Bioefficacy of Nga-Mon (Perilla frutescens) Fresh and Dry Leaf: Assessment of Antioxidant, Antimutagenicity, and Anti-Inflammatory Potential
Abstract
:1. Introduction
2. Results
2.1. Extraction Yields, TPC, TFC, and Phytochemical Contents in PLEf and PLEd
2.2. Effect of PLEs on Scavenging of DPPH and ABTS Radicals
2.3. In Vitro Mutagenicity and Antimutagenicity Activity of PLEf and PLEd
2.4. Cytotoxic Effect of PLEs on PBMCs and RAW 264.7 Cells
2.5. Effect of PLEs on Reactive Oxygen Species (ROS) Generation in Human PBMCs
2.6. Effect of PLEs on NO Production in LPS-Stimulated RAW 264.7 Cells
2.7. Effect of PLEs on LPS-Induced iNOS and COX-2 Expression in RAW 264.7 Cells
2.8. Effect of PLEs on LPS-Induced Pro-Inflammatory Cytokine Production and mRNA Expression in RAW 264.7 Cells
2.9. Effect of PLEs on LPS-Induced NF-κB Activation and c-Jun Production
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Preparation of Thai Perilla Leaf Extracts
4.2.1. Plant Materials
4.2.2. Fresh Leaf Extraction
4.2.3. Dry Leaf Extraction
4.3. Total Phenolic and Total Flavonoid Content Determination
4.4. HPLC Analysis
4.5. DPPH and ABTS Radical Scavenging
4.6. Mutagenicity and Antimutagenicity Test
4.7. Cells and Cell Culture
4.8. Cell Viability Test
4.9. Determination of ROS Production
4.10. Determination of NO Production
4.11. Measurement of Pro-Inflammatory Cytokines
4.12. Total RNA Extraction and RT-qPCR
4.13. Preparation of Whole-Cell Lysate and Nuclear Fraction
4.14. Western Blot Analysis
4.15. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jara, L.J.; Medina, G.; Vera-Lastra, O.; Amigo, M.C. Accelerated atherosclerosis, immune response and autoimmune rheumatic diseases. Autoimmun. Rev. 2006, 5, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Karin, M.; Lawrence, T.; Nizet, V. Innate immunity gone awry: Linking microbial infections to chronic inflammation and cancer. Cell 2006, 124, 823–835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarkar, D.; Fisher, P.B. Molecular mechanisms of aging-associated inflammation. Cancer Lett. 2006, 236, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Walsh, L.J. Mast cells and oral inflammation. Crit. Rev. Oral Biol. Med. 2003, 14, 188–198. [Google Scholar] [CrossRef]
- Aderem, A.; Ulevitch, R.J. Toll-like receptors in the induction of the innate immune response. Nature 2000, 406, 782–787. [Google Scholar] [CrossRef] [PubMed]
- Paige, J.S.; Jaffrey, S.R. Pharmacologic manipulation of nitric oxide signaling: Targeting NOS dimerization and protein-protein interactions. Curr. Top. Med. Chem. 2007, 7, 97–114. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, H.M. Ethnomedicinal, phytochemical and pharmacological investigations of Perilla frutescens (L.) Britt. Molecules 2019, 24, 102. [Google Scholar] [CrossRef] [Green Version]
- Dhyani, A.; Chopra, R.; Garg, M. Review on nutritional value, functional properties, and pharmacological application of perilla (Perilla Frutescens L.). Biomed. Pharmacol. J. 2019, 12, 649–660. [Google Scholar] [CrossRef]
