Chemical Constituents and Antimicrobial Activity of a Ganoderma lucidum (Curtis.) P. Karst. Aqueous Ammonia Extract
Abstract
:1. Introduction
2. Results
2.1. Infrared Vibrational Characterization
2.2. Extract Phytoconstituents Elucidation by GC−MS
2.3. Antifungal and Anti-Oomycete Activity
2.4. Protection of Excised Stems against P. cinnamomi
3. Discussion
3.1. On the Chemical Profile
3.2. On the Antimicrobial Activity Comparison of G. lucidum Extracts
3.3. Comparison of Efficacy vs. Other Natural Compounds
3.4. Comparison of Efficacy vs. Fosetyl-Al
3.5. Comparison of Efficacy in Excised Stems
4. Materials and Methods
4.1. Reagents and Fungal Isolates
4.2. Collection of Samples
4.3. Extraction Process, Preparation of Chitosan Oligomers, and Preparation of Conjugate Complexes
4.4. G. lucidum Characterization Procedures
4.5. In Vitro Antifungal and Anti-Oomycete Activity
4.6. Protection Tests on Artificially Inoculated Excised Stems
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, X.-M.; Zhang, J.; Wu, L.-H.; Zhao, Y.-L.; Li, T.; Li, J.-Q.; Wang, Y.-Z.; Liu, H.-G. A mini-review of chemical composition and nutritional value of edible wild-grown mushroom from China. Food Chem. 2014, 151, 279–285. [Google Scholar] [CrossRef]
- Radhika, R. Antibacterial activity of Ganoderma lucidum extracts against MDR pathogens. Int. J. Mod. Agric. 2021, 10, 3488–3493. [Google Scholar] [CrossRef]
- Sridhar, S.; Sivaprakasam, E.; Balakumar, R.; Kavitha, D. Evaluation of antibacterial and antifungal activity of Ganoderma lucidum (Curtis) P. Karst fruit bodies extracts. World J. Sci. Technol. 2011, 1, 8–11. [Google Scholar]
- Wachtel-Galor, S.; Yuen, J.; Buswell, J.A.; Benzie, I.F. Ganoderma lucidum (Lingzhi or Reishi). In Herbal Medicine: Biomolecular and Clinical Aspects; Benzie, I., Wachtel-Galor, S., Eds.; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2011. [Google Scholar]
- Liu, Z.; Xing, J.; Zheng, S.; Bo, R.; Luo, L.; Huang, Y.; Niu, Y.; Li, Z.; Wang, D.; Hu, Y. Ganoderma lucidum polysaccharides encapsulated in liposome as an adjuvant to promote Th1-bias immune response. Carbohydr. Polym. 2016, 142, 141–148. [Google Scholar] [CrossRef]
- Seweryn, E.; Ziała, A.; Gamian, A. Health-promoting of polysaccharides extracted from Ganoderma lucidum. Nutrients 2021, 13, 2725. [Google Scholar] [CrossRef]
- Mizuno, T.; Wang, G.; Zhang, J.; Kawagishi, H.; Nishitoba, T.; Li, J. Reishi, Ganoderma lucidum and Ganoderma tsugae: Bioactive substances and medicinal effects. Food Rev. Int. 1995, 11, 151–166. [Google Scholar] [CrossRef]
- Liu, J.; Kurashiki, K.; Shimizu, K.; Kondo, R. Structure–activity relationship for inhibition of 5α-reductase by triterpenoids isolated from Ganoderma lucidum. Biorg. Med. Chem. 2006, 14, 8654–8660. [Google Scholar] [CrossRef]
- Ferreira, I.C.; Heleno, S.A.; Reis, F.S.; Stojkovic, D.; Queiroz, M.J.; Vasconcelos, M.H.; Sokovic, M. Chemical features of Ganoderma polysaccharides with antioxidant, antitumor and antimicrobial activities. Phytochemistry 2015, 114, 38–55. [Google Scholar] [CrossRef] [Green Version]
- Grienke, U.; Kaserer, T.; Pfluger, F.; Mair, C.E.; Langer, T.; Schuster, D.; Rollinger, J.M. Accessing biological actions of Ganoderma secondary metabolites by in silico profiling. Phytochemistry 2015, 114, 114–124. [Google Scholar] [CrossRef] [Green Version]
- Bishop, K.S.; Kao, C.H.; Xu, Y.; Glucina, M.P.; Paterson, R.R.M.; Ferguson, L.R. From 2000 years of Ganoderma lucidum to recent developments in nutraceuticals. Phytochemistry 2015, 114, 56–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stojković, D.S.; Barros, L.; Calhelha, R.C.; Glamočlija, J.; Ćirić, A.; Van Griensven, L.J.; Soković, M.; Ferreira, I.C. A detailed comparative study between chemical and bioactive properties of Ganoderma lucidum from different origins. Int. J. Food Sci. Nutr. 2014, 65, 42–47. [Google Scholar] [CrossRef] [Green Version]
