−1) | SOD (U mg−1 Protein) | |
---|---|---|---|---|---|---|
Citrus macrophylla (CM) | ||||||
Control | 3017 | 74.3 | 912 | 146.5 | 2217 | |
DSW | 3075 | 64.6 | 846 | 144.5 | 2024 | |
Irrigation (I) | ||||||
FI | 3052 | 74.2 | 964 | 128.9 | 2326 | |
DI | 3040 | 67.8 | 795 | 162.1 | 1915 | |
TW × I | ||||||
Control | FI | 3064 | 78.0 | 1032 | 134.2 | 2841 |
DI | 2970 | 70.5 | 791 | 158.7 | 1811 | |
DSW | FI | 3041 | 70.4 | 895 | 123.6 | 1593 |
DI | 3109 | 58.8 | 798 | 165.5 | 2236 | |
ANOVA | ||||||
TW | ns | ns | ns | ns | ns | |
I | ns | ns | ns | ns | ns | |
TW × I | ns | ns | ns | ns | ns | |
Type of water (TW) | Sour orange (SO) | |||||
Control | 2695 | 52.7 | 715 | 109.8 | 2021 | |
DSW | 3580 | 62.9 | 878 | 135.1 | 1573 | |
Irrigation (I) | ||||||
FI | 2746 | 66.9 | 914 | 137.1 | 1601 | |
DI | 3529 | 48.7 | 679 | 107.8 | 1992 | |
TW × I | ||||||
Control | FI | 2379 | 61.2 | 833 | 124.4 | 1791 |
DI | 3010 | 44.2 | 598 | 95.3 | 1411 | |
DSW | FI | 3113 | 72.6 | 994 | 149.8 | 2251 |
DI | 4047 | 53.2 | 761 | 120.3 | 1734 | |
ANOVA | ||||||
TW | * | ns | * | ns | * | |
I | * | * | * | ns | * | |
TW × I | ns | ns | ns | ns | ns |
Type of Water (TW) | ACC (ng g−1 FW) | tZ (ng g−1 FW) | GA3 (ng g−1 FW) | GA4 (ng g−1 FW) | IAA (ng g−1 FW) | ABA (ng g−1 FW) | JA (ng g−1 FW) | SA (ng g−1 FW) | |
---|---|---|---|---|---|---|---|---|---|
Citrus macrophylla (CM) | |||||||||
Control | 276.8 | 188.2 | 0.410 | 0.016 | 0.154 | 7.70 | 8.78 | 10.16 | |
DSW | 358.4 | 136.9 | 0.643 | 0.011 | 0.221 | 6.93 | 9.09 | 10.31 | |
Irrigation (I) | |||||||||
FI | 332.0 | 161.8 | 0.451 | 0.025 | 0.208 | 7.46 | 7.24 | 11.12 | |
DI | 303.2 | 163.3 | 0.601 | 0.003 | 0.166 | 7.17 | 10.63 | 9.35 | |
TW × I | |||||||||
Control | FI | 305.7 | 185.9 | 0.363 | 0.027 | 0.157 | 7.65 | 5.86 | 10.85 |
DI | 247.8 | 190.5 | 0.456 | 0.005 | 0.150 | 7.74 | 11.70 | 9.47 | |
DSW | FI | 358.2 | 137.8 | 0.539 | 0.022 | 0.259 | 7.26 | 8.62 | 11.39 |
DI | 358.5 | 136.1 | 0.746 | 0.000 | 0.182 | 6.60 | 9.56 | 9.23 | |
ANOVA | |||||||||
TW | ns | ** | ns | ns | ** | ns | ns | ns | |
I | ns | ns | ns | ** | ns | ns | ns | ns | |
TW × I | ns | ns | ns | ns | ns | ns | ns | ns | |
Type of water (TW) | Sour orange (SO) | ||||||||
Control | 318.0 | 192.7 | 0.494 | 0.018 | 0.197 | 7.47 | 9.77 | 12.92 | |
DSW | 292.8 | 195.9 | 0.601 | 0.009 | 0.243 | 6.57 | 7.62 | 11.40 | |
Irrigation (I) | |||||||||
FI | 324.4 | 200.4 | 0.435 | 0.007 | 0.204 | 7.77 | 11.27 | 10.87 | |
DI | 286.4 | 188.2 | 0.660 | 0.020 | 0.236 | 6.27 | 6.13 | 13.45 | |
TW × I | |||||||||
Control | FI | 343.7 | 247.5 b | 0.407 | 0.012 | 0.209 | 8.86 | 12.51 | 12.87 |
DI | 292.3 | 137.9 a | 0.581 | 0.024 | 0.185 | 6.08 | 7.04 | 12.97 | |
DSW | FI | 305.1 | 153.3 a | 0.464 | 0.003 | 0.199 | 6.68 | 10.03 | 8.87 |
DI | 280.5 | 238.5 ab | 0.738 | 0.015 | 0.288 | 6.46 | 5.22 | 13.92 | |
ANOVA | |||||||||
TW | ns | ns | ns | ns | ns | ns | ns | ns | |
I | ns | ns | ns | ns | ns | ns | ns | ns | |
TW × I | ns | * | ns | ns | ns | ns | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navarro, J.M.; Antolinos, V.; Botía, P.; Robles, J.M. Deficit Irrigation Applied to Lemon Trees Grafted on Two Rootstocks and Irrigated with Desalinated Seawater. Plants 2023, 12, 2300. https://doi.org/10.3390/plants12122300
Navarro JM, Antolinos V, Botía P, Robles JM. Deficit Irrigation Applied to Lemon Trees Grafted on Two Rootstocks and Irrigated with Desalinated Seawater. Plants. 2023; 12(12):2300. https://doi.org/10.3390/plants12122300
Chicago/Turabian StyleNavarro, Josefa M., Vera Antolinos, Pablo Botía, and Juan M. Robles. 2023. "Deficit Irrigation Applied to Lemon Trees Grafted on Two Rootstocks and Irrigated with Desalinated Seawater" Plants 12, no. 12: 2300. https://doi.org/10.3390/plants12122300
APA StyleNavarro, J. M., Antolinos, V., Botía, P., & Robles, J. M. (2023). Deficit Irrigation Applied to Lemon Trees Grafted on Two Rootstocks and Irrigated with Desalinated Seawater. Plants, 12(12), 2300. https://doi.org/10.3390/plants12122300