Sugars and Organic Acids in 25 Strawberry Cultivars: Qualitative and Quantitative Evaluation
Abstract
:1. Introduction
2. Results and Discussion
2.1. HPLC-PAD Analysis of Sugars
2.2. HPLC-DAD Analysis of Organic Acids
2.3. Total Quality Index (TQI)
2.4. MS Imaging
2.5. FT-ICR-MS Analysis of Extracts
3. Materials and Methods
3.1. Chemicals
3.2. Plant Material
3.3. Sample Preparation
3.3.1. Sample Preparation for HPLC Analysis
3.3.2. Sample Preparation for ESI(+)- and ESI(−)-FT-ICR-MS Analysis
3.4. HPLC Analysis of Sugars and Organic Acids
3.5. Total Quality Index (TQI) Calculation
3.6. Sweetness Index
3.7. FT-ICR-MS Analysis of Sugars and Organic Acids
3.8. Mass Spectrometry of Sugars and Organic Acids
3.9. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. Food and Agriculture Organization of the United Nations Statistics Division. Available online: https://www.fao.org/ (accessed on 25 May 2023).
- Enomoto, H.; Sato, K.; Miyamoto, K.; Ohtsuka, A.; Yamane, H. Distribution Analysis of Anthocyanins, Sugars, and Organic Acids in Strawberry Fruits Using Matrix-Assisted Laser Desorption/Ionization-Imaging Mass Spectrometry. J. Agr. Food Chem. 2018, 66, 4958–4965. [Google Scholar] [CrossRef] [PubMed]
- Dragišić Maksimović, J.; Poledica, M.; Mutavdžić, D.; Mojović, M.; Radivojević, D.; Milivojević, J. Variation in Nutritional Quality and Chemical Composition of Fresh Strawberry Fruit: Combined Effect of Cultivar and Storage. Plant Food. Hum. Nutr. 2015, 70, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Mikulic-Petkovsek, M.; Schmitzer, V.; Slatnar, A.; Stampar, F.; Veberic, R. Composition of Sugars, Organic Acids, and Total Phenolics in 25 Wild or Cultivated Berry Species. J. Food Sci. 2012, 77, C1064–C1070. [Google Scholar] [CrossRef]
- Azodanlou, R.; Darbellay, C.; Luisier, J.-L.; Villettaz, J.-C.; Amadò, R. Quality Assessment of Strawberries (Fragaria Species). J. Agr. Food Chem. 2003, 51, 715–721. [Google Scholar] [CrossRef] [PubMed]
- Montero, T.M.; Mollá, E.M.; Esteban, R.M.; López-Andréu, F.J. Quality attributes of strawberry during ripening. Sci. Hortic. 1996, 65, 239–250. [Google Scholar] [CrossRef]
- Giampieri, F.; Tulipani, S.; Alvarez-Suarez, J.M.; Quiles, J.L.; Mezzetti, B.; Battino, M. The strawberry: Composition, nutritional quality, and impact on human health. Nutrition 2012, 28, 9–19. [Google Scholar] [CrossRef]
- Fotirić Akšić, M.; Tosti, T.; Sredojević, M.; Milivojević, J.; Meland, M.; Natić, M. Comparison of Sugar Profile between Leaves and Fruits of Blueberry and Strawberry Cultivars Grown in Organic and Integrated Production System. Plants 2019, 8, 205. [Google Scholar] [CrossRef] [Green Version]
- Forney, C.F.; Patrick, J.B. Sugar Content and Uptake in the Strawberry Fruit. J. Am. Soc. Hort. Sci. 1986, 111, 241–247. [Google Scholar] [CrossRef]