- Heleno, S.A.; Ferreira, I.C.; Esteves, A.P.; Ćirić, A.; Glamočlija, J.; Martins, A.; Soković, M.; Queiroz, M.J.R. Antimicrobial and demelanizing activity of Ganoderma lucidum extract, p-hydroxybenzoic and cinnamic acids and their synthetic acetylated glucuronide methyl esters. Food Chem. Toxicol. 2013, 58, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Sun, S.; Chen, Q.; Zhang, Z.; Wang, J.; Liu, Y.; Wang, H. A polysaccharide of Ganoderma lucidum enhances antifungal activity of chemical fungicides against soil-borne diseases of wheat and maize by induced resistance. Agriculture 2022, 12, 55. [Google Scholar] [CrossRef]
- Burgess, T.I.; López-Villamor, A.; Paap, T.; Williams, B.; Belhaj, R.; Crone, M.; Dunstan, W.; Howard, K.; Hardy, G.E.S.J. Towards a best practice methodology for the detection of Phytophthora species in soils. Plant Pathol. 2021, 70, 604–614. [Google Scholar] [CrossRef]
- Benito Garzón, M.; Sánchez de Dios, R.; Sainz Ollero, H. Effects of climate change on the distribution of Iberian tree species. Appl. Veg. Sci. 2008, 11, 169–178. [Google Scholar] [CrossRef]
- Vivas, M.; Hernández, J.; Corcobado, T.; Cubera, E.; Solla, A. Transgenerational induction of resistance to Phytophthora cinnamomi in holm oak. Forests 2021, 12, 100. [Google Scholar] [CrossRef]
- Burgess, T.I.; Scott, J.K.; Mcdougall, K.L.; Stukely, M.J.; Crane, C.; Dunstan, W.A.; Brigg, F.; Andjic, V.; White, D.; Rudman, T. Current and projected global distribution of Phytophthora cinnamomi, one of the world’s worst plant pathogens. Glob. Change Biol. 2017, 23, 1661–1674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez, M.; Venegas, J.; Romero, M.; Phillips, A.; Trapero, A. Botryosphaeria and related taxa causing oak canker in southwestern Spain. Plant Dis. 2003, 87, 1515–1521. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, G.; Panda, P.; Rath, M.; Pal, A.; Sharma, T.; Das, D. GC-MS analysis of bioactive compounds in the methanol extract of Clerodendrum viscosum leaves. Pharmacogn. Res. 2015, 7, 110. [Google Scholar]
- Rapior, S.; Marion, C.; Pélissier, Y.; Bessière, J.-M. Volatile composition of fourteen species of fresh wild mushrooms (Boletales). J. Essent. Oil Res. 1997, 9, 231–234. [Google Scholar] [CrossRef]
- Coleman, S.; Linderman, R.; Hodgson, E.; Rose, R.L. Comparative metabolism of chloroacetamide herbicides and selected metabolites in human and rat liver microsomes. Environ. Health Perspect. 2000, 108, 1151–1157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alsamarrai, A.S.H.; Abdulghani, S.S. Microwave-assisted synthesis, structural characterization and assessment of the antibacterial activity of some new aminopyridine, pyrrolidine, piperidine and morpholine acetamides. Molecules 2021, 26, 533. [Google Scholar] [CrossRef] [PubMed]
- Ghavam, M.; Afzali, A.; Manca, M.L. Chemotype of Damask rose with oleic acid (9 octadecenoic acid) and its antimicrobial effectiveness. Sci. Rep. 2021, 11, 8027. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Javaid, A.; Shoaib, A. GC-MS analysis and antifungal activity of methanolic root extract of Chenopodium album against Sclerotium rolfsii. Planta Daninha 2017, 35, e017164713. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, A.; Sánchez-Hernández, E.; Noversa, J.; Cunha, A.; Cortez, I.; Marques, G.; Martín-Ramos, P.; Oliveira, R. Antifungal activity of plant waste extracts against phytopathogenic fungi: Allium sativum peels extract as a promising product targeting the fungal plasma membrane and cell wall. Horticulturae 2023, 9, 136. [Google Scholar] [CrossRef]
