Cardioprotective Properties of Kaempferol: A Review
Abstract
:1. Introduction
2. Bibliographic Search
3. Effects on Cardiac Injury and Structure
4. Effects on Cardiac Function
5. Effects on Myocardial Calcium Regulation and Rhythm
6. Effects on Cardiac Oxidative Stress and Inflammation
7. Effects on Cardiac Mitochondrial Function Other Organelle Damage
8. Effects on Cardiac Apoptosis
9. Effects on Myocardial Fibrosis
10. Conclusions and Directions for Future Studies
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- WHO. Cardiovascular Diseases. Available online: https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1.2023 (accessed on 10 May 2023).
- Hua, F.; Li, J.Y.; Zhang, M.; Zhou, P.; Wang, L.; Ling, T.J.; Bao, G.H. Kaempferol-3-O-rutinoside exerts cardioprotective effects through NF-κB/NLRP3/Caspase-1 pathway in ventricular remodeling after acute myocardial infarction. J. Food Biochem. 2022, 46, e14305. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Cao, J.; Zhang, G.; Wang, Y. Kaempferol attenuates cardiac hypertrophy via regulation of ASK1/MAPK signaling pathway and oxidative stress. Planta Med. 2017, 83, 837–845. [Google Scholar] [CrossRef]
- Guo, Z.; Liao, Z.; Huang, L.; Liu, D.; Yin, D.; He, M. Kaempferol protects cardiomyocytes against anoxia/reoxygenation injury via mitochondrial pathway mediated by SIRT1. Eur. J. Pharmacol. 2015, 761, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Qi, Z. MiR-21 mediates the protection of kaempferol against hypoxia/reoxygenation-induced cardiomyocyte injury via promoting Notch1/PTEN/AKT signaling pathway. PLoS ONE 2020, 15, e0241007. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Han, J.; Zhang, H.; Xu, J.; Jiang, L.; Ge, W. Kaempferol prevents against Ang II-induced cardiac remodeling through attenuating Ang II-induced inflammation and oxidative stress. J. Cardiovasc. Pharmacol. 2019, 74, 326–335. [Google Scholar] [CrossRef]
- Xiao, J.; Sun, G.B.; Sun, B.; Wu, Y.; He, L.; Wang, X.; Chen, R.C.; Cao, L.; Ren, X.Y.; Sun, X.B. Kaempferol protects against doxorubicin-induced cardiotoxicity in vivo and in vitro. Toxicology 2012, 292, 53–62. [Google Scholar] [CrossRef]
- Qi, Y.; Ying, Y.; Zou, J.; Fang, Q.; Yuan, X.; Cao, Y.; Cai, Y.; Fu, S. Kaempferol attenuated cisplatin-induced cardiac injury via inhibiting STING/NF-κB-mediated inflammation. Am. J. Transl. Res. 2020, 12, 8007–8018. [Google Scholar]
- Safarpour, S.; Pirzadeh, M.; Ebrahimpour, A.; Shirafkan, F.; Madani, F.; Hosseini, M.; Moghadamnia, A.A.; Kazemi, S. Protective effect of kaempferol and its nanoparticles on 5-fluorouracil-induced cardiotoxicity in rats. Biomed. Res. Int. 2022, 2022, 2273000. [Google Scholar] [CrossRef]
- Bakhshii, S.; Khezri, S.; Ahangari, R.; Jahedsani, A.; Salimi, A. Protection of clozapine-induced oxidative stress and mitochondrial dysfunction by kaempferol in rat cardiomyocytes. Drug Dev. Res. 2021, 82, 835–843. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, Z.; Wang, Y.; Geng, J.; Han, S. The protective effect of kaempferol on heart via the regulation of Nrf2, NF-κβ, and PI3K/Akt/GSK-3β signaling pathways in isoproterenol-induced heart failure in diabetic rats. Drug Dev. Res. 2019, 80, 294–309. [Google Scholar] [CrossRef]