- Yu, H.; Qiu, J.F.; Ma, L.J.; Hu, Y.J.; Li, P.; Wan, J.B. Phytochemical and phytopharmacological review of Perilla frutescens L. (Labiatae), a traditional edible-medicinal herb in China. Food Chem. Toxicol. 2017, 108, 375–391. [Google Scholar] [CrossRef]
- Deguchi, Y.; Ito, M. Caffeic acid and rosmarinic acid contents in genus Perilla. J. Nat. Med. 2020, 74, 834–839. [Google Scholar] [CrossRef]
- Gai, F.; Peiretti, P.G.; Karamać, M.; Amarowicz, R. Changes in the total polyphenolic content and antioxidant capacities of perilla (Perilla frutescens L.) plant extracts during the growth cycle. J. Food. Qual. 2017, 2017, 7214747. [Google Scholar] [CrossRef] [Green Version]
- Akatsuka, R.; Ito, M. Content and distribution of prunasin in Perilla frutescens. J. Nat. Med. 2023, 77, 207–218. [Google Scholar] [CrossRef]
- Phromnoi, K.; Suttajit, M.; Saenjum, C. Polyphenols and rosmarinic acid contents, antioxidant, and anti-Inflammatory activities of different solvent fractions from Nga-Mon (Perilla frutescens) leaf. J. Pharm. Nutr. Sci. 2019, 9, 239–246. [Google Scholar] [CrossRef]
- Asif, M. Phytochemical study of polyphenols in Perilla frutescens as an antioxidant. Avicenna J. Phytomed. 2012, 2, 169–178. [Google Scholar] [PubMed]
- Makino, T.; Ono, T.; Matsuyama, K.; Nogaki, F.; Miyawaki, S.; Honda, G.; Muso, E. Suppressive effects of Perilla frutescens on IgA nephropathy in HIGA mice. Nephrol. Dial. Transplant. 2003, 18, 484–490. [Google Scholar] [CrossRef] [Green Version]
- Lim, H.J.; Woo, K.W.; Lee, K.R.; Lee, S.K.; Kim, H.P. Inhibition of proinflammatory cytokine generation in lung inflammation by the leaves of Perilla frutescens and its constituents. Biomol. Ther. 2014, 22, 62–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ueda, H.; Yamazaki, M. Anti-inflammatory and anti-allergic actions by oral administration of a perilla leaf extract in mice. Biosci. Biotechnol. Biochem. 2001, 65, 1673–1675. [Google Scholar] [CrossRef] [Green Version]
- Shin, T.Y.; Kim, S.H.; Kim, S.H.; Kim, Y.K.; Park, H.J.; Chae, B.S.; Jung, H.J.; Kim, H.M. Inhibitory effect of mast cell-mediated immediate-type allergic reactions in rats by Perilla frutescens. Immunopharmacol. Immunotoxicol. 2000, 22, 489–500. [Google Scholar] [CrossRef]
- Wang, T.S.; Kuo, C.F.; Jan, K.Y.; Huang, H. Arsenite induces apoptosis in Chinese hamster ovary cells by generation of reactive oxygen species. J. Cell. Physiol. 1996, 169, 256–268. [Google Scholar] [CrossRef]
- Hong, E.; Kim, G.H. Comparison of extraction conditions for phenolic, flavonoid content and determination of rosmarinic acid from Perilla frutescens var. acuta. Int. J. Food Sci. Technol. 2010, 45, 1353–1359. [Google Scholar] [CrossRef]
- Kagawa, N.; Iguchi, H.; Henzan, M.; Hanaoka, M. Drying the leaves of Perilla frutescens increases their content of anticancer nutraceuticals. Food Sci. Nutr. 2019, 7, 1494–1501. [Google Scholar] [CrossRef] [Green Version]
- Schweiggert, U.; Carle, R.; Schieber, A. Conventional and alternative processes for spice production—A review. Trends Food Sci. Technol. 2007, 18, 260–268. [Google Scholar] [CrossRef]
- Capecka, E.; Mareczek, A.; Leja, M. Antioxidant activity of fresh and dry herbs of some Lamiaceae species. Food Chem. 2005, 93, 223–226. [Google Scholar] [CrossRef]
- Lim, Y.Y.; Murtijaya, J. Antioxidant properties of Phyllanthus amarus extracts as affected by different drying methods. LWT-Food Sci. Technol. 2007, 40, 1664–1669. [Google Scholar] [CrossRef]
- Dewi, R.T.; Fitria, I.; Sundowo, A.; Agustian, E.; Ismaini, L.; Normasiwi, S.; Noviady, I.; Destri; Surya, M.I. Phytochemical constituent’s comparison using various drying effects on Rubus fraxinifolius Pour leaves. Curr. Agric. Res. J. 2019, 7, 310–317. [Google Scholar] [CrossRef]
- Leng, L.Y.; Nadzrin; Shaari, A.R.; Norawanis, A.R.; Khor, C.Y. Antioxidant capacity and total phenolic content of fresh, oven-dried and stir-fried tamarind leaves. Curr. Res. Nutr. Food Sci. J. 2017, 5, 282–287. [Google Scholar] [CrossRef]
- Vongsak, B.; Sithisarn, P.; Mangmool, S.; Thongpraditchote, S.; Wongkrajang, Y.; Gritsanapan, W. Maximizing total phenolics, total flavonoids contents and antioxidant activity of Moringa oleifera leaf extract by the appropriate extraction method. Ind. Crops Prod. 2013, 44, 566–571. [Google Scholar] [CrossRef]
- Yi, W.G.; Wetzstein, H.Y. Effects of drying and extraction conditions on the biochemical activity of selected herbs. Hortscience 2011, 46, 70–73. [Google Scholar] [CrossRef]
- Hossain, M.B.; Barry-Ryan, C.; Martin-Diana, A.B.; Brunton, N.P. Effect of drying method on the antioxidant capacity of six Lamiaceae herbs. Food Chem. 2010, 123, 85–91. [Google Scholar] [CrossRef]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010, 4, 118–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turesky, R.J.; Le Marchand, L. Metabolism and biomarkers of heterocyclic aromatic amines in molecular epidemiology studies: Lessons learned from aromatic amines. Chem. Res. Toxicol. 2011, 24, 1169–1214. [Google Scholar] [CrossRef] [Green Version]
- Nair, P.C.; McKinnon, R.A.; Miners, J.O. Cytochrome P450 structure-function: Insights from molecular dynamics simulations. Drug Metab. Rev. 2016, 48, 434–452. [Google Scholar] [CrossRef]
- Taofiq, O.; Gonzalez-Paramas, A.M.; Barreiro, M.F.; Ferreira, I.C.F.R. Hydroxycinnamic acids and their derivatives: Cosmeceutical significance, challenges and future perspectives, a review. Molecules 2017, 22, 281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eze, F.I.; Uzor, P.F.; Ikechukwu, P.; Obi, B.C.; Osadebe, P.O. In vitro and in vivo models for anti-inflammation: An evaluative review. INNOSC Theranostics Pharmacol. Sci. 2019, 2, 755. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.M.; Vetrivel, P.; Kim, H.H.; Ha, S.E.; Saralamma, V.V.G.; Kim, G.S. Artemisia iwayomogi (Dowijigi) inhibits lipopolysaccharide-induced inflammation in RAW 264.7 macrophages by suppressing the NF-kappaB signaling pathway. Exp. Ther. Med. 2020, 19, 2161–2170. [Google Scholar] [PubMed] [Green Version]
- Jiang, F.; Li, M.; Wang, H.; Ding, B.; Zhang, C.; Ding, Z.; Yu, X.; Lv, G. Coelonin, an anti-inflammation active component of Bletilla striata and its potential mechanism. Int. J. Mol. Sci. 2019, 20, 4422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aktan, F. iNOS-mediated nitric oxide production and its regulation. Life Sci. 2004, 75, 639–653. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Mazza, G. Inhibitory effects of anthocyanins and other phenolic compounds on nitric oxide production in LPS/IFN-gamma-activated RAW 264.7 macrophages. J. Agric. Food Chem. 2002, 50, 850–857. [Google Scholar] [CrossRef]
- Yahfoufi, N.; Alsadi, N.; Jambi, M.; Matar, C. The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients 2018, 10, 1618. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.A.; Han, J.S. Anti-inflammatory effect of Perilla frutescens (L.) Britton var. frutescens extract in LPS-stimulated RAW 264.7 macrophages. Prev. Nutr. Food Sci. 2012, 17, 109–115. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.P.; Lin, C.H.; Chen, Y.C.; Kao, S.H. Anti-inflammatory effects of Perilla frutescens leaf extract on lipopolysaccharide-stimulated RAW264.7 cells. Mol. Med. Rep. 2014, 10, 1077–1083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.J.; Li, Z.; Gu, L.J.; Choi, K.J.; Kim, D.S.; Kim, H.K.; Sung, C.K. The promotion of hair regrowth by topical application of a Perilla frutescens extract through increased cell viability and antagonism of testosterone and dihydrotestosterone. J. Nat. Med. 2018, 72, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Khanaree, C.; Punfa, W.; Tantipaiboonwong, P.; Nuntaboon, P.; Suttajit, M.; Topanurak, S.; Dukaew, N.; Mon, M.T.; Hu, R.; Pintha, K. In vitro anti-metastasis of Perilla frutescens leaf water extract on aggressive human breast cancer cells. J. Assoc. Med. Sci. 2022, 55, 51–59. [Google Scholar] [CrossRef]
- Khantamat, O.; Dukaew, N.; Karinchai, J.; Chewonarin, T.; Pitchakarn, P.; Temviriyanukul, P. Safety and bioactivity assessment of aqueous extract of Thai Henna (Lawsonia inermis Linn.) leaf. J. Toxicol. Environ. Health A 2021, 84, 298–312. [Google Scholar] [CrossRef]
- Chumphukam, O.; Pintha, K.; Khanaree, C.; Chewonarin, T.; Chaiwangyen, W.; Tantipaiboonwong, P.; Suttajit, M.; Khantamat, O. Potential anti-mutagenicity, antioxidant, and anti-inflammatory capacities of the extract from perilla seed meal. J. Food Biochem. 2018, 42, e12556. [Google Scholar] [CrossRef]
- Ooppachai, C.; Limtrakul, P.; Yodkeeree, S. Dicentrine Potentiates TNF-α-induced apoptosis and suppresses invasion of A549 lung adenocarcinoma cells via modulation of NF-κB and AP-1 activation. Molecules 2019, 24, 4100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Contents | PLEf | PLEd |
---|---|---|
Extract yield (%w/w) | 7.4 | 14.2 |
Physical appearance | Dark green-brownish powder | Green-brownish powder |
TPC (mg GAE/g extract) | 469.5 ± 4.2 | 748.0 ± 4.9 |
TFC (mg CE/g extract) | 303.2 ± 11.8 | 977.0 ± 37.2 |
Phytochemical contents * (mg/g extract) | ||
- Rosmarinic acid | 1.38 ± 0.01 | 23.57 ± 0.30 |
- Chlorogenic acid | 0.56 ± 0.08 | 0.95 ± 0.01 |
- Caffeic acid | 0.21 ± 0.00 | 0.50 ± 0.01 |
- Ferulic acid | 0.50 ± 0.01 | 0.38 ± 0.04 |
- Luteolin | 0.16 ± 0.01 | ND |
Treatment | Concentration (µg/Plate) | Number of Revertants/Plate (MI) | |||
---|---|---|---|---|---|
TA98 | TA100 | ||||
−S9 | +S9 | −S9 | +S9 | ||
Vehicle control: | |||||
DMSO | 26 ± 4 | 35 ± 5 | 108 ± 4 | 117 ± 3 | |
Positive control: | |||||
2-AA | 0.25 | – | 415 ± 22 (11.86) | – | 605 ± 21 (5.17) |
PhIP | 1.00 | – | 530 ± 29 (15.14) | – | – |
IQ | 0.50 | – | – | – | 793 ± 28 (6.78) |
AF-2 | 0.01 | – | – | 513 ± 64 (4.75) | – |
0.10 | 341 ± 18 (13.12) | – | – | – | |
PLEf | 50 | 21 ± 5 (0.81) | 30 ± 6 (0.86) | 106 ± 6 (0.98) | 111 ± 8 (0.95) |
100 | 24 ± 4 (0.92) | 33 ± 4 (0.94) | 111 ± 10 (1.03) | 115 ± 9 (0.98) | |
200 | 25 ± 3 (0.96) | 29 ± 5 (0.83) | 103 ± 6 (0.95) | 112 ± 9 (0.96) | |
400 | 23 ± 6 (0.88) | 35 ± 7 (1.00) | 110 ± 4 (1.02) | 115 ± 4 (0.98) | |
PLEd | 50 | 23 ± 4 (0.88) | 35 ± 9 (1.00) | 109 ± 4 (1.01) | 118 ± 7 (1.01) |
100 | 26 ± 5 (1.00) | 34 ± 9 (0.97) | 110 ± 10 (1.02) | 114 ± 8 (0.97) | |
200 | 25 ± 4 (0.96) | 29 ± 2 (0.83) | 112 ± 7 (1.04) | 115 ± 5 (0.98) | |
400 | 24 ± 3 (0.92) | 32 ± 3 (0.91) | 112 ± 9 (1.04) | 117 ± 9 (1.00) |
Treatment | Concentration (µg/Plate) | TA98 | TA100 | ||
---|---|---|---|---|---|
Number of Revertants/Plate | % Inhibition of Mutagenesis | Number of Revertants/Plate | % Inhibition of Mutagenesis | ||
Standard mutagen: | |||||
PhIP | 1.0 | 530 ± 29 | – | – | – |
IQ | 0.5 | – | – | 793 ± 28 | – |
Std. mutagen + PLEf | 50 | 250 ± 22 | 53 | 523 ± 20 | 34 |
100 | 159 ± 10 | 70 | 340 ± 21 | 57 | |
200 | 83 ± 10 | 84 | 232 ± 16 | 71 | |
400 | 58 ± 9 | 89 | 186 ± 20 | 76 | |
Std. mutagen + PLEd | 50 | 363 ± 17 | 32 | 616 ± 10 | 22 |
100 | 273 ± 39 | 49 | 491 ± 15 | 38 | |
200 | 166 ± 19 | 69 | 339 ± 13 | 57 | |
400 | 88 ± 11 | 83 | 239 ± 12 | 70 |
Gene | Sequence (5′ to 3′) |
---|---|
TNF-α | Fw: CGGGCAGGTCTACTTTGGAG |
Rv: ACCCTGAGCCATAATCCCCT | |
IL-1β | Fw: AAAAAAGCCTCGTGCTGTCG |
Rv: GTCGTTGCTTGGTTCTCCTTG | |
IL-6 | Fw: GTTCTCTGGGAAATCGTGGA |
Rv: TGTACTCCAGGTAGCTATGG | |
iNOS | Fw: GCCACCAACAATGGCAACAT |
Rv: TCGATGCACAACTGGGTGAA | |
COX-2 | Fw: TGAGCACAGGATTTGACCAG |
Rv: CCTTGAAGTGGGTCAGGATG | |
GAPDH | Fw: CACTCACGGCAAATTCAACGGC |
Rv: GACTCCACGACATACTCAGCAC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tantipaiboonwong, P.; Pintha, K.; Chaiwangyen, W.; Suttajit, M.; Khanaree, C.; Khantamat, O. Bioefficacy of Nga-Mon (Perilla frutescens) Fresh and Dry Leaf: Assessment of Antioxidant, Antimutagenicity, and Anti-Inflammatory Potential. Plants 2023, 12, 2210. https://doi.org/10.3390/plants12112210
Tantipaiboonwong P, Pintha K, Chaiwangyen W, Suttajit M, Khanaree C, Khantamat O. Bioefficacy of Nga-Mon (Perilla frutescens) Fresh and Dry Leaf: Assessment of Antioxidant, Antimutagenicity, and Anti-Inflammatory Potential. Plants. 2023; 12(11):2210. https://doi.org/10.3390/plants12112210
Chicago/Turabian StyleTantipaiboonwong, Payungsak, Komsak Pintha, Wittaya Chaiwangyen, Maitree Suttajit, Chakkrit Khanaree, and Orawan Khantamat. 2023. "Bioefficacy of Nga-Mon (Perilla frutescens) Fresh and Dry Leaf: Assessment of Antioxidant, Antimutagenicity, and Anti-Inflammatory Potential" Plants 12, no. 11: 2210. https://doi.org/10.3390/plants12112210
APA StyleTantipaiboonwong, P., Pintha, K., Chaiwangyen, W., Suttajit, M., Khanaree, C., & Khantamat, O. (2023). Bioefficacy of Nga-Mon (Perilla frutescens) Fresh and Dry Leaf: Assessment of Antioxidant, Antimutagenicity, and Anti-Inflammatory Potential. Plants, 12(11), 2210. https://doi.org/10.3390/plants12112210