- Chandrasekaran, M.; Senthilkumar, A.; Venkatesalu, V. Antibacterial and antifungal efficacy of fatty acid methyl esters from the leaves of Sesuvium portulacastrum L. Eur. Rev. Med. Pharmacol. Sci. 2011, 15, 775–780. [Google Scholar]
- Sánchez-Hernández, E.; Martín-Ramos, P.; Navas Gracia, L.M.; Martín-Gil, J.; Garcés-Claver, A.; Flores-León, A.; González-García, V. Armeria maritima (Mill.) Willd. flower hydromethanolic extract for cucurbitaceae fungal diseases control. Molecules 2023, 28, 3730. [Google Scholar] [CrossRef]
- Sánchez-Hernández, E.; González-García, V.; Martín-Gil, J.; Lorenzo-Vidal, B.; Palacio-Bielsa, A.; Martín-Ramos, P. Phytochemical screening and antibacterial activity of Taxus baccata L. against Pectobacterium spp. and Dickeya chrysanthemi. Horticulturae 2023, 9, 201. [Google Scholar] [CrossRef]
- Doyle, E. Trans fatty acids. J. Chem. Educ. 1997, 74, 1030. [Google Scholar] [CrossRef]
- Kim, D.H.; Kim, S.I.; Chang, K.S.; Ahn, Y.J. Repellent activity of constituents identified in Foeniculum vulgare fruit against Aedes aegypti (Diptera: Culicidae). J. Agric. Food. Chem. 2002, 50, 6993–6996. [Google Scholar] [CrossRef]
- Garba, S.; Garba, I. Anti-diarrhoeal properties of cis-9-octadecenoic acid isolated from Landolphia owariensis plant. Org. Med. Chem. IJ 2017, 3, 103. [Google Scholar]
- Walters, D.; Raynor, L.; Mitchell, A.; Walker, R.; Walker, K. Antifungal activities of four fatty acids against plant pathogenic fungi. Mycopathologia 2004, 157, 87–90. [Google Scholar] [CrossRef] [PubMed]
- Avinash, J.; Vinay, S.; Jha, K.; Das, D.; Goutham, B.S.; Kumar, G. The unexplored anticaries potential of Shiitake mushroom. Pharmacogn. Rev. 2016, 10, 100–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akalonu, C.; Nwodu, J.A.; Chukwu, E.C.; Ejekwumadu, N.J.; Iwueke, A.V. Nutritional composition and GC-MS phytochemical analysis of Thaumatococcus daniellii leaves. Eur. J. Nutr. Food Saf. 2020, 12, 81–86. [Google Scholar] [CrossRef]
- Khairudin, N.; Basri, M.; Fard Masoumi, H.; Samson, S.; Ashari, S. Enhancing the bioconversion of azelaic acid to its derivatives by response surface methodology. Molecules 2018, 23, 397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Govindarajan, N.; Reddy Cheekala, U.M.; Arcot, S.; Sundaramoorthy, S.; Duraisamy, R.; Raju, I. GC-MS analysis of n-hexane extract of stem bark of Symplocos crataegoides Buch.-Ham. ex D. Don. Pharmacogn. J. 2016, 8, 520–524. [Google Scholar] [CrossRef] [Green Version]
- Badr, W.; Rabeh, M.; Eltantawy, M.; El Hawary, S. Chemical composition and antimicrobial activity of volatile constituents of cladodes, fruits peel and fruits pulp from Opuntia ficus indica (L.) Mill. (prickly pear) growing in Egypt. Egypt. J. Chem. 2021, 64, 437–444. [Google Scholar] [CrossRef]
- Saroglou, V.; Marin, P.D.; Rancic, A.; Veljic, M.; Skaltsa, H. Composition and antimicrobial activity of the essential oil of six Hypericum species from Serbia. Biochem. Syst. Ecol. 2007, 35, 146–152. [Google Scholar] [CrossRef]
- Khan, M.; Srivastava, S.K.; Jain, N.; Syamasundar, K.V.; Yadav, A.K. Chemical composition of fruit and stem essential oils of Lantana camara from northern India. Flavour Fragr. J. 2003, 18, 376–379. [Google Scholar] [CrossRef]
- Langa-Lomba, N.; Buzón-Durán, L.; Martín-Ramos, P.; Casanova-Gascón, J.; Martín-Gil, J.; Sánchez-Hernández, E.; González-García, V. Assessment of conjugate complexes of chitosan and Urtica dioica or Equisetum arvense extracts for the control of grapevine trunk pathogens. Agronomy 2021, 11, 976. [Google Scholar] [CrossRef]