- Anamalley, R.; Rajassageran, L.; Apparoo, Y.; Jauri, M.H.; Kamisah, Y.; Yunos, N.M.; Zainalabidin, S. Repeated administration of low dose isoprenaline on the rat’s cardiovascular system. Sains Malays. 2022, 51, 2147–2157. [Google Scholar] [CrossRef]
- Chen, X.; Qian, J.; Wang, L.; Li, J.; Zhao, Y.; Han, J.; Khan, Z.; Chen, X.; Wang, J.; Liang, G. Kaempferol attenuates hyperglycemia-induced cardiac injuries by inhibiting inflammatory responses and oxidative stress. Endocrine 2018, 60, 83–94. [Google Scholar] [CrossRef]
- Leuci, R.; Brunetti, L.; Poliseno, V.; Laghezza, A.; Loiodice, F.; Tortorella, P.; Piemontese, L. Natural compounds for the prevention and treatment of cardiovascular and neurodegenerative diseases. Foods 2020, 10, 29. [Google Scholar] [CrossRef]
- Dias, M.C.; Pinto, D.C.G.A.; Silva, A.M.S. Plant flavonoids: Chemical characteristics and biological activity. Molecules 2021, 26, 5377. [Google Scholar] [CrossRef] [PubMed]
- Shen, N.; Wang, T.; Gan, Q.; Liu, S.; Wang, L.; Jin, B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 2022, 383, 132531. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Li, Q.Z.; Wang, R.L. Flavonoid components, distribution, and biological activities in Taxus: A review. Molecules 2023, 28, 1713. [Google Scholar] [CrossRef]
- Siti, H.N.; Jalil, J.; Asmadi, A.Y.; Kamisah, Y. Rutin modulates MAPK pathway differently from quercetin in angiotensin II-induced H9c2 cardiomyocyte hypertrophy. Int. J. Mol. Sci. 2021, 22, 5063. [Google Scholar] [CrossRef]
- Li, L.; Luo, W.; Qian, Y.; Zhu, W.; Qian, J.; Li, J.; Jin, Y.; Xu, X.; Liang, G. Luteolin protects against diabetic cardiomyopathy by inhibiting NF-κB-mediated inflammation and activating the Nrf2-mediated antioxidant responses. Phytomedicine 2019, 59, 152774. [Google Scholar] [CrossRef]
- Meng, C.; Guo, Z.; Li, D.; Li, H.; He, J.; Wen, D.; Luo, B. Preventive effect of hesperidin modulates inflammatory responses and antioxidant status following acute myocardial infarction through the expression of PPAR-γ and Bcl-2 in model mice. Mol. Med. Rep. 2018, 17, 1261–1268. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef]
- Calderón-Montaño, J.M.; Burgos-Morón, E.; Pérez-Guerrero, C.; López-Lázaro, M. A review on the dietary flavonoid kaempferol. Mini Rev. Med. Chem. 2011, 11, 298–344. [Google Scholar] [CrossRef]
- Mustafa, N.H.; Jalil, J.; Saleh, M.S.M.; Zainalabidin, S.; Asmadi, A.Y.; Kamisah, Y. Parkia speciosa Hassk. empty pod extract prevents cardiomyocyte hypertrophy by inhibiting MAPK and calcineurin-NFATC3 signaling pathways. Life 2023, 13, 43. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Y.; An, Y.; Fang, G. The mechanism of anticancer action and potential clinical use of kaempferol in the treatment of breast cancer. Biomed. Pharmacother. 2019, 117, 109086. [Google Scholar] [CrossRef]