- Enomoto, H. Adhesive film applications help to prepare strawberry fruit sections for desorption electrospray ionization-mass spectrometry imaging. Biosci. Biotechnol. Biochem. 2021, 85, 1341–1347. [Google Scholar] [CrossRef]
- Enomoto, H. Unique distribution of ellagitannins in ripe strawberry fruit revealed by mass spectrometry imaging. Curr. Res. Food Sci. 2021, 4, 821–828. [Google Scholar] [CrossRef] [PubMed]
- Enomoto, H.; Kotani, M.; Ohmura, T. Novel Blotting Method for Mass Spectrometry Imaging of Metabolites in Strawberry Fruit by Desorption/Ionization Using Through Hole Alumina Membrane. Foods 2020, 9, 408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Yang, E.; Chaurand, P.; Raghavan, V. Visualizing the distribution of strawberry plant metabolites at different maturity stages by MALDI-TOF imaging mass spectrometry. Food Chem. 2021, 345, 128838. [Google Scholar] [CrossRef] [PubMed]
- Tulipani, S.; Mezzetti, B.; Capocasa, F.; Bompadre, S.; Beekwilder, J.; de Vos, C.H.R.; Capanoglu, E.; Bovy, A.; Battino, M. Antioxidants, Phenolic Compounds, and Nutritional Quality of Different Strawberry Genotypes. J. Agr. Food Chem. 2008, 56, 696–704. [Google Scholar] [CrossRef]
- Yarmolinsky, D.A.; Zuker, C.S.; Ryba, N.J.P. Common Sense about Taste: From Mammals to Insects. Cell 2009, 139, 234–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magwaza, L.S.; Opara, U.L. Analytical methods for determination of sugars and sweetness of horticultural products-A review. Sci. Hortic. 2015, 184, 179–192. [Google Scholar] [CrossRef]
- Crespo, P.; Bordonaba, J.G.; Terry, L.A.; Carlen, C. Characterisation of major taste and health-related compounds of four strawberry genotypes grown at different Swiss production sites. Food Chem. 2010, 122, 16–24. [Google Scholar] [CrossRef]
- Kafkas, E.; Koşar, M.; Paydaş, S.; Kafkas, S.; Başer, K. Quality characteristics of strawberry genotypes at different maturation stages. Food Chem. 2007, 100, 1229–1236. [Google Scholar] [CrossRef]
- Kader, F.; Rovel, B.; Metche, M. Role of Invertase in Sugar Content in Highbush Blueberries (Vaccinium corymbosum, L.). LWT-Food Sci. Technol. 1993, 26, 593–595. [Google Scholar] [CrossRef]
- Basson, C.; Groenewald, J.; Kossmann, J.; Cronjé, C.; Bauer, R. Sugar and acid-related quality attributes and enzyme activities in strawberry fruits: Invertase is the main sucrose hydrolysing enzyme. Food Chem. 2010, 121, 1156–1162. [Google Scholar] [CrossRef]
- Liu, L.; Ji, M.L.; Chen, M.; Sun, M.y.; Fu, X.l.; Li, L.; Gao, D.S.; Zhu, C.Y. The flavor and nutritional characteristic of four strawberry varieties cultured in soilless system. Food Sci. Nutr. 2016, 4, 858–868. [Google Scholar] [CrossRef] [Green Version]
- Milosavljević, D.M.; Maksimović, V.M.; Milivojevic, J.; Dragišić Maksimović, J. A comparison of major taste- and health-related compounds among newly released Italian strawberry cultivars. Acta Hortic. 2021, 1309, 841–848. [Google Scholar] [CrossRef]
- de Jesús Ornelas-Paz, J.; Yahia, E.M.; Ramírez-Bustamante, N.; Pérez-Martínez, J.D.; del Pilar Escalante-Minakata, M.; Ibarra-Junquera, V.; Acosta-Muñiz, C.; Guerrero-Prieto, V.; Ochoa-Reyes, E. Physical attributes and chemical composition of organic strawberry fruit (Fragaria × ananassa Duch, Cv. Albion) at six stages of ripening. Food Chem. 2013, 138, 372–381. [Google Scholar] [CrossRef] [PubMed]
- Rubico, S.M.; McDaniel, M.R. Sensory evaluation of acids by free-choice profiling. Chem. Senses 1992, 17, 273–289. [Google Scholar] [CrossRef]
- Etienne, A.; Génard, M.; Lobit, P.; Mbeguié-A-Mbéguié, D.; Bugaud, C. What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells. J. Exp. Bot. 2013, 64, 1451–1469. [Google Scholar] [CrossRef] [Green Version]
- Djekic, I.; Tomic, N.; Bourdoux, S.; Spilimbergo, S.; Smigic, N.; Udovicki, B.; Hofland, G.; Devlieghere, F.; Rajkovic, A. Comparison of three types of drying (supercritical CO2, air and freeze) on the quality of dried apple—Quality index approach. LWT-Food Sci. Technol. 2018, 94, 64–72. [Google Scholar] [CrossRef]
- Kajdzanoska, M.; Petreska, J.; Stefova, M. Comparison of different extraction solvent mixtures for characterization of phenolic compounds in strawberries. J. Agric. Food Chem. 2011, 59, 5272–5278. [Google Scholar] [CrossRef] [PubMed]
- La Barbera, G.; Capriotti, A.L.; Cavaliere, C.; Piovesana, S.; Samperi, R.; Zenezini Chiozzi, R.; Laganà, A. Comprehensive polyphenol profiling of a strawberry extract (Fragaria × ananassa) by ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry. Anal. Bioanal. Chem. 2017, 409, 2127–2142. [Google Scholar] [CrossRef]
- Michalska, A.; Carlen, C.; Heritier, J.; Andlauer, W. Profiles of bioactive compounds in fruits and leaves of strawberry cultivars. J. Berry Res. 2017, 7, 71–84. [Google Scholar] [CrossRef]
- Morisasa, M.; Sato, T.; Kimura, K.; Mori, T.; Goto-Inoue, N. Application of Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging for Food Analysis. Foods 2019, 8, 633. [Google Scholar] [CrossRef] [Green Version]
- Marshall, A.G.; Hendrickson, C.L.; Jackson, G.S. Fourier transform ion cyclotron resonance mass spectrometry. Mass Spectrom. Rev. 1998, 17, 1–35. [Google Scholar] [CrossRef]
- Nikolaev, E.N.; Kostyukevich, Y.I.; Vladimirov, G.N. Fourier transform ion cyclotron resonance (FT ICR) mass spectrometry. Mass Spectrom. Rev. 2016, 35, 219–258. [Google Scholar] [CrossRef] [PubMed]
- Abou-Dib, A.; Aubriet, F.; Hertzog, J.; Vernex-Loset, L.; Schramm, S.; Carré, V. Next Challenges for the Comprehensive Molecular Characterization of Complex Organic Mixtures in the Field of Sustainable Energy. Molecules 2022, 27, 8889. [Google Scholar] [CrossRef] [PubMed]
- Hertzog, J.; Carre, V.; Le Brech, Y.; Mackay, C.L.; Dufour, A.; Masek, O.; Aubriet, F. Combination of electrospray ionization, atmospheric pressure photoionization and laser desorption ionization Fourier transform ion cyclotronic resonance mass spectrometry for the investigation of complex mixtures-Application to the petroleomic analysis of bio-oils. Anal. Chim. Acta 2017, 969, 26–34. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.-J.; Fan, M.; Wei, X.-Y.; Zong, Z.-M. Application of mass spectrometry in the characterization of chemicals in coal-derived liquids. Mass Spectrom. Rev. 2017, 36, 543–579. [Google Scholar] [CrossRef] [PubMed]
- Arnaud, B.; Durand, S.; Fanuel, M.; Guillon, F.; Méchin, V.; Rogniaux, H. Imaging Study by Mass Spectrometry of the Spatial Variation of Cellulose and Hemicellulose Structures in Corn Stalks. J. Agric. Food Chem. 2020, 68, 4042–4050. [Google Scholar] [CrossRef]
- Bhandari, D.R.; Wang, Q.; Friedt, W.; Spengler, B.; Gottwald, S.; Römpp, A. High resolution mass spectrometry imaging of plant tissues: Towards a plant metabolite atlas. Analyst 2015, 140, 7696–7709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boughton, B.A.; Thinagaran, D.; Sarabia, D.; Bacic, A.; Roessner, U. Mass spectrometry imaging for plant biology: A review. Phytochem. Rev. 2016, 15, 445–488. [Google Scholar] [CrossRef] [Green Version]
- Perez, C.J.; Bagga, A.K.; Prova, S.S.; Yousefi Taemeh, M.; Ifa, D.R. Review and perspectives on the applications of mass spectrometry imaging under ambient conditions. Rapid Commun. Mass Spectrom. 2019, 33, 27–53. [Google Scholar] [CrossRef] [Green Version]
- Qin, L.; Zhang, Y.; Liu, Y.; He, H.; Han, M.; Li, Y.; Zeng, M.; Wang, X. Recent advances in matrix-assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI) for in situ analysis of endogenous molecules in plants. Phytochem. Rev. 2018, 29, 351–364. [Google Scholar] [CrossRef]
- Yukihiro, Y.; Zaima, N. Application of Mass Spectrometry Imaging for Visualizing Food Components. Foods 2020, 9, 575. [Google Scholar] [CrossRef]
- Rivas-Ubach, A.; Liu, Y.; Bianchi, T.S.; Tolić, N.; Jansson, C.; Paša-Tolić, L. Moving beyond the van Krevelen Diagram: A New Stoichiometric Approach for Compound Classification in Organisms. Anal. Chem. 2018, 90, 6152–6160. [Google Scholar] [CrossRef] [PubMed]
- Milosavljević, D.M.; Maksimović, V.M.; Milivojević, J.M.; Nakarada, Đ.J.; Mojović, M.D.; Dragišić Maksimović, J.J. Rich in Phenolics-Strong Antioxidant Fruit? Comparative Study of 25 Strawberry Cultivars. Plants 2022, 11, 3566. [Google Scholar] [CrossRef] [PubMed]
- Schwieterman, M.L.; Colquhoun, T.A.; Jaworski, E.A.; Bartoshuk, L.M.; Gilbert, J.L.; Tieman, D.M.; Odabasi, A.Z.; Moskowitz, H.R.; Folta, K.M.; Klee, H.J.; et al. Strawberry flavor: Diverse chemical compositions, a seasonal influence, and effects on sensory perception. PloS ONE 2014, 9, e88446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milosavljević, D.M.; Mutavdžić, D.R.; Radotić, K.; Milivojević, J.M.; Maksimović, V.M.; Dragišić Maksimović, J.J. Phenolic Profiling of 12 Strawberry Cultivars Using Different Spectroscopic Methods. J. Agr. Food Chem. 2020, 68, 4346–4354. [Google Scholar] [CrossRef]
- Tomić, J.; Pešaković, M.; Milivojević, J.; Karaklajić-Stajić, Ž. How to improve strawberry productivity, nutrients composition, and beneficial rhizosphere microflora by biofertilization and mineral fertilization? J. Plant Nutr. 2018, 41, 2009–2021. [Google Scholar] [CrossRef]
- Finotti, E.; Bersani, A.M.; Bersani, E. Total quality indexes for extra-virgin olive oils. J. Food Qual. 2007, 30, 911–931. [Google Scholar] [CrossRef]
- Djekic, I.; Vunduk, J.; Tomašević, I.; Kozarski, M.; Petrovic, P.; Niksic, M.; Pudja, P.; Klaus, A. Total quality index of Agaricus bisporus mushrooms packed in modified atmosphere. J. Sci. Food Agric. 2017, 97, 3013–3021. [Google Scholar] [CrossRef]
- Horn, R.A.; Johnson, C.R. Matrix Analysis; Cambridge University Press: New York, NY, USA, 2012. [Google Scholar]
- Dittrich, N.; Zuber, J.; Rathsack, P.; Otto, M. Comparison of graphite-assisted laser desorption/ionization and matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry for the analysis of pyrolysis liquids. Int. J. Mass Spectrom. 2018, 433, 31–39. [Google Scholar] [CrossRef]
- Zuber, J.; Rathsack, P.; Otto, M. Characterization of a pyrolysis liquid from a German brown coal by use of negative and positive ion mode electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry and collision-induced dissociation. Fuel 2017, 200, 113–123. [Google Scholar] [CrossRef]
- Herzsprung, P.; Hertkorn, N.; Tümpling, W.; Harir, M.; Friese, K.; Schmitt-Kopplin, P. Understanding molecular formula assignment of Fourier transform ion cyclotron resonance mass spectrometry data of natural organic matter from a chemical point of view. Anal. Bioanal. Chem. 2014, 406, 7977–7987. [Google Scholar] [CrossRef]
- Herzsprung, P.V.; Tümpling, W.; Hertkorn, N.; Harir, M.; Friese, K.; Schmitt-Kopplin, P. High-Field FTICR-MS Data Evaluation of Natural Organic Matter: Are CHON5S2 Molecular Class Formulas Assigned to (13)C Isotopic m/z and in Reality CHO Components? Anal. Chem. 2015, 87, 9563–9566. [Google Scholar] [CrossRef] [PubMed]
Cultivars | Glucose | Fructose | Sucrose | SI |
---|---|---|---|---|
Roxana | 1.73 ± 0.20 j | 1.99 ± 0.34 h | n.d. | 6.29 ± 0.96 l |
Arosa | 3.20 ± 0.32 b,c | 3.65 ± 0.33 b,c,d | n.d. | 11.58 ± 0.91 c,d,e,f,g |
Joly | 2.58 ± 0.21 c,d,e | 2.72 ± 0.14 c,d,e,f | 0.40 ± 0.02 f | 10.23 ± 0.72 e,f,g,h,i,j |
Asia | 2.12 ± 0.12 g,h,i,j | 2.44 ± 0.25 f,g,h | n.d. | 7.73 ± 0.70 j,k,l |
Alba | 2.64 ± 0.33 c,d,e,f,g,h | 2.97 ± 0.41 c,d,e,f | n.d. | 9.54 ± 1.27 f,g,h,i,j,k |
Aprika | 2.70 ± 0.31 c,d,e,f,g | 2.89 ± 0.53 c,d,e,f | 0.78 ± 0.15 e | 8.46 ± 0.09 i,j,k,l |
Sibilla | 2.17 ± 0.33 f,g,h,i,j | 2.49 ± 0.23 f,g,h | 0.80 ± 0.07 e | 8.70 ± 0.83 h,i,j,k,l |
Garda | 2.08 ± 0.08 h,i,j | 2.50 ± 0.17 f,g,h | n.d. | 7.84 ± 0.46 i,j,k,l |
Lycia | 2.25 ± 0.26 e,f,g,h,i,j | 2.39 ± 0.28 f,g,h | n.d. | 7.75 ± 0.89 j,k,l |
Jeny | 4.34 ± 0.31 a | 4.68 ± 0.40 a | n.d. | 15.11 ± 0.81 a,b |
Laetitia | 3.52 ± 0.26 b | 4.19 ± 0.46 b | n.d. | 11.54 ± 1.33 c,d,e,f,g |
Albion | 2.62 ± 0.39 c,d,e,f,g,h | 2.89 ± 0.48 c,d,e,f | n.d. | 9.26 ± 0.36 g,h,i,j,k |
Capri | 4.84 ± 0.37 a | 5.31 ± 0.38 a | n.d. | 9.65 ± 0.89 f,g,h,i,j,k |
Clery | 2.22 ± 0.10 e,f,g,h,i,j | 2.50 ± 0.24 f,g,h | n.d. | 7.97 ± 0.66 i,j,k,l |
Premy | 2.69 ± 0.37 c,d,e,f,g,h | 2.86 ± 0.36 d,e,f | 0.82 ± 0.08 e | 10.36 ± 1.10 e,f,g,h,i |
Rumba | 4.60 ± 0.22 a | 4.79 ± 0.32 a | 0.21 ± 0.06 f | 15.91 ± 0.88 a |
Vivaldi | 1.95 ± 0.21 i,j | 2.26 ± 0.25 g,h | n.d. | 7.22 ± 0.89 k,l |
Irma | 3.18 ± 0.16 b,c,d | 3.41 ± 0.09 b,c,d,e,f | n.d. | 11.02 ± 0.35 d,e,f,g,h |
Quicky | 2.11 ± 0.10 g,h,i,j | 2.32 ± 0.11 f,g,h | 1.48 ± 0.13 c | 9.44 ± 0.53 f,g,h,i,j,k |
Nadja | 2.63 ± 0.12 c,d,e,f,g,h | 2.82 ± 0.12 d,e,f,g | 2.11 ± 0.01 b | 11.97 ± 0.42 c,d,e,f |
Federica | 2.77 ± 0.10 c,d,e,f,g | 2.93 ± 0.12 c,d,e,f | 3.12 ± 0.05 a | 13.73 ± 0.44 a,b,c |
Arianna | 3.14 ± 0.22 b,c,d | 3.53 ± 0.24 b,c,d | 1.42 ± 0.09 c,d | 13.18 ± 1.04 b,c,d |
Lofty | 2.52 ± 0.04 d,e,f,g,h,i | 2.69 ± 0.01 e,f,g,h | 1.16 ± 0.09 d | 10.28 ± 0.23 e,f,g,h,i,j |
Tea | 2.91 ± 0.20 c,d | 3.27 ± 0.21 b,c,d | 1.65 ± 0.15 c | 12.68 ± 0.88 c,d,e |
Sandra | 3.45 ± 0.14 b | 3.72 ± 0.25 b,c | 2.25 ± 0.18 b | 15.04 ± 0.97 a,b |
Cultivars | Citric Acid | Malic Acid | Shikimic Acid | Fumaric Acid | Citrate-to-Malate Ratio |
---|---|---|---|---|---|
Roxana | 4.42 ± 1.07 e,f,g,h | 3.02 ± 0.20 b,c | 18.75 ± 0.42 b,c | 7.70 ± 0.62 d,e | 1.47 |
Arosa | 4.48 ± 0.37 e,f,g,h | 1.85 ± 0.15 f,g,h,i | 17.00 ± 0.46 c,d | 8.25 ± 0.26 c,d,e | 2.43 |
Joly | 4.86 ± 0.59 c,d,e | 2.34 ± 0.32 d,e,f,g | 19.84 ± 0.65 a,b | 6.34 ± 0.31 e,f | 2.10 |
Asia | 3.52 ± 0.42 g,h,i | 1.69 ± 0.17 g,h,i | 18.65 ± 0.74 b,c | 7.25 ± 0.38 d,e,f | 2.08 |
Alba | 4.21 ± 0.64 e,f,g,h | 2.80 ± 0.45 b,c,d,e | 18.00 ± 1.52 b,c,d | 8.60 ± 0.57 b,c,d | 1.50 |
Aprika | 3.60 ± 0.27 g,h,i | 2.33 ± 0.31 d,e,f,g | 10.50 ± 0.68 i | 9.30 ± 0.42 b,c | 1.53 |
Sibilla | 6.24 ± 0.31 a | 2.70 ± 0.31 b,c,d,e,f | 16.43 ± 0.31 d,e | 13.05 ± 0.31 a | 2.38 |
Garda | 3.08 ± 0.31 j | 2.62 ± 0.24 c,d,e,f,g | 19.30 ± 0.74 b | 7.80 ± 0.15 c,d,e,f | 1.18 |
Lycia | 3.45 ± 0.21 h,i,j | 1.73 ± 0.16 g,h,i | 12.70 ± 0.11 g,h | 6.00 ± 0.15 e,f | 2.00 |
Jeny | 4.81 ± 0.51 c,d,e | 2.93 ± 0.21 b,c,d | 21.55 ± 1.56 a | 6.50 ± 0.43 d,e | 1.65 |
Laetitia | 6.86 ± 0.43 a | 2.76 ± 0.13 c,d,e,f | 16.40 ± 0.64 d,e | 8.30 ± 0.74 c,d,e | 2.49 |
Albion | 5.12 ± 0.33 b,c | 2.88 ± 0.01 c,d,e,f | 17.81 ± 1.17 c,d | 8.78 ± 0.57 b,c,d | 1.79 |
Capri | 5.44 ± 0.37 b | 3.73 ± 0.15 a | 27.00 ± 1.48 a | 8.48 ± 0.32 c,d,e | 1.41 |
Clery | 3.69 ± 0.11 g,h,i | 2.06 ± 0.10 e,f,g,h | 17.20 ± 0.61 c,d | 7.80 ± 0.26 c,d,e,f | 1.80 |
Premy | 4.96 ± 0.72 c,d | 2.84 ± 0.45 b,c,d,e | 14.85 ± 1.17 f,g | 11.45 ± 0.31 a | 1.75 |
Rumba | 5.93 ± 0.30 b | 3.58 ± 0.17 a | 15.35 ± 0.71 e,f,g | 9.60 ± 0.30 b | 1.65 |
Vivaldi | 5.68 ± 0.08 b | 2.63 ± 0.24 c,d,e,f,g | 15.50 ± 0.95 d,e,f | 9.35 ± 0.31 b,c | 2.17 |
Irma | 4.14 ± 0.09 f,g,h | 1.92 ± 0.12 e,f,g,h,i | 12.49 ± 0.54 g,h | 9.49 ± 0.43 b | 2.14 |
Quicky | 4.56 ±0.03 e,f,g | 1.59 ±0.01 h,i | 1.95 ± 0.53 l | 6.10 ± 0.42 e,f | 2.88 |
Nadja | 3.61 ± 0.11 g,h,i | 3.14 ± 0.11 a,b | 6.10 ± 0.11 j | 7.40 ± 0.11 d,e,f | 1.15 |
Federica | 4.60 ± 0.37 e,f | 2.32 ± 0.01 d,e,f,g | 7.75 ± 0.11 i,j | 11.45 ± 0.53 a | 2.00 |
Arianna | 4.51 ± 0.15 e,f,g,h | 1.87 ± 0.10 f,g,h,i | 5.60 ± 0.00 j,k | 6.00 ± 0.11 e,f | 2.20 |
Lofty | 4.66 ± 0.11 e | 1.50 ± 0.02 h,i | 3.70 ± 0.42 k | 7.50 ± 0.09 d,e,f | 3.11 |
Tea | 4.01 ± 0.09 f,g,h | 1.47 ± 0.03 i | 5.00 ± 0.53 k | 4.70 ± 0.21 g | 2.83 |
Sandra | 3.59 ± 0.36 g,h,i | 1.60 ± 0.11 g,h,i | 5.70 ± 0.23 j,k | 8.70 ± 0.11 b,c,d | 2.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milosavljević, D.; Maksimović, V.; Milivojević, J.; Djekić, I.; Wolf, B.; Zuber, J.; Vogt, C.; Dragišić Maksimović, J. Sugars and Organic Acids in 25 Strawberry Cultivars: Qualitative and Quantitative Evaluation. Plants 2023, 12, 2238. https://doi.org/10.3390/plants12122238
Milosavljević D, Maksimović V, Milivojević J, Djekić I, Wolf B, Zuber J, Vogt C, Dragišić Maksimović J. Sugars and Organic Acids in 25 Strawberry Cultivars: Qualitative and Quantitative Evaluation. Plants. 2023; 12(12):2238. https://doi.org/10.3390/plants12122238
Chicago/Turabian StyleMilosavljević, Dragica, Vuk Maksimović, Jasminka Milivojević, Ilija Djekić, Bianca Wolf, Jan Zuber, Carla Vogt, and Jelena Dragišić Maksimović. 2023. "Sugars and Organic Acids in 25 Strawberry Cultivars: Qualitative and Quantitative Evaluation" Plants 12, no. 12: 2238. https://doi.org/10.3390/plants12122238
APA StyleMilosavljević, D., Maksimović, V., Milivojević, J., Djekić, I., Wolf, B., Zuber, J., Vogt, C., & Dragišić Maksimović, J. (2023). Sugars and Organic Acids in 25 Strawberry Cultivars: Qualitative and Quantitative Evaluation. Plants, 12(12), 2238. https://doi.org/10.3390/plants12122238