- Sánchez-Hernández, E.; Buzón-Durán, L.; Langa-Lomba, N.; Casanova-Gascón, J.; Lorenzo-Vidal, B.; Martín-Gil, J.; Martín-Ramos, P. Characterization and antimicrobial activity of a halophyte from the Asturian coast (Spain): Limonium binervosum (G.E.Sm.) C.E.Salmon. Plants 2021, 10, 1852. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Hernández, E.; Buzón-Durán, L.; Lorenzo-Vidal, B.; Martín-Gil, J.; Martín-Ramos, P. Physicochemical characterization and antimicrobial activity against Erwinia amylovora, Erwinia vitivora, and Diplodia seriata of a light purple Hibiscus syriacus L. cultivar. Plants 2021, 10, 1876. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Hernández, E.; González-García, V.; Correa-Guimarães, A.; Casanova-Gascón, J.; Martín-Gil, J.; Martín-Ramos, P. Phytochemical profile and activity against Fusarium species of Tamarix gallica bark aqueous ammonia extract. Agronomy 2023, 13, 496. [Google Scholar] [CrossRef]
- Sheela, D.; Uthayakumari, F. GC-MS analysis of bioactive constituents from coastal sand dune taxon Sesuvium portulacastrum (L.). Biosci. Discov. 2013, 4, 47–53. [Google Scholar]
- Liu, S.; Ruan, W.; Li, J.; Xu, H.; Wang, J.; Gao, Y.; Wang, J. Biological control of phytopathogenic fungi by fatty acids. Mycopathologia 2008, 166, 93–102. [Google Scholar] [CrossRef]
- Altieri, C.; Cardillo, D.; Bevilacqua, A.; Sinigaglia, M. Inhibition of Aspergillus spp. and Penicillium spp. by Fatty Acids and Their Monoglycerides. J. Food Prot. 2007, 70, 1206–1212. [Google Scholar] [CrossRef]
- Witasari, L.D.; Wahyu, K.W.; Anugrahani, B.J.; Kurniawan, D.C.; Haryanto, A.; Nandika, D.; Karlinasari, L.; Arinana, A.; Batubara, I.; Santoso, D.; et al. Antimicrobial activities of fungus comb extracts isolated from Indomalayan termite (Macrotermes gilvus Hagen) mound. AMB Express 2022, 12, 14. [Google Scholar] [CrossRef]
- Sánchez-Hernández, E.; Martín-Ramos, P.; Martín-Gil, J.; Santiago-Aliste, A.; Hernández-Navarro, S.; Oliveira, R.; González-García, V. Bark extract of Uncaria tomentosa L. for the control of strawberry phytopathogens. Horticulturae 2022, 8, 672. [Google Scholar] [CrossRef]
- Hwang, Y.-H.; Matsushita, Y.-I.; Sugamoto, K.; Matsui, T. Antimicrobial effect of the wood vinegar from Cryptomeria japonica sapwood on plant pathogenic microorganisms. J. Microbiol. Biotechnol. 2005, 15, 1106–1109. [Google Scholar]
- Abu Bakar, M.F.; Ismail, N.A.; Isha, A.; Mei Ling, A.L. Phytochemical composition and biological activities of selected wild berries (Rubus moluccanus L., R. fraxinifolius Poir., and R. alpestris Blume). Evid.-Based Complement. Altern. Med. 2016, 2016, 2482930. [Google Scholar] [CrossRef] [Green Version]
- Upadhyay, P.K.; Prasad, R.; Pandey, M.; Kumar, P. A facile synthesis of 5,6-dihydro-5-hydroxy-2(1H)-pyridone. Tetrahedron Lett. 2009, 50, 2440–2442. [Google Scholar] [CrossRef]
- Skalicka-Wozniak, K.; Szypowski, J.; Los, R.; Siwulski, M.; Sobieralski, K.; Glowniak, K.; Malm, A. Evaluation of polysaccharides content in fruit bodies and their antimicrobial activity of four Ganoderma lucidum (W Curt.: Fr.) P. Karst. strains cultivated on different wood type substrates. Acta Soc. Bot. Pol. 2012, 81, 17–21. [Google Scholar] [CrossRef] [Green Version]
- Radhika, R.; Rajan, S. Antifungal potentials of Ganoderma lucidum extracts. Plant Cell Biotechnol. Mol. Biol. 2021, 22, 22–27. [Google Scholar]
- Kamble, R.; Venkata, S.; Gupte, A. Antimicrobial activity of Ganoderma lucidum mycelia. J. Pure Appl. Microbiol. 2011, 5, 983–986. [Google Scholar]
- Quereshi, S.; Pandey, A.; Sandhu, S. Evaluation of antibacterial activity of different Ganoderma lucidum extracts. J. Sci. Res. 2010, 3, 9–13. [Google Scholar]
- Shahid, A.A.; Asif, M.; Shahbaz, M.; Ali, M. Antifungal potential of Ganoderma lucidum extract against plant pathogenic fungi of Calendula officinalis L. In Proceedings of the 5th International Conference on Biological, Chemical and Environmental Sciences (BCES-2016), London, UK, 24–25 March 2016; pp. 24–25. [Google Scholar] [CrossRef]
- Yoon, S.Y.; Eo, S.K.; Kim, Y.S.; Lee, C.K.; Han, S.S. Antimicrobial activity of Ganoderma lucidum extract alone and in combination with some antibiotics. Arch. Pharm. Res. 1994, 17, 438–442. [Google Scholar] [CrossRef] [PubMed]
- Vazirian, M.; Faramarzi, M.A.; Ebrahimi, S.E.S.; Esfahani, H.R.M.; Samadi, N.; Hosseini, S.A.; Asghari, A.; Manayi, A.; Mousazadeh, S.A.; Asef, M.R. Antimicrobial effect of the Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (higher Basidiomycetes) and its main compounds. Int. J. Med. Mushrooms 2014, 16, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Zhou, X.; He, X.; Wang, R.; Liang Zeng, E.; Zhou, W. Study on the antifungal mechanism of Chinese herbal extract on Botryosphaeria dothidea. J. Food Process. Preserv. 2022, 46, e16631. [Google Scholar] [CrossRef]
- Sánchez-Hernández, E.; Balduque-Gil, J.; Barriuso-Vargas, J.J.; Casanova-Gascón, J.; González-García, V.; Cuchí-Oterino, J.A.; Lorenzo-Vidal, B.; Martín-Gil, J.; Martín-Ramos, P. Holm oak (Quercus ilex subsp. ballota (Desf.) Samp.) bark aqueous ammonia extract for the control of invasive forest pathogens. Int. J. Mol. Sci. 2022, 23, 11882. [Google Scholar] [CrossRef]
- Castillo-Reyes, F.; Clemente-Constantino, J.A.; Gallegos-Morales, G.; Rodríguez-Herrera, R.; Noé, C. In vitro antifungal activity of polyphenols-rich plant extracts against Phytophthora cinnamomi Rands. Afr. J. Agric. Res. 2015, 10, 4554–4560. [Google Scholar]
- Giamperi, L.; Fraternale, D.; Ricci, D. The in vitro action of essential oils on different organisms. J. Essent. Oil Res. 2002, 14, 312–318. [Google Scholar] [CrossRef]
- Eksteen, D.; Pretorius, J.; Nieuwoudt, T.; Zietsman, P. Mycelial growth inhibition of plant pathogenic fungi by extracts of South African plant species. Ann. Appl. Biol. 2001, 139, 243–249. [Google Scholar] [CrossRef]
- Tegegne, G.; Pretorius, J.C. In vitro and in vivo antifungal activity of crude extracts and powdered dry material from Ethiopian wild plants against economically important plant pathogens. BioControl 2007, 52, 877–888. [Google Scholar] [CrossRef]
- Ferreira, C.; Oliveira, R. Protective antifungal activity of Plantago major extract against the phytopathogenic fungi Phytophthora cinnamomi, Diplodia corticola and Colletotrichum species. Proceedings 2021, 70, 94. [Google Scholar] [CrossRef]
- Ferreira, C.S.d.S. Survey of Antifungal Activity of Plant Extracts for the Development of Natural Products for Agriculture; University of Minho: Braga, Portugal, 2021. [Google Scholar]
- Freitas, L.P. Analysis of Antifungal Plant Extracts against Phytopathogenic Fungi; University of Minho: Braga, Portugal, 2022. [Google Scholar]
- Machado, D.C.d.A.F. Study of Antifungal Activity and Mechanisms of Action of Plant Extracts with Potential Application in Sustainable Agricultural Practices; University of Minho: Braga, Portugal, 2022. [Google Scholar]
- Carvajal, M.A.; Vergara, A.P.; Santander, R.; Osorio, M.E. Chemical composition and anti-phytopathogenic activity of the essential oil of Beilschmiedia miersii. Nat. Prod. Commun. 2016, 11, 1367–1372. [Google Scholar] [CrossRef] [Green Version]
- Moiteiro, C.; Esteves, T.; Ramalho, L.; Rojas, R.; Alvarez, S.; Zacchino, S.; Bragança, H. Essential oil characterization of two Azorean Cryptomeria japonica populations and their biological evaluations. Nat. Prod. Commun. 2013, 8, 1785–1790. [Google Scholar] [CrossRef] [Green Version]
- Elshafie, H.S.; Caputo, L.; De Martino, L.; Sakr, S.H.; De Feo, V.; Camele, I. Study of bio-pharmaceutical and antimicrobial properties of pomegranate (Punica granatum L.) leathery exocarp extract. Plants 2021, 10, 153. [Google Scholar] [CrossRef]
- Sánchez-Hernández, E.; Balduque-Gil, J.; González-García, V.; Barriuso-Vargas, J.J.; Casanova-Gascón, J.; Martín-Gil, J.; Martín-Ramos, P. Phytochemical profiling of Sambucus nigra L. flower and leaf extracts and their antimicrobial potential against almond tree pathogens. Int. J. Mol. Sci. 2023, 24, 1154. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Hernández, E.; González-García, V.; Casanova-Gascón, J.; Barriuso-Vargas, J.J.; Balduque-Gil, J.; Lorenzo-Vidal, B.; Martín-Gil, J.; Martín-Ramos, P. Valorization of Quercus suber L. bark as a source of phytochemicals with antimicrobial activity against apple tree diseases. Plants 2022, 11, 3415. [Google Scholar] [CrossRef]
- Sánchez-Hernández, E.; Langa-Lomba, N.; González-García, V.; Casanova-Gascón, J.; Martín-Gil, J.; Santiago-Aliste, A.; Torres-Sánchez, S.; Martín-Ramos, P. Lignin–chitosan nanocarriers for the delivery of bioactive natural products against wood-decay phytopathogens. Agronomy 2022, 12, 461. [Google Scholar] [CrossRef]
- Levy, Y.; Benderly, M.; Cohen, Y.; Gisi, U.; Bassand, D. The joint action of fungicides in mixtures: Comparison of two methods for synergy calculation. EPPO Bull. 1986, 16, 651–657. [Google Scholar] [CrossRef]
- Matheron, M.; Mircetich, S. Seasonal variation in susceptibility of Juglans hindsii and paradox rootstocks of English walnut trees to Phytophthora citricola. Phytopathology 1985, 75, 970–972. [Google Scholar] [CrossRef]
Wavenumber (cm−1) | Assignment | |
---|---|---|
G. lucidum (This Study) | G. lucidum (Commercial) | |
3290 | 3297 | –OH and –NH stretch |
2924 | 2922 | –CH2 asymmetric stretching of alkyls (cutine, wax, pectin, amides) |
2874 | C–H stretching | |
(2183) | C–N bonding | |
(2148) | C=C stretching | |
(2047) | C–N bonds | |
(2018) | C–H stretching (polysaccharides) | |
1645 | 1634 | C=O stretching (amides); C=C stretching; O–H deformation |
1538 | C–N bonds | |
1451 | C–H bending | |
1374 | 1371 | C–C asymmetrical stretching; phenolic OH groups; C–H (cellulose) |
1203 | 1248 | ketonic carbonyl group and C–N bonds |
1153 | C–C in plane (β-carotene); C–O–C asymmetric stretch (cellulose) | |
1036 | 1035 | C–C stretching; C–N stretching; >C=O (ketonic) group |
562 | C–C out of plane bending; C–H rocking vibration | |
526 | C–C in-plane bending; COO− rocking | |
452 | C–C–C–C in-plane deformation |
Retention Time (min) | Peak Area (%) | Assignment | Qual |
---|---|---|---|
3.3124 | 28.279 | Acetamide | 90 |
5.1286 | 1.0155 | 5-(2-Chlorophenyl)-3-(1-piperidylmethyl)-1,3,4-oxadiazole-2(3H)-thione | 59 |
6.1139 | 3.9257 | Glycerin | 78 |
6.1673 | 4.7722 | 1,2,3,4-Butanetetrol, [S-(R*,R*)]- | 64 |
6.9863 | 2.1160 | 2-Propenethioamide, 3-(acetyloxy)-N,N-dimethyl-, (E)- | 37 |
7.2123 | 1.29 | 2,5-Dimethyl-4-hydroxy-3(2H)-furanone | 43 |
7.4078 | 0.9017 | Fumaric acid, 3-methylbut-3-enyl tetradecyl ester | 47 |
7.4790 | 0.7049 | Tetrahydrofuran, 2-ethyl-5-methyl- | 38 |
7.5442 | 1.70 | 2,5-Furandione, dihydro-3-methylene- | 50 |
7.6511 | 2.1911 | Mequinol | 86 |
7.7995 | 4.4650 | Undecane | 42 |
8.5651 | 0.8559 | 4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl- | 62 |
9.4732 | 1.0981 | Catechol | 93 |
10.9867 | 0.8408 | 2-Methoxy-4-vinylphenol | 64 |
11.0936 | 1.7093 | N,N-Dimethylacetoacetamide | 50 |
11.3312 | 1.86 | N-Methoxy-2-carbaminoaziridine | 49 |
11.4616 | 2.5489 | Phenol, 2,6-dimethoxy- | 97 |
11.8652 | 0.7987 | DL-Proline, 5-oxo-, methyl ester | 72 |
12.0491 | 2.5475 | 2(1H)-Pyridinone, 5-hydroxy- | 64 |
13.2065 | 0.9025 | Suberic acid monomethyl ester | 64 |
13.2778 | 0.9487 | Apocynin | 81 |
13.5211 | 1.5205 | Thiazole, 5-ethenyl-4-methyl- | 35 |
13.6992 | 1.6385 | Dodecanoic acid, methyl ester | 98 |
14.1384 | 0.5720 | Dodecanoic acid | 96 |
14.1859 | 0.4162 | Propenoic acid, 3-(1-ethyl-3-methyl-4-pyrazolyl)- | 46 |
16.0317 | 1.2402 | Methyl tetradecanoate | 97 |
16.1208 | 0.8852 | Ethanone, 1-(4-hydroxy-3,5-dimethoxyphenyl)- | 96 |
16.7262 | 1.1287 | Cyclohexanone, 5-methyl-2-(1-methylethyl)-, O-methyloxime, (2S-trans)- | 38 |
18.1456 | 2.5903 | n-Hexadecanoic acid ester | 96 |
18.4889 | 2.0519 | n-Hexadecanoic acid | 95 |
19.8304 | 4.16 | 9-Octadecenoic acid, methyl ester | 99 |
20.0678 | 0.9002 | Methyl stearate | 89 |
20.1865 | 3.8668 | 9-Octadecenoic acid, (E)- | 96 |
Pathogen | Treatment | |||||||
---|---|---|---|---|---|---|---|---|
COS | G. lucidum | COS–G. lucidum | ||||||
EC50 | EC90 | EC50 | EC90 | EC50 | SF | EC90 | SF | |
B. dothidea | 428.5 | 956.9 | 692.7 | 938.2 | 404.0 | 1.31 | 479.2 | 1.98 |
D. corticola | 592.8 | 969.5 | 256.0 | 621.6 | 206.5 | 1.73 | 350.7 | 2.16 |
D. iberica | 697.3 | 1201.7 | 476.4 | 703.8 | 249.6 | 2.27 | 345.6 | 2.57 |
P. cinnamomi | 166.4 | 595.3 | 112.6 | 169.4 | 50.2 | 2.68 | 72.6 | 3.63 |
Pathogen | Radial Growth of Mycelium (mm) | Inhibition (%) | ||
---|---|---|---|---|
Rd/10 | Rd | Rd/10 | Rd | |
B. dothidea | 38.9 | 0 | 48.1 | 100 |
D. corticola | 42.8 | 0 | 42.9 | 100 |
D. iberica | 75.0 | 0 | 0 | 100 |
P. cinnamomi | 65.5 | 0 | 12.7 | 100 |
Treatment | LS Means (Necrosis Length (mm)) | Groups | ||
---|---|---|---|---|
C+ | 40.467 | A | ||
MIC | 37.400 | A | ||
MIC × 5 | 13.067 | B | ||
MIC × 10 | 1.800 | C | ||
C− | 0.000 | C |
Phytopathogen | Extraction Media | Plant | Efficacy | Ref. |
---|---|---|---|---|
B. dothidea | Ethanol 80% | Chinese herbal extract compound (Scutellaria baicalensis, Syzygium aromaticum, Cinnamomum cassia, Gleditsia sinensis, Pogostemon cablin, Acorus calamus, and Camellia oleifera, ratio 1.375:1.125:0.45:0.5:1.35:1.25:2.8) | IR = 85%, at 800 µg·mL−1 | [60] |
Methanol 100% | Hemizygia transvaalensis | n.a. | [64] | |
Pearsonia aristata | IR = n.a.–<40%, at 100,000 µg·mL−1 | |||
Thesium burkei | n.a. | |||
Alloteropsis semialata | n.a. | |||
Smilax anceps | n.a. | |||
Schrebera alata | IR = n.a.–<40%, at 100,000 µg·mL−1 | |||
Syncolostemon eriocephalus | IR = <40%, at 100,000 µg·mL−1 | |||
Eucomis autumnalis | IR = 85%, at 100,000 µg·mL−1 | |||
Mundulea sericea | IR = <40%, at 100,000 µg·mL−1 | |||
Brachylaena huillensis | IR = <40%, at 100,000 µg·mL−1 | |||
Lapholaena sp. | IR = <40%, at 100,000 µg·mL−1 | |||
Methanol 95% | Dolichos kilimandscharicus | IR ≥ 60%, at 1000 µg·mL−1 | [65] | |
Maerua subcordata | IR < 50%, at 1000 µg·mL−1 | |||
Phytolacca dodecandra | IR < 50%, at 1000 µg·mL−1 | |||
Water | COS–Equisetum arvense | MIC = 750 µg·mL−1 | [41] | |
COS–Urtica dioica | MIC = 375 µg·mL−1 | |||
D. corticola | Ethanol 50% | Plantago major | IR = 14.6%, at 2000 µg·mL−1 | [66] |
Medicago sp. | IR = 60.9%, at 2000 µg·mL−1 | [67] | ||
Melilotus indicus | IR = 16.7%, at 2000 µg·mL−1 | |||
U. dioica | IR = 34.1%, at 2000 µg·mL−1 | |||
Medicago sp., M. indicus, P. major, and U. dioica | IR = 15.8%, at 2000 µg·mL−1 | |||
Water or ethanol | Rosmarinus officinalis | IR = 52.2%, at 1500 µg·mL−1 | [68] | |
Ethanol 100% | Cistus ladanifer | IR = 38.75%, at 1000 µg·mL−1 | [69] | |
Ethanol 80% | Musa sp. | IR = 6–20%, at 750 µg·mL−1 | [26] | |
Allium sativum | IR = >50%, at 750 µg·mL−1 | |||
Citrus lemon | IR = 21–49%, at 750 µg·mL−1 | |||
Citrus sinensis | IR = 21–49%, at 750 µg·mL−1 | |||
Allium cepa | IR = 21–49%, at 750 µg·mL−1 | |||
Punica granatum | n.a. | |||
Solanum tuberosum | IR = 21–49%, at 750 µg·mL−1 | |||
Eucalyptus sp. | IR = 6–20%, at 750 µg·mL−1 | |||
Pinus sp. | IR = 21–49%, at 750 µg·mL−1 | |||
Olea europea | IR = 6–20%, at 750 µg·mL−1 | |||
D. iberica | Water | COS–Equisetum arvense | MIC = 750 µg·mL−1 | [41] |
COS–Urtica dioica | MIC = 1000 µg·mL−1 | |||
P. cinnamomi | Aqueous ammonia | Quercus ilex subsp. ballota | MIC = 78.12 µg·mL−1 | [61] |
Ethanol 50% | P. major | IR = 32.2%, at 2000 µg·mL−1 | [66] | |
Ethanol 50% | Medicago sp. | IR = 21.5%, at 2000 µg·mL−1 | [67] | |
M. indicus | IR = 87.5%, at 2000 µg·mL−1 | |||
U. dioica | IR = 40%, at 2000 µg·mL−1 | |||
Medicago sp., M. indicus, P. major, and U. dioica | IR = 72.6%, at 2000 µg·mL−1 | |||
Water or ethanol | R. officinalis | IR = 33.9%, at 1500 µg·mL−1 | [68] | |
Ethanol 80% | Musa sp. | n.a. | [26] | |
A. sativum | IR > 50%, at 750 µg·mL−1 | |||
C. lemon | IR = 21–49%, at 750 µg·mL−1 | |||
C. sinensis | IR = 21–49%, at 750 µg·mL−1 | |||
A. cepa | IR > 50%, at 750 µg·mL−1 | |||
P. granatum | n.a. | |||
S. tuberosum | n.e. | |||
Eucalyptus sp. | n.a. | |||
Pinus sp. | IR = 21–49%, at 750 µg·mL−1 | |||
O. europea | n.a. | |||
Water | Larrea tridentata | MIC90 = 1431 µg·mL−1 | [62] | |
Flourensia cernua | MIC90 = 193.4 µg·mL−1 | |||
Agave lechuguilla | MIC90 = 68,568 µg·mL−1 | |||
Opuntia ficus-indica | MIC90 = 121.7 µg·mL−1 | |||
Lippia graveolens | MIC90 = 4825 µg·mL−1 | |||
Carya illinoensis | n.a. | |||
Yucca filifera | n.a. | |||
Essential oil | Salvia officinalis | MIC > 1600 µg·mL−1 | [63] | |
Salvia rosmarinus | MIC > 1600 µg·mL−1 | |||
Origanum vulgare | MIC > 200 µg·mL−1 | |||
Laurus nobilis | MIC > 1600 µg·mL−1 | |||
Coriandrum sativum | MIC = 800 µg·mL−1 | |||
Thymus vulgaris | MIC = 200 µg·mL−1 | |||
Mentha piperita | MIC = 800 µg·mL−1 | |||
Lavandula intermedia | MIC = 1600 µg·mL−1 | |||
Beilschmiedia miersii | MIC = 300 µg·mL−1 | [70] | ||
Methanol | Arbutus unedo | MIC = 5990 µg·mL−1 | [71] | |
Water | P. granatum cv. ‘Wonderful’ | IR < 40%, at 10,000 µg·mL−1 | [72] |
Source of Excised Stems | Pathogen | Natural Product | Effectiveness | Ref. |
---|---|---|---|---|
Quercus ilex | Phytophthora cinnamomi | COS–Ganoderma lucidum ammonia carpophore extract conjugate complex | Full protection at 782 μg·mL−1 | This work |
Prunus amygdalus × P. persica | P. cinnamomi | Q. ilex subsp. ballota aqueous ammonia bark extract | Full protection at 782 μg·mL−1 | [61] |
Phytophthora cactorum | COS–Quercus suber aqueous ammonia bark extract conjugate complex | Full protection at 3750 μg·mL−1 | [74] | |
Phytophthora megasperma | Sambucus nigra flower aqueous ammonia extract | Full protection at 1875 μg·mL−1 | [73] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Hernández, E.; Teixeira, A.; Pereira, C.; Cruz, A.; Martín-Gil, J.; Oliveira, R.; Martín-Ramos, P. Chemical Constituents and Antimicrobial Activity of a Ganoderma lucidum (Curtis.) P. Karst. Aqueous Ammonia Extract. Plants 2023, 12, 2271. https://doi.org/10.3390/plants12122271
Sánchez-Hernández E, Teixeira A, Pereira C, Cruz A, Martín-Gil J, Oliveira R, Martín-Ramos P. Chemical Constituents and Antimicrobial Activity of a Ganoderma lucidum (Curtis.) P. Karst. Aqueous Ammonia Extract. Plants. 2023; 12(12):2271. https://doi.org/10.3390/plants12122271
Chicago/Turabian StyleSánchez-Hernández, Eva, Ana Teixeira, Catarina Pereira, Adriana Cruz, Jesús Martín-Gil, Rui Oliveira, and Pablo Martín-Ramos. 2023. "Chemical Constituents and Antimicrobial Activity of a Ganoderma lucidum (Curtis.) P. Karst. Aqueous Ammonia Extract" Plants 12, no. 12: 2271. https://doi.org/10.3390/plants12122271
APA StyleSánchez-Hernández, E., Teixeira, A., Pereira, C., Cruz, A., Martín-Gil, J., Oliveira, R., & Martín-Ramos, P. (2023). Chemical Constituents and Antimicrobial Activity of a Ganoderma lucidum (Curtis.) P. Karst. Aqueous Ammonia Extract. Plants, 12(12), 2271. https://doi.org/10.3390/plants12122271