- Vishwakarma, A.; Singh, T.U.; Rungsung, S.; Kumar, T.; Kandasamy, A.; Parida, S.; Lingaraju, M.C.; Kumar, A.; Kumar, A.; Kumar, D. Effect of kaempferol pretreatment on myocardial injury in rats. Cardiovasc. Toxicol. 2018, 18, 312–328. [Google Scholar] [CrossRef]
- Al-Numair, K.S.; Veeramani, C.; Alsaif, M.A.; Chandramohan, G. Influence of kaempferol, a flavonoid compound, on membrane-bound ATPases in streptozotocin-induced diabetic rats. Pharm. Biol. 2015, 53, 1372–1378. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Ren, H.; Han, J.; Wang, W.; Zheng, Q.; Wang, D. Protective effects of kaempferol against myocardial ischemia/reperfusion injury in isolated rat heart via antioxidant activity and inhibition of glycogen synthase kinase-3β. Oxid. Med. Cell. Longev. 2015, 2015, 481405. [Google Scholar] [CrossRef] [PubMed]
- Suchal, K.; Malik, S.; Khan, S.I.; Malhotra, R.K.; Goyal, S.N.; Bhatia, J.; Ojha, S.; Arya, D.S. Molecular pathways involved in the amelioration of myocardial injury in diabetic rats by kaempferol. Int. J. Mol. Sci. 2017, 18, 1001. [Google Scholar] [CrossRef]
- Zhou, W.; Peng, C.; Wang, D.; Li, J.; Tu, Z.; Zhang, L. Interaction mechanism between OVA and flavonoids with different hydroxyl groups on B-ring and effect on antioxidant activity. Foods 2022, 11, 1302. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, L.; Guo, S.; Liu, Y.; Zhao, X.; Li, R.; Yan, X.; Li, Y.; Wang, S.; Niu, X.; et al. Kaempferol alleviates angiotensin II-induced cardiac dysfunction and interstitial fibrosis in mice. Cell. Physiol. Biochem. 2017, 43, 2253–2263. [Google Scholar] [CrossRef]
- Suchal, K.; Malik, S.; Gamad, N.; Malhotra, R.K.; Goyal, S.N.; Chaudhary, U.; Bhatia, J.; Ojha, S.; Arya, D.S. Kaempferol attenuates myocardial ischemic injury via inhibition of MAPK signaling pathway in experimental model of myocardial ischemia-reperfusion injury. Oxid. Med. Cell. Longev. 2016, 2016, 7580731. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.S.; Ha, K.C.; Kwon, D.Y.; Kim, M.S.; Kim, H.R.; Chae, S.W.; Chae, H.J. Kaempferol protects ischemia/reperfusion-induced cardiac damage through the regulation of endoplasmic reticulum stress. Immunopharmacol. Immunotoxicol. 2008, 30, 257–270. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Wang, T.; Wang, C.; Zhu, Z.; Wang, X.; Xu, J.; An, H. The protective effect of kaempferol against ischemia/reperfusion injury through activating SIRT3 to inhibit oxidative stress. Braz. J. Cardiovasc. Surg. 2022, 37, 335–342. [Google Scholar] [CrossRef]
- Goetze, J.P.; Bruneau, B.G.; Ramos, H.R.; Ogawa, T.; de Bold, M.K.; de Bold, A.J. Cardiac natriuretic peptides. Nat. Rev. Cardiol. 2020, 7, 698–717. [Google Scholar] [CrossRef] [PubMed]
- Frantz, S.; Hundertmark, M.J.; Schulz-Menger, J.; Bengel, F.M.; Bauersachs, J. Left ventricular remodelling post-myocardial infarction: Pathophysiology, imaging, and novel therapies. Eur. Heart J. 2022, 43, 2549–2561. [Google Scholar] [CrossRef]
- Dang, A.; Zheng, D.; Wang, B.; Zhang, Y.; Zhang, P.; Xu, M.; Liu, G.; Liu, L. The role of the renin-angiotensin and cardiac sympathetic nervous systems in the development of hypertension and left ventricular hypertrophy in spontaneously hypertensive rats. Hypertens. Res. 1999, 22, 217–221. [Google Scholar] [CrossRef] [PubMed]
- Pedreanez, A.; Mosquera, J.; Munoz, N.; Robalino, J.; Tene, D. Diabetes, heart damage, and angiotensin II. What is the relationship link between them? A minireview. Endocr. Regul. 2022, 56, 55–65. [Google Scholar] [CrossRef]
- Al-Numair, K.S.; Chandramohan, G.; Veeramani, C.; Alsaif, M.A. Ameliorative effect of kaempferol, a flavonoid, on oxidative stress in streptozotocin-induced diabetic rats. Redox Rep. 2015, 20, 198–209. [Google Scholar] [CrossRef]
- Rendra, E.; Riabov, V.; Mossel, D.M.; Sevastyanova, T.; Harmsen, M.C.; Kzhyshkowska, J. Reactive oxygen species (ROS) in macrophage activation and function in diabetes. Immunobiology 2019, 224, 242–253. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, F.C.; Wang, C.L.; Chang, P.C.; Lu, Y.Y.; Huang, C.Y.; Chu, P.H. Angiotensin receptor neprilysin inhibitor for patients with heart failure and reduced ejection fraction: Real-world experience from Taiwan. J. Cardiovasc. Pharmacol. Ther. 2020, 25, 152–157. [Google Scholar] [CrossRef]
- Zhao, Z.; Gordan, R.; Wen, H.; Fefelova, N.; Zang, W.J.; Xie, L.H. Modulation of intracellular calcium waves and triggered activities by mitochondrial ca flux in mouse cardiomyocytes. PLoS ONE 2013, 8, e80574. [Google Scholar] [CrossRef]
- Hudson, S.; Pettit, S. What is ‘normal’ left ventricular ejection fraction? Heart 2020, 106, 1445–1446. [Google Scholar] [CrossRef]
- Suchal, K.; Malik, S.; Gamad, N.; Malhotra, R.K.; Goyal, S.N.; Bhatia, J.; Arya, D.S. Kampeferol protects against oxidative stress and apoptotic damage in experimental model of isoproterenol-induced cardiac toxicity in rats. Phytomedicine 2016, 23, 1401–1408. [Google Scholar] [CrossRef] [PubMed]
- Hagiwara, H.; Watanabe, M.; Fujioka, Y.; Kadosaka, T.; Koizumi, T.; Koya, T.; Nakao, M.; Kamada, R.; Temma, T.; Okada, K.; et al. Stimulation of the mitochondrial calcium uniporter mitigates chronic heart failure-associated ventricular arrhythmia in mice. Heart Rhythm 2022, 19, 1725–1735. [Google Scholar] [CrossRef] [PubMed]
- Reddy, Y.N.V.; El-Sabbagh, A.; Nishimura, R.A. Comparing pulmonary arterial wedge pressure and left ventricular end diastolic pressure for assessment of left-sided filling pressures. JAMA Cardiol. 2018, 3, 453–454. [Google Scholar] [CrossRef]
- Kamisah, Y.; Hassan, H.H.C. Therapeutic use and molecular aspects of ivabradine in cardiac remodeling: A review. Int. J. Mol. Sci. 2023, 24, 2801. [Google Scholar] [CrossRef]
- Kakehi, K.; Iwanaga, Y.; Watanabe, H.; Sonobe, T.; Akiyama, T.; Shimizu, S.; Yamamoto, H.; Miyazaki, S. Modulation of sympathetic activity and innervation with chronic ivabradine and β-blocker therapies: Analysis of hypertensive rats with heart failure. J. Cardiovasc. Pharmacol. Ther. 2019, 24, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, S.; Terentyev, D. ER stress and calcium-dependent arrhythmias. Front. Physiol. 2022, 13, 1041940. [Google Scholar] [CrossRef] [PubMed]
- Salim, S.; Yunos, N.; Jauri, M.; Kamisah, Y. Cardiotonic effects of cardiac glycosides from plants of Apocynaceae family. Chula. Med. J. 2020, 64, 449–456. [Google Scholar]
- Fossier, L.; Panel, M.; Butruille, L.; Colombani, S.; Azria, L.; Woitrain, E.; Decoin, R.; Torrente, A.G.; Thireau, J.; Lacampagne, A.; et al. Enhanced mitochondrial calcium uptake suppresses atrial fibrillation associated with metabolic syndrome. J. Am. Coll. Cardiol. 2022, 80, 2205–2219. [Google Scholar] [CrossRef] [PubMed]
- An, M.; Kim, M. Protective effects of kaempferol against cardiac sinus node dysfunction via CaMKII deoxidization. Anat. Cell. Biol. 2015, 48, 235–243. [Google Scholar] [CrossRef]
- Hamilton, S.; Terentyeva, R.; Kim, T.Y.; Bronk, P.; Clements, R.T.; O-Uchi, J.; Csordás, G.; Choi, B.R.; Terentyev, D. Pharmacological modulation of mitochondrial Ca2+ content regulates sarcoplasmic reticulum Ca2+ release via oxidation of the ryanodine receptor by mitochondria-derived reactive oxygen species. Front. Physiol. 2018, 9, 1831. [Google Scholar] [CrossRef] [PubMed]
- Sander, P.; Feng, M.; Schweitzer, M.K.; Wilting, F.; Gutenthaler, S.M.; Arduino, D.M.; Fischbach, S.; Dreizehnter, L.; Moretti, A.; Gudermann, T.; et al. Approved drugs ezetimibe and disulfiram enhance mitochondrial Ca2+ uptake and suppress cardiac arrhythmogenesis. Br. J. Pharmacol. 2021, 178, 4518–4532. [Google Scholar] [CrossRef] [PubMed]
- Schweitzer, M.K.; Wilting, F.; Sedej, S.; Dreizehnter, L.; Dupper, N.J.; Tian, Q.; Moretti, A.; My, I.; Kwon, O.; Priori, S.G.; et al. Suppression of arrhythmia by enhancing mitochondrial Ca2+ uptake in catecholaminergic ventricular tachycardia models. JACC Basic Transl. Sci. 2017, 2, 737–747. [Google Scholar] [CrossRef]
- Lombardi, A.A.; Gibb, A.A.; Arif, E.; Kolmetzky, D.W.; Tomar, D.; Luongo, T.S.; Jadiya, P.; Murray, E.K.; Lorkiewicz, P.K.; Hajnóczky, G.; et al. Mitochondrial calcium exchange links metabolism with the epigenome to control cellular differentiation. Nat. Commun. 2019, 10, 4509. [Google Scholar] [CrossRef]
- Lai, L.; Qiu, H. The physiological and pathological roles of mitochondrial calcium uptake in heart. Int. J. Mol. Sci. 2020, 21, 7689. [Google Scholar] [CrossRef] [PubMed]
- Eisner, D.A.; Caldwell, J.L.; Trafford, A.W.; Hutchings, D.C. The control of diastolic calcium in the heart: Basic mechanisms and functional implications. Circ. Res. 2020, 126, 395–412. [Google Scholar] [CrossRef]
- Siti, H.N.; Kamisah, Y.; Kamsiah, J. The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review). Vascul. Pharmacol. 2015, 71, 40–56. [Google Scholar] [CrossRef]
- Gui, J.S.; Mustafa, N.H.; Jalil, J.; Jubri, Z.; Kamisah, Y. Modulation of NOX4 and MAPK signalling pathways by Parkia speciosa empty pods in H9c2 cardiomyocytes exposed to H2O2. Indian J. Pharm. Sci. 2019, 81, 1029–1035. [Google Scholar] [CrossRef]
- Gui, J.S.; Jalil, J.; Jubri, Z.; Kamisah, Y. Parkia speciosa empty pod extract exerts anti-inflammatory properties by modulating NFκB and MAPK pathways in cardiomyocytes exposed to tumor necrosis factor-α. Cytotechnology 2019, 71, 79–89. [Google Scholar] [CrossRef]
- Mustafa, N.H.; Ugusman, A.; Jalil, J.; Kamisah, Y. Anti-inflammatory property of Parkia speciosa empty pod extract in human umbilical vein endothelial cells. J. Appl. Pharm. Sci. 2018, 8, 152–158. [Google Scholar]
- Tang, X.L.; Liu, J.X.; Dong, W.; Li, P.; Li, L.; Hou, J.C.; Zheng, Y.Q.; Lin, C.R.; Ren, J.G. Protective effect of kaempferol on LPS plus ATP-induced inflammatory response in cardiac fibroblasts. Inflammation 2015, 38, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.S.; He, L.P.; Zhou, X.L.; Zhao, Y.; Shen, J.; Xu, P.; Ni, S.Z. Kaempferol pretreatment modulates systemic inflammation and oxidative stress following hemorrhagic shock in mice. Chin. Med. 2015, 10, 6. [Google Scholar] [CrossRef] [PubMed]
- Tonelli, C.; Chio, I.I.C.; Tuveson, D.A. Transcriptional regulation by Nrf2. Antioxid. Redox Signal. 2018, 29, 1727–1745. [Google Scholar] [CrossRef]
- Syamsunarno, M.R.A.; Safitri, R.; Kamisah, Y. Protective effects of Caesalpinia sappan Linn. and its bioactive compounds on cardiovascular organs. Front. Pharmacol. 2021, 12, 725745. [Google Scholar] [CrossRef] [PubMed]
- Almowallad, S.; Alqahtani, L.S.; Mobashir, M. NF-kB in signaling patterns and its temporal dynamics encode/decode human diseases. Life 2022, 12, 2012. [Google Scholar] [CrossRef] [PubMed]
- Beckendorf, J.; van den Hoogenhof, M.M.G.; Backs, J. Physiological and unappreciated roles of CaMKII in the heart. Basic Res. Cardiol. 2018, 113, 29. [Google Scholar] [CrossRef] [PubMed]
- Peoples, J.N.; Saraf, A.; Ghazal, N.; Pham, T.T.; Kwong, J.Q. Mitochondrial dysfunction and oxidative stress in heart disease. Exp. Mol. Med. 2019, 51, 1–13. [Google Scholar] [CrossRef]
- Zorova, L.D.; Popkov, V.A.; Plotnikov, E.Y.; Silachev, D.N.; Pevzner, I.B.; Jankauskas, S.S.; Babenko, V.A.; Zorov, S.D.; Balakireva, A.V.; Juhaszova, M.; et al. Mitochondrial membrane potential. Anal. Biochem. 2018, 552, 50–59. [Google Scholar] [CrossRef]
- Sabbah, H.N.; Zhang, K.; Gupta, R.C.; Xu, J.; Singh-Gupta, V. Effects of angiotensin-neprilysin inhibition in canines with experimentally induced cardiorenal syndrome. J. Card. Fail. 2020, 26, 987–997. [Google Scholar] [CrossRef]
- Tang, B.L. Sirt1 and the mitochondria. Mol. Cells 2016, 39, 87–95. [Google Scholar]
- Ren, J.; Bi, Y.; Sowers, J.R.; Hetz, C.; Zhang, Y. Endoplasmic reticulum stress and unfolded protein response in cardiovascular diseases. Nat. Rev. Cardiol. 2021, 18, 499–521. [Google Scholar] [CrossRef]
- Meyer, B.A.; Doroudgar, S. ER stress-induced secretion of proteins and their extracellular functions in the heart. Cells 2020, 9, 2066. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Wang, X. Lysosome biogenesis: Regulation and functions. J. Cell. Biol. 2021, 220, e202102001. [Google Scholar] [CrossRef]
- Ghazal, N.; Peoples, J.N.; Mohiuddin, T.A.; Kwong, J.Q. Mitochondrial functional resilience after TFAM ablation in the adult heart. Am. J. Physiol. Cell. Physiol. 2021, 320, C929–C942. [Google Scholar] [CrossRef] [PubMed]
- Ong, S.B.; Hausenloy, D.J. Mitochondrial dynamics as a therapeutic target for treating cardiac diseases. Handb. Exp. Pharmacol. 2017, 240, 251–279. [Google Scholar] [PubMed]
- Bock, F.J.; Tait, S.W.G. Mitochondria as multifaceted regulators of cell death. Nat. Rev. Mol. Cell. Biol. 2020, 21, 85–100. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Lai, Y.; Hua, Z.C. Apoptosis and apoptotic body: Disease message and therapeutic target potentials. Biosci. Rep. 2019, 39, BSR20180992. [Google Scholar] [CrossRef] [PubMed]
- Santos-Gallego, C.G.; Vahl, T.P.; Goliasch, G.; Picatoste, B.; Arias, T.; Ishikawa, K.; Njerve, I.U.; Sanz, J.; Narula, J.; Sengupta, P.P.; et al. Sphingosine-1-phosphate receptor agonist fingolimod increases myocardial salvage and decreases adverse postinfarction left ventricular remodeling in a porcine model of ischemia/reperfusion. Circulation 2016, 133, 954–966. [Google Scholar] [CrossRef]
- Alex, L.; Russo, I.; Holoborodko, V.; Frangogiannis, N.G. Characterization of a mouse model of obesity-related fibrotic cardiomyopathy that recapitulates features of human heart failure with preserved ejection fraction. Am. J. Physiol. Heart Circ. Physiol. 2018, 315, H934–H949. [Google Scholar] [CrossRef]
- Ramli, F.F.; Hashim, S.A.S.; Raman, B.; Mahmod, M.; Kamisah, Y. Role of trientine in hypertrophic cardiomyopathy: A review of mechanistic aspects. Pharmaceuticals 2022, 15, 1145. [Google Scholar] [CrossRef]
- Ishii, R.; Okumura, K.; Akazawa, Y.; Malhi, M.; Ebata, R.; Sun, M.; Fujioka, T.; Kato, H.; Honjo, O.; Kabir, G.; et al. Heart rate reduction improves right ventricular function and fibrosis in pulmonary hypertension. Am. J. Respir. Cell. Mol. Biol. 2020, 63, 843–855. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.G.; Yuan, Y.P.; Wu, H.M.; Zhang, X.; Tang, Q.Z. Cardiac fibrosis: New insights into the pathogenesis. Int. J. Biol. Sci. 2018, 14, 1645–1657. [Google Scholar] [CrossRef] [PubMed]
- Frangogiannis, N. Transforming growth factor-β in tissue fibrosis. J. Exp. Med. 2020, 217, e20190103. [Google Scholar] [CrossRef]
- Mustafa, N.H.; Jalil, J.; Zainalabidin, S.; Saleh, M.S.M.; Asmadi, A.Y.; Kamisah, Y. Molecular mechanisms of sacubitril/valsartan in cardiac remodeling. Front. Pharmacol. 2022, 13, 892460. [Google Scholar] [CrossRef] [PubMed]
- Mia, M.M.; Cibi, D.M.; Ghani, S.A.B.A.; Singh, A.; Tee, N.; Sivakumar, V.; Bogireddi, H.; Cook, S.A.; Mao, J.; Singh, M.K. Loss of Yap/Taz in cardiac fibroblasts attenuates adverse remodelling and improves cardiac function. Cardiovasc. Res. 2022, 118, 1785–1804. [Google Scholar] [CrossRef]
Animals/Cells | Model | Dose and Duration of Kaempferol | Findings | Reference |
---|---|---|---|---|
Mice | Aorta-banding-induced cardiac remodeling | 100 mg/kg/d (i.g.) for 6 weeks | ↓ ANP gene, ↓ BNP gene ↓ cardiomyocyte size ↓ HW/BW, ↓ LVIDd ↓ LVIDs, ↓ LVPWd ↓ LVPWs | [3] |
H9c2 cardiomyocytes | Phenylephrine-induced cell hypertrophy | 25 µM for 2 h (pretreatment) | ↓ cardiomyocyte size | [3] |
Rat cardiomyocytes | Anoxia/reperfusion | 10, 20 or 40 μM for 24 h (pretreatment) | ↓ LDH ↑ cell viability | [4] |
H9c2 cardiomyocytes | H/R-induced injury | 5, 10, 20, or 30 μM for 2 h (pretreatment) | ↑ cell viability ↓ LDH | [5] |
Mice | Ang-II-induced cardiac remodