An Investigation into the Acute and Subacute Toxicity of Extracts of Cassipourea flanaganii Stem Bark In Vivo
Abstract
:1. Introduction
2. Results
2.1. Chemical Profile
2.2. Morphological Alteration
2.3. Fourteen-Day Acute Toxicity
2.4. Fourteen-Day Acute Repeat Toxicity Results
Subacute Biochemical Analyses
2.5. Haematological Analyses
- White cell count (500 mg/kg) at the Baseline (4.50 ± 2.06) and End (6.77 ± 2.28), the difference being statistically significant (SIG);
- Monocytes ABS (500 mg/kg) at the Baseline (0.07 ± 0.04) and End (0.16 ± 0.60), the difference being statistically significant (SIG); and
- Monocytes ABS (Control) at the Baseline (0.08 ± 0.03) and End (0.16 ± 0.05), the difference being statistically significant (SIG).
2.6. Distribution of Organ Weights
2.7. Changes in Weight over Time
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Preparation of Extract
4.3. LC-MS Analysis
4.4. Animal Housing and Care
4.5. Experimental Procedure
4.5.1. The 14-Day Acute Toxicity Study
4.5.2. The 28-Day Subacute Toxicity Study
4.6. Clinical Observations
4.7. Sample Collection
4.8. Hematological Indices
4.9. Biochemical Analysis
4.10. Histopathology
4.11. Statistical Analyses
- For paired data, the independent Student’s t-test was used to determine whether there was a statistical difference between the “Baseline” and its corresponding “End” value. The “Baseline” full blood count and chemistry for each concentration, viz., the control, 100 mg/kg, 500 mg/kg and 1000 mg/kg were compared to their respective “End” values. Similarly, this test was also conducted for the acute toxicity studies at each different level of toxicity, i.e., the control, 50 mg/kg, 300 mg/kg and 2000 mg/kg. Statistical significance was defined as a probability value of p < 0.05 and designated as SIG in subsequent tables. Where this test yielded an insignificant finding, it was designated as NS. N/A denoted a situation where the test could not be conducted, e.g., no observable variation in the observed data.
- In addition, analysis of variance (ANOVA) tests were utilised to identify statistical differences “between the groups”, i.e., using single-factor ANOVA tests to identify statistical differences between all the “End” values. The comparing groups were the control, 100 mg/kg, 500 mg/kg and 1000 mg/kg concentration levels. Once again, the same denotation was applied, i.e., SIG, NS and N/A.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Licata, A.; Macaluso, F.S.; Craxi, A. Herbal hepatotoxicity: A hidden epidemic. Intern. Emerg. Med. 2012, 8, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Gomes, C.; Lourenço, E.L.B.; Liuti, B.; Duque, A.O.; Nihi, F.; Lourenço, A.C.; Mendes, T.C.; Junior, A.G.; Dalsenter, P.R. Evaluation of subchronic toxicity of the hydroethanolic extract of Tropaeolum majus in Wistar rats. J. Ethnopharmacol. 2012, 142, 481–487. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Guidelines on Safety Monitoring of Herbal Medicines in Pharmacovigilance Systems; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Buwa-Komoren, L.V.; Mayekiso, B.; Mhinana, Z.; Adeniran, A.L. An ethnobotanical and ethnomedicinal survey of traditionally used medicinal plants in Seymour, South Africa: An attempt toward digitization and preservation of ethnic knowledge. Pharmacogn. Mag. 2019, 15, 115. [Google Scholar] [CrossRef]
- World Health Organization. Fact Sheet No. 134: Traditional Medicine; World Health Organization: Geneva, Switzerland, 2008. [Google Scholar]
- Gupta, D.; Bleakley, B.; Gupta, R.K. Dragon’s blood: Botany, chemistry and therapeutic uses. J. Ethnopharmacol. 2008, 115, 361–380. [Google Scholar] [CrossRef] [PubMed]
- Jordan, S.A.; Cunningham, D.G.; Marles, R. Assessment of herbal medicinal products: Challenges, and opportunities to increase the knowledge base for safety assessment. Toxicol. Appl. Pharmacol. 2010, 243, 198–216. [Google Scholar] [CrossRef]
- Oyedemi, S.O.; Yakubu, M.T.; Afolayan, A.J. Effect of aqueous extract of Leonotis leonurus (L.) R. Br. leaves in male Wistar rats. Hum. Exp. Toxicol. 2010, 29, 377–384. [Google Scholar] [CrossRef]
- Ashafa, A.O.T.; Orekoya, L.O.; Yakubu, M.T. Toxicity profile of ethanolic extract of Azadirachta indica stem bark in male Wistar rats. Asian Pac. J. Trop. Biomed. 2012, 2, 811–817. [Google Scholar] [CrossRef] [Green Version]
- Lall, N.; Kishore, N. Are Plants Used for Skin Care in South Africa Fully Explored? J. Ethnopharmacol. 2014, 153, 61–84. [Google Scholar] [CrossRef] [Green Version]
- Seeff, L.B. Herbal hepatotoxicity. Clin. Liver Dis. 2007, 11, 577–596. [Google Scholar] [CrossRef]
- Makunga, N.; Philander, L.; Smith, M. Current perspectives on an emerging formal natural products sector in South Africa. J. Ethnopharmacol. 2008, 119, 365–375. [Google Scholar] [CrossRef]
- Langat, M.K.; Dlova, N.C.; Mulcahy-Ryan, L.E.; Schwikkard, S.L.; Opara, E.I.; Crouch, N.R.; Hiles, J.D.; Mulholland, D.A. The effect of isolates from Cassipourea flanaganii (Schinz) alston, a plant used as a skin lightning agent, on melanin production and tyrosinase inhibition. J. Ethnopharmacol. 2021, 264, 113272. [Google Scholar] [CrossRef] [PubMed]
- Dold, T.; Cocks, M. Imbhola yesiXhosa: Traditional Xhosa Cosmetics. Veld Flora 2005, 91, 123–125. [Google Scholar]
- Thibane, V.; Ndhlala, A.; Finnie, J.; Van Staden, J. Modulation of the enzyme activity of secretory phospholipase A2, lipoxygenase and cyclooxygenase involved in inflammation and disease by extracts from some medicinal plants used for skincare and beauty. South Afr. J. Bot. 2018, 120, 198–203. [Google Scholar] [CrossRef]
- Mukherjee, P.K.; Biswas, R.; Sharma, A.; Banerjee, S.; Biswas, S.; Katiyar, C. Validation of medicinal herbs for anti-tyrosinase potential. J. Herb. Med. 2018, 14, 1–16. [Google Scholar] [CrossRef]
- Thibane, V.; Abdelgadir, H.; Finnie, J.; Van Staden, J.; Ndhlala, A. Phytochemistry and cosmetic importance of medicinal plants used for skin beauty and healthcare from the Eastern Cape Province, South Africa. South Afr. J. Bot. 2017, 109, 371. [Google Scholar] [CrossRef]
- Ekor, M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol. 2014, 4, 177. [Google Scholar] [CrossRef] [Green Version]
- Chan, T.Y.K. Inorganic mercury poisoning associated with skin-lightening cosmetic products. Clin. Toxicol. 2011, 49, 886–891. [Google Scholar] [CrossRef]
- Nieman, L.K. Consequences of systemic absorption of topical glucocorticoids. J. Am. Acad. Dermatol. 2011, 65, 250–252. [Google Scholar] [CrossRef] [Green Version]
- Prior, H.; Haworth, R.; Labram, B.; Roberts, R.; Wolfreys, A.; Sewell, F. Justification for species selection for pharmaceutical toxicity studies. Toxicol. Res. 2020, 9, 758–770. [Google Scholar] [CrossRef]
- Bello, I.; Bakkouri, A.S.; Tabana, Y.M.; Al-Hindi, B.; Al-Mansoub, M.A.; Mahmud, R.; Asmawi, M.Z. Acute and Sub-Acute Toxicity Evaluation of the Methanolic Extract of Alstonia scholaris Stem Bark. Med. Sci. 2016, 4, 4. [Google Scholar] [CrossRef] [Green Version]
- Maregesi, S.M.; Mwakigonja, A.R.; Urio, P. Toxicity evaluation of Abrus precatorius seeds collected from Bunda District, Tanzania. Sch. Acad. J. Pharm. 2016, 5, 399–405. [Google Scholar]
- Mlozi, S.H.; Mmongoyo, J.A.; Chacha, M. The in vivo toxicity evaluation of leaf and root methanolic extracts of Tephrosia vogelii Hook.f using animal model. Clin. Phytoscience 2020, 6, 73. [Google Scholar] [CrossRef]
- Olson, H.; Betton, G.; Robinson, D.; Thomas, K.; Monro, A.; Kolaja, G.; Lilly, P.; Sanders, J.; Sipes, G.; Bracken, W.; et al. Concordance of the Toxicity of Pharmaceuticals in Humans and in Animals. Regul. Toxicol. Pharmacol. 2000, 32, 56–67. [Google Scholar] [CrossRef]
- Kowalczyk, E.; Kopff, A.; Fijałkowski, P.; Kopff, M.; Niedworok, J.; Błaszczyk, J.; Kedziora, J.; Tyślerowicz, P. Effect of anthocyanins on selected biochemical parameters in rats exposed to cadmium. Acta Biochim. Pol. 2003, 50, 543–548. [Google Scholar] [CrossRef] [Green Version]
- Adedapo, A.A.; Abatan, M.O.; Olorunsogo, O.O. Effects of some plants of the spurge family on haematological and biochemical parameters in rats. Vet. Arh. 2007, 77, 29–38. [Google Scholar]
- Kilkenny, C.; Browne, W.J.; Cuthill, I.C.; Emerson, M.; Altman, D.G. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. J. Pharmacol. Pharmacother. 2010, 1, 94–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Percie du Sert, N.; Hurst, V.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. J. Cereb. Blood Flow Metab. 2020, 40, 1769–1777. [Google Scholar] [CrossRef]
- Sans, M.; Gharpure, K.; Tibshirani, R.; Zhang, J.; Liang, L.; Liu, J.; Young, J.H.; Dood, R.L.; Sood, A.K.; Eberlin, L.S. Metabolic Markers and Statistical Prediction of Serous Ovarian Cancer Aggressiveness by Ambient Ionization Mass Spectrometry ImagingMetabolic Markers of Serous Ovarian Cancers. Cancer Res. 2017, 77, 2903–2913. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.; Gu, N.; Pei, J.; Su, E.; Duan, X.; Cao, F.; Zhao, L. Synthesis of Isorhamnetin-3-O-Rhamnoside by a Three-Enzyme (Rhamnosyltransferase, Glycine Max Sucrose Synthase, UDP-Rhamnose Synthase) Cascade Using a UDP-Rhamnose Regeneration System. Molecules 2019, 24, 3042. [Google Scholar] [CrossRef] [Green Version]
- Abdullahi, S.M.; Musa, A.M.; Abdullahi, M.I.; Sule, M.I.; Sani, Y.M. Isolation of Lupeol from the Stem-bark of Lonchocarpus sericeus (Papilionaceae). Sch. Acad. J. Biosci. 2013, 1, 18–19. [Google Scholar]
- Mo, S.; Dong, L.; Hurst, W.; Van Breemen, R.B. Quantitative Analysis of Phytosterols in Edible Oils Using APCI Liquid Chromatography–Tandem Mass Spectrometry. Lipids 2013, 48, 949–956. [Google Scholar] [CrossRef] [Green Version]
- Garelnabi, M.; Litvinov, D.; Parthasarathy, S. Evaluation of a gas chromatography method for azelaic acid determination in selected biological samples. North Am. J. Med. Sci. 2010, 2, 397–402. [Google Scholar] [CrossRef]
- Takou, D.M.; Waffo, A.F.K.; Langat, M.K.; Wansi, J.D.; Mulcahy-Ryan, L.E.; Schwikkard, S.L.; Opara, E.I.; Mas-Claret, E.; Mulholland, D.A. Melanin Production Inhibitors from the West African Cassipourea congoensis. Planta Med. Int. Open 2019, 6, e50–e56. [Google Scholar] [CrossRef]
- Bao, S.; Ding, Y.; Deng, Z.; Proksch, P.; Lin, W. Rhyncosides A—F, Phenolic Constituents from the Chinese Mangrove Plant Bruguiera sexangula var. rhynchopetala. Chem. Pharm. Bull. 2007, 55, 1175–1180. [Google Scholar] [CrossRef] [Green Version]
- Dem’Yanov, P.I.; Malo, N.; Petrosyan, V.S. An investigation of the composition of an ethereal extract of the fruit stones of Anisophyllea laurina. Chem. Nat. Compd. 1984, 20, 609–611. [Google Scholar] [CrossRef]
- Chaturvedula, V.P.; Norris, A.; Miller, J.S.; Ratovoson, F.; Andriantsiferana, R.; Rasamison, V.E.; Kingston, D.G. Cytotoxic Diterpenes from Cassipourea m adagascariensis from the Madagascar Rainforest. J. Nat. Prod. 2006, 69, 287–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manojlovic, I.; Bogdanovic-Dusanovic, G.; Gritsanapan, W.; Manojlovic, N. Isolation and identification of anthraquinones of Caloplaca cerina and Cassia tora. Chem. Pap. 2006, 60, 466–468. [Google Scholar] [CrossRef]
- Jatsa, H.B.; Femoe, U.M.; Njiaza, J.; Tombe, D.S.T.; Mbolang, L.N.; Nkondo, E.T.; Tchuente, L.-A.T.; Dimo, T.; Kamtchouing, P. Efficacy of Sida pilosa Retz aqueous extract against Schistosoma mansoni—Induced granulomatous inflammation in the liver and the intestine of mice: Histomorphometry and gastrointestinal motility evaluation. BMC Complement. Altern. Med. 2018, 18, 247. [Google Scholar] [CrossRef]
- Würbel, H.; Garner, J.P. Refinement of rodent research through environmental enrichment and systematic randomization. NC3Rs 2007, 9, 1–9. [Google Scholar]
- Asare, G.A.; Addo, P.; Bugyei, K.; Gyan, B.; Adjei, S.; Otu-Nyarko, L.S.; Wiredu, E.K.; Nyarko, A. Acute toxicity studies of aqueous leaf extract of Phyllanthus niruri. Interdiscip. Toxicol. 2011, 4, 206–210. [Google Scholar] [CrossRef]
- Giknis, M.; Clifford, C. Clinical Laboratory Parameters for Crl: WI (Han) Rats; Charles River Laboratories International: Wilmington, MA, USA, 2008; pp. 1–14. [Google Scholar]
- Reece, W.O.; Erickson, H.H.; Goff, J.P.; Uemura, E.E. (Eds.) Dukes’ Physiology of Domestic Animals; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Lezoul, N.E.H.; Belkadi, M.; Habibi, F.; Guillén, F. Extraction Processes with Several Solvents on Total Bioactive Compounds in Different Organs of Three Medicinal Plants. Molecules 2020, 25, 4672. [Google Scholar] [CrossRef] [PubMed]
Peak | Proposed Compound | m/z | tR (min) | [M − H]− | Molecular Formula | Refs. |
---|---|---|---|---|---|---|
1 | Hexose | 215.033 | 0.99 | [M + Cl]− | C6H12O6 | [30] |
2 | Isorhamnetin-3-O-rhamnoside | 461.129 | 3.21 | [M − H]− | C22H22O11 | [31] |
3 | Unknown | 252.014 | 3.55 | [M − H]− | Unknown | - |
4 | Lupeol | 425.075 | 3.75 | [M − H]− | C30H50O | [32,33] |
5 | Lynoside | 551.202 | 4.66 | [M − H]− | C27H36O12 | [13] |
6 | Azelaic acid | 187.097 | 5.38 | [M − H]− | C9H16O4 | [34] |
7 | Mahuannin B | 543.127 | 5.55 | [M − H]− | C30H24O10 | [35] |
8 | Tricin | 329.232 | 6.98 | [M − H]− | C17H14O7 | [36] |
9 | Methyl linoleate | 293.138 | 8.06 | [M − H]− | C19H34O2 | [37] |
10 | Cassipourol | 293.211 | 9.53 | [M − H]− | C20H38O | [38] |
11 | Decahydroretinol | 295.228 | 10.10 | [M − H]− | C20H40O | [38] |
12 | Emodin 6,8-dimethyl ether | 297.242 | 10.63 | [M − H]− | C17H14O5 | [39] |
13 | Unknown | 327.256 | 11.63 | [M − H]− | Unknown | - |
Toxicity Test | Control Baseline | End Value | p-Value | Decision | 50 mg/kg Baseline | End Value | p-Value | Decision | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Urea | 7.90 | ± | 1.79 | 6.67 | ± | 0.57 | 0.118 | NS | 8.10 | ± | 0.43 | 6.33 | ± | 0.57 | 0.005 | SIG |
LDL Cholesterol | N/A | N/A | N/A | N/A | N/A | N/A | ||||||||||
Triglyceride | 0.66 | ± | 0.42 | 0.65 | ± | 0.54 | 0.716 | NS | 0.73 | ± | 0.74 | 1.16 | ± | 0.73 | 0.290 | NS |
Total protein (g/L) | 68.00 | ± | 8.96 | 63.00 | ± | 6.57 | 0.013 | SIG | 70.67 | ± | 11.20 | 64.67 | ± | 5.17 | 0.188 | NS |
Albumin (g/L) | 35.00 | ± | 4.97 | 32.00 | ± | 2.48 | 0.035 | SIG | 36.00 | ± | 4.97 | 32.67 | ± | 2.87 | 0.130 | NS |
Globulin (g/L) | 33.00 | 4.30 | 31.00 | ± | 4.30 | N/A | N/A | 34.67 | ± | 6.25 | 32.00 | ± | 2.48 | 0.270 | NS | |
Alb/Glob ratio | 1.07 | ± | 0.14 | 1.03 | ± | 0.14 | 0.423 | NS | 1.03 | ± | 0.14 | 1.00 | ± | N/A | 0.423 | NS |
Total Bilirubin | 20.0 | ± | N/A | 2.00 | ± | N/A | N/A | 2.33 | ± | 1.43 | 2.00 | ± | N/A | 0.423 | NS | |
ALK (IU/L) | 107.00 | ± | 36.08 | 106.67 | ± | 36.62 | 0.979 | NS | 103.33 | ± | 72.10 | 84.67 | ± | 33.08 | 0.333 | NS |
ALT (IU/L) | 42.67 | ± | 11.20 | 37.33 | ± | 11.20 | 0.004 | SIG | 42.00 | ± | 22.77 | 35.00 | ± | 15.51 | 0.379 | NS |
AST (IU/L) | 102.67 | ± | 11.20 | 88.00 | ± | 10.83 | 0.065 | NS | 107.33 | ± | 42.33 | 68.67 | ± | 10.04 | 0.054 | NS |
Toxicity Test | 300 mg/kg Baseline | End | p-Value | Decision | 2000 mg/kg Baseline | End | p-Value | Decision | ||||||||
Urea | 8.37 | ± | 1.88 | 7.20 | ± | 1.08 | 0.194 | NS | 7.17 | ± | 1.37 | 7.15 | ± | 0.87 | 0.939 | NS |
LDL Cholesterol | N/A | N/A | N/A | N/A | N/A | N/A | ||||||||||
Triglyceride | 0.77 | ± | 0.68 | 0.55 | ± | 0.53 | 0.105 | NS | 0.77 | ± | 0.70 | 0.74 | ± | 0.04 | 0.843 | NS |
Total protein (g/L) | 71.67 | ± | 5.17 | 63.00 | ± | 8.96 | 0.069 | NS | 71.33 | ± | 10.04 | 53.50 | ± | 1.24 | 0.013 | SIG |
Albumin (g/L) | 35.33 | ± | 2.87 | 32.67 | ± | 3.79 | 0.015 | SIG | 35.00 | ± | 6.57 | 27.50 | ± | 1.24 | 0.027 | SIG |
Globulin (g/L) | 36.33 | ± | 3.79 | 30.33 | ± | 5.74 | 0.102 | NS | 36.33 | ± | 3.79 | 26.00 | ± | N/A | 0.007 | SIG |
Alb/Glob ratio | 0.93 | ± | 0.14 | 1.07 | ± | 0.14 | 0.184 | NS | 0.97 | ± | 0.14 | 1.05 | ± | 0.12 | 0.038 | SIG |
Total Bilirubin | 2.33 | ± | 1.43 | 2.00 | ± | N/A | 0.423 | NS | 5.33 | ± | 10.04 | 2.00 | ± | N/A | 0.289 | NS |
ALK (IU/L) | 102.00 | ± | 31.13 | 102.67 | ± | 21.70 | 0.958 | NS | 121.67 | ± | 47.02 | 109.50 | ± | 16.15 | 0.387 | NS |
ALT (IU/L) | 50.00 | ± | 2.48 | 39.00 | ± | 14.90 | 0.062 | NS | 45.00 | ± | 21.22 | 135.50 | ± | 232.27 | 0.249 | NS |
AST (IU/L) | 101.00 | ± | 33.42 | 88.33 | ± | 33.73 | 0.201 | NS | 88.67 | ± | 19.92 | 312.00 | ± | 474.47 | 0.191 | NS |
Toxicity Test | Control Baseline | Control End | p-Value | Decision | 50 mg/kg Baseline | 50 mg/kg End | p-Value | Decision | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Urea | 6.90 | ± | 1.79 | 6.23 | ± | 0.72 | 0.171 | NS | 17.07 | ± | 31.43 | 7.37 | ± | 1.74 | 0.334 | NS |
LDL Cholesterol | N/A | N/A | N/A | N/A | N/A | N/A | ||||||||||
Triglyceride | 0.98 | ± | 0.39 | 1.09 | ± | 0.60 | 0.594 | NS | 0.91 | ± | 0.64 | 0.88 | ± | 0.93 | 0.939 | NS |
Total protein (g/L) | 65.67 | ± | 6.25 | 61.00 | ± | 4.30 | 0.020 | SIG | 68.33 | ± | 1.43 | 59.33 | ± | 3.79 | 0.016 | SIG |
Albumin (g/L) | 34.33 | ± | 3.79 | 32.33 | ± | 2.87 | 0.074 | NS | 34.33 | ± | 3.79 | 31.33 | ± | 1.43 | 0.122 | NS |
Globulin (g/L) | 31.33 | ± | 2.87 | 28.67 | ± | 1.43 | 0.015 | SIG | 34.00 | ± | 2.48 | 28.00 | ± | 2.48 | N/A | |
Alb/Glob ratio | 1.10 | ± | N/A | 1.10 | ± | N/A | N/A | 1.00 | ± | 0.25 | 1.10 | ± | N/A | 0.225 | NS | |
Total Bilirubin | 7.00 | ± | N/A | 9.33 | ± | 3.79 | 0.118 | NS | 4.00 | ± | 25.41 | 3.67 | ± | 7.17 | 0.500 | NS |
ALK (IU/L) | 189.33 | ± | 106.63 | 144.67 | ± | 33.08 | 0.121 | NS | 170.33 | ± | 55.40 | 121.67 | ± | 39.85 | 0.084 | NS |
ALT (IU/L) | 39.33 | ± | 1.43 | 37.00 | ± | 4.30 | 0.118 | NS | 42.00 | ± | 21.66 | 41.33 | ± | 11.74 | 0.866 | NS |
AST (IU/L) | 96.67 | ± | 21.13 | 84.33 | ± | 19.92 | 0.011 | SIG | 122.67 | ± | 22.27 | 139.67 | ± | 231.24 | 0.792 | NS |
Toxicity Test | 300 mg/kg Baseline | 300 mg/kg End | p-Value | Decision | 2000 mg/kg Baseline | 2000 mg/kg End | p-Value | Decision | ||||||||
Urea | 11.23 | ± | 12.82 | 7.83 | ± | 1.60 | 0.325 | NS | 6.13 | ± | 5.09 | 7.47 | ± | 1.12 | 0.307 | NS |
LDL Cholesterol | N/A | N/A | N/A | N/A | N/A | N/A | ||||||||||
Triglyceride | 0.87 | ± | 0.37 | 1.19 | ± | 1.09 | 0.317 | NS | 0.88 | ± | 0.25 | 0.83 | ± | 0.64 | 0.768 | NS |
Total protein (g/L) | 67.67 | ± | 5.17 | 61.00 | ± | 8.96 | 0.179 | NS | 67.33 | ± | 3.79 | 59.67 | ± | 3.79 | 0.013 | SIG |
Albumin (g/L) | 35.33 | ± | 1.43 | 32.67 | ± | 1.43 | 0.057 | NS | 35.00 | ± | 2.48 | 31.00 | ± | 2.48 | 0.020 | SIG |
Globulin (g/L) | 32.33 | ± | 3.79 | 28.33 | ± | 7.59 | 0.270 | NS | 32.33 | ± | 1.43 | 28.67 | ± | 1.43 | 0.008 | SIG |
Alb/Glob ratio | 1.10 | ± | N/A | 1.17 | ± | 0.29 | 0.423 | NS | 1.10 | ± | N/A | 1.10 | ± | N/A | N/A | |
Total Bilirubin | 6.33 | ± | 9.40 | 8.50 | ± | 6.35 | N/A | 5.67 | ± | 7.99 | 5.67 | ± | 7.99 | N/A | ||
ALK (IU/L) | 167.00 | ± | 52.58 | 124.67 | ± | 77.22 | 0.061 | NS | 151.67 | ± | 11.47 | 132.67 | ± | 19.30 | 0.027 | SIG |
ALT (IU/L) | 38.67 | ± | 2.87 | 34.00 | ± | 8.61 | 0.118 | NS | 38.33 | ± | 7.99 | 41.33 | ± | 13.68 | 0.483 | NS |
AST (IU/L) | 99.33 | ± | 29.43 | 105.00 | ± | 43.03 | 0.598 | NS | 86.67 | ± | 29.64 | 80.00 | ± | 8.61 | 0.511 | NS |
Variable | 100 mg/kg | 500 mg/kg | 1000 mg/kg | Control | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Baseline | End | p-Value | Baseline | End | p-Value | Baseline | End | p-Value | Baseline | End | p-Value | |
Urea | 6.08 ± 0.62 | 7.74 ± 2.21 | NS | 6.47 ± 0.80 | 9.25 ± 0.56 | SIG | 6.14 ± 0.61 | 8.15 ± 2.37 | NS | 6.26 ± 0.44 | 9.14 ± 0.73 | SIG |
LDL Cholesterol | 0.15 ± 0.00 | 0.14 ± 0.03 | NS | 0.15 ± 0.00 | 0.15 ± 0.00 | N/A | 0.15 ± 0.00 | 0.17 ± 0.03 | NS | 0.15 ± 0.00 | 0.15 ± 0.00 | N/A |
Triglyceride | 1.00 ± 0.16 | 1.06 ± 0.37 | NS | 0.96 ± 0.17 | 1.27 ± 0.26 | NS | 1.09 ± 0.20 | 0.99 ± 0.34 | NS | 1.17 ± 0.22 | 1.31 ± 0.43 | NS |
Total Protein | 59.80 ± 2.65 | 53.10 ± 13.44 | NS | 59.90 ± 4.00 | 60.70 ± 2.31 | NS | 59.70 ± 4.33 | 54.60 ± 13.89 | NS | 59.40 ± 3.54 | 59.10 ± 1.67 | NS |
Albumin | 32.20 ± 1.71 | 28.50 ± 7.30 | NS | 32.40 ± 2.27 | 32.60 ± 2.08 | NS | 32.20 ± 2.82 | 32.33 ± 1.63 | NS | 31.70 ± 2.16 | 30.90 ± 1.37 | NS |
Globulin | 21.60 ± 1.02 | 24.60 ± 6.22 | NS | 27.50 ± 1.92 | 28.10 ± 2.17 | NS | 27.50 ± 1.69 | 25.50 ± 6.54 | NS | 27.70 ± 1.47 | 28.20 ± 1.21 | NS |
Alb/Glob ratio | 1.18 ± 0.03 | 1.04 ± 0.27 | NS | 1.19 ± 0.05 | 1.17 ± 0.14 | NS | 1.18 ± 0.07 | 1.04 ± 0.27 | NS | 1.15 ± 0.04 | 1.10 ± 0.08 | NS |
Total Bilirubin | 4.30 ± 2.50 | 4.50 ± 2.72 | NS | 3.80 ± 1.87 | 4.70 ± 2.82 | NS | 2.50 ± 1.92 | 2.70 ± 2.41 | NS | 2.50 ± 1.73 | 2.70 ± 1.55 | NS |
ALK | 255.20 ± 72.65 | 136.70 ± 51.53 | SIG | 252.40 ± 86.03 | 143.40 ± 46.25 | SIG | 239.10 ± 61.87 | 136.80 ± 49.24 | SIG | 288.50 ± 58.88 | 193.40 ± 45.39 | SIG |
AST | 100.50 ± 7.81 | 111.90 ± 37.80 | NS | 96.30 ± 11.06 | 81.40 ± 9.82 | NS | 92.00 ± 7.80 | 78.70 ± 24.08 | NS | 83.20 ± 6.89 | 86.60 ± 14.42 | NS |
Variable | 100 mg/g | 500 mg/kg | 1000 mg/kg | Control | p-Value | Decision |
---|---|---|---|---|---|---|
Urea | 7.74 ± 2.24 | 9.25 ± 0.56 | 8.15 ± 2.37 | 9.14 ± 0.73 | 0.412 | NS |
LDL Cholesterol | 0.14 ± 0.03 | 0.15 ± 0.00 | 0.17 ± 0.03 | 0.15 ± 0.00 | 0.279 | NS |
Triglyceride | 1.06 ± 0.37 | 1.27 ± 0.26 | 0.99 ± 0.34 | 1.31 ± 0.43 | 0.427 | NS |
Total Protein | 53.10 ± 13.44 | 60.70 ± 2.31 | 54.60 ± 13.89 | 59.10 ± 1.67 | 0.560 | NS |
Albumin | 28.50 ± 7.30 | 32.50 ± 2.08 | 32.33 ± 1.63 | 30.90 ± 1.37 | 0.611 | NS |
Globulin | 24.60 ± 6.22 | 28.10 ± 2.17 | 25.50 ± 6.54 | 28.20 ± 1.21 | 0.513 | NS |
Alb/Glob ratio | 1.04 ± 0.27 | 1.17 ± 0.14 | 1.04 ± 0.27 | 1.10 ± 0.08 | 0.709 | NS |
Total Bilirubin | 4.50 ± 2.72 | 4.70 ± 2.82 | 2.70 ± 2.41 | 2.70 ± 1.55 | 0.382 | NS |
ALK | 136.70 ± 51.53 | 143.40 ± 46.25 | 136.80 ± 49.24 | 193.40 ± 45.39 | 0.194 | NS |
AST | 111.90 ± 37.80 | 81.40 ± 9.82 | 78.70 ± 24.08 | 86.60 ± 14.42 | 0.125 | NS |
Variable | 100 mg/kg | 500 mg/kg | 1000 mg/kg | Control | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Baseline | End | p-Value | Baseline | End | p-Value | Baseline | End | p-Value | Baseline | End | p-Value | |
Red Cell Count | 4.23 ± 2.65 | 5.92 ± 2.24 | NS | 4.89 ± 2.48 | 6.53 ± 1.67 | NS | 6.12 ± 1.59 | 7.30 ± 0.17 | NS | 5.69 ± 2.16 | 7.42 ± 0.16 | NS |
Haemoglobin | 8.69 ± 5.41 | 11.47 ± 4.35 | NS | 12.53 ± 4.51 | 13.94 ± 0.56 | NS | 14.02 ± 0.66 | 12.85 ± 3.27 | NS | 11.72 ± 4.43 | 14.39 ± 0.27 | NS |
Haematocrit | 0.30 ± 0.19 | 0.39 ± 0.15 | NS | 0.34 ± 0.17 | 0.43 ± 0.11 | NS | 0.43 ± 0.11 | 0.44 ± 0.11 | NS | 0.40 ± 0.15 | 0.95 ± 1.02 | NS |
MCV | 42.50 ± 26.22 | 52.70 ± 19.87 | NS | 54.22 ± 23.67 | 60.10 ± 15.14 | NS | 63.90 ± 16.19 | 60.20 ± 15.22 | NS | 56.50 ± 21.38 | 66.80 ± 1.30 | NS |
MCH | 12.40 ± 7.65 | 15.50 ± 5.85 | NS | 14.30 ± 7.07 | 17.40 ± 4.40 | NS | 20.67 ± 0.54 | 17.70 ± 4.47 | NS | 16.50 ± 6.25 | 19.50 ± 0.51 | NS |
MCHC | 14.70 ± 9.38 | 18.50 ± 7.77 | NS | 17.80 ± 9.22 | 22.20 ± 6.67 | NS | 25.11 ± 3.55 | 22.10 ± 6.45 | NS | 19.80 ± 8.08 | 24.30 ± 3.89 | NS |
RDW | 8.06 ± 5.06 | 9.70 ± 3.70 | NS | 9.44 ± 4.74 | 11.18 ± 2.85 | NS | 11.05 ± 3.82 | 11.51 ± 2.95 | NS | 9.91 ± 4.65 | 11.80 ± 0.46 | NS |
White cell count | 3.51 ± 2.28 | 5.26 ± 2.23 | NS | 4.50 ± 2.06 | 6.77 ± 2.28 | SIG | 4.70 ± 1.31 | 3.59 ± 1.78 | NS | 4.30 ± 1.69 | 5.92 ± 1.07 | NS |
Neutrophils | 5.15 ± 5.47 | 7.14 ± 4.99 | NS | 5.00 ± 5.61 | 6.25 ± 4.67 | NS | 9.80 ± 8.94 | 11.37 ± 10.78 | NS | 8.17 ± 6.77 | 9.24 ± 7.73 | NS |
Lymphocytes ABS | 25.65 ± 27.15 | 43.03 ± 30.00 | NS | 26.56 ± 27.76 | 36.37 ± 28.96 | NS | 31.92 ± 26.32 | 29.96 ± 25.56 | NS | 33.52 ± 28.15 | 41.72 ± 28.33 | NS |
Monocytes ABS | 0.07 ± 0.04 | 0.11 ± 0.06 | NS | 0.07 ± 0.04 | 0.16 ± 0.60 | SIG | 0.08 ± 0.03 | 0.11 ± 0.06 | NS | 0.08 ± 0.03 | 0.16 ± 0.05 | SIG |
Eosinophils | 0.03 ± 0.02 | 0.06 ± 0.03 | NS | 0.04 ± 0.03 | 0.10 ± 0.07 | NS | 0.05 ± 0.02 | 0.03 ± 0.02 | NS | 0.05 ± 0.03 | 0.06 ± 0.03 | NS |
Basophils ABS | 0.01 ± 0.01 | 0.01 ± 0.01 | NS | 0.01 ± 0.00 | 0.01 ± 0.01 | NS | 0.01 ± 0.00 | 0.03 ± 0.03 | NS | 0.01 ± 0.00 | 0.01 ± 0.01 | NS |
Platelet count | 385.80 ± 257.90 | 583.10 ± 231.32 | NS | 600.30 ± 314.00 | 745.80 ± 203.92 | NS | 670.20 ± 185.37 | 780.00 ± 227.54 | NS | 674.40 ± 285.65 | 848.30 ± 90.65 | NS |
Variable | 100 mg/g | 500 mg/kg | 1000 mg/kg | Control | p-Value | Decision |
---|---|---|---|---|---|---|
Red Cell Count | 5.92 ± 2.24 | 6.53 ± 1.67 | 7.30 ± 0.17 | 7.42 ± 0.16 | 0.535 | NS |
Haemoglobin | 11.47 ± 4.35 | 13.94 ± 0.56 | 12.85 ± 3.27 | 14.39 ± 0.27 | 0.531 | NS |
Haematocrit | 0.39 ± 0.15 | 0.43 ± 0.11 | 0.44 ± 0.11 | 0.95 ± 1.02 | 0.287 | NS |
MCV | 52.70 ± 19.87 | 60.10 ± 15.14 | 60.20 ± 15.22 | 66.80 ± 1.30 | 0.506 | NS |
MCH | 15.50 ± 5.85 | 17.40 ± 4.40 | 17.70 ± 4.47 | 19.50 ± 0.51 | 0.533 | NS |
MCHC | 18.50 ± 7.77 | 22.20 ± 6.67 | 22.10 ± 6.45 | 24.30 ± 3.89 | 0.538 | NS |
RDW | 9.70 ± 3.70 | 11.18 ± 2.85 | 11.51 ± 2.95 | 11.80 ± 0.46 | 0.631 | NS |
White cell count | 5.26 ± 2.23 | 6.77 ± 2.28 | 3.59 ± 1.78 | 5.92 ± 1.07 | 0.070 | NS |
Neutrophils | 7.14 ± 4.99 | 6.25 ± 4.67 | 11.37 ± 10.78 | 9.24 ± 7.73 | 0.796 | NS |
Lymphocytes ABS | 43.03 ± 30.00 | 36.37 ± 28.96 | 29.96 ± 25.56 | 41.72 ± 28.33 | 0.8777 | NS |
Monocytes ABS | 0.11 ± 0.06 | 0.16 ± 0.06 | 0.11 ± 0.06 | 0.16 ± 0.5 | 0.375 | NS |
Eosinophils | 0.06 ± 0.03 | 0.10 ± 0.07 | 0.03 ± 0.02 | 0.06 ± 0.03 | 0.088 | NS |
Basophils ABS | 0.01 ± 0.01 | 0.01 ± 0.01 | 0.03 ± 0.03 | 0.01 ± 0.01 | 0.539 | NS |
Platelet count | 583.10 ± 231.32 | 745.80 ± 203.92 | 780.00 ± 227.54 | 848.30 ± 90.65 | 0.190 | NS |
Organ | W Statistic | Degrees of Freedom (df) | p-Value |
---|---|---|---|
Liver | 0.931 | 37 | 0.023 |
Spleen | 0.948 | 37 | 0.081 |
Kidney | 0.913 | 37 | 0.007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mpofana, N.; Chipangura, J.K.; Paulse, M.; Yalo, M.; Gqaleni, N.; Nxumalo, C.T.; Dlova, N.C.; Hussein, A.A.; Crouch, N.R. An Investigation into the Acute and Subacute Toxicity of Extracts of Cassipourea flanaganii Stem Bark In Vivo. Plants 2023, 12, 2281. https://doi.org/10.3390/plants12122281
Mpofana N, Chipangura JK, Paulse M, Yalo M, Gqaleni N, Nxumalo CT, Dlova NC, Hussein AA, Crouch NR. An Investigation into the Acute and Subacute Toxicity of Extracts of Cassipourea flanaganii Stem Bark In Vivo. Plants. 2023; 12(12):2281. https://doi.org/10.3390/plants12122281
Chicago/Turabian StyleMpofana, Nomakhosi, John Kudakwashe Chipangura, Michael Paulse, Masande Yalo, Nceba Gqaleni, Celenkosini Thembelenkosini Nxumalo, Ncoza Cordelia Dlova, Ahmed A. Hussein, and Neil R. Crouch. 2023. "An Investigation into the Acute and Subacute Toxicity of Extracts of Cassipourea flanaganii Stem Bark In Vivo" Plants 12, no. 12: 2281. https://doi.org/10.3390/plants12122281
APA StyleMpofana, N., Chipangura, J. K., Paulse, M., Yalo, M., Gqaleni, N., Nxumalo, C. T., Dlova, N. C., Hussein, A. A., & Crouch, N. R. (2023). An Investigation into the Acute and Subacute Toxicity of Extracts of Cassipourea flanaganii Stem Bark In Vivo. Plants, 12(12), 2281. https://doi.org/10.3390/plants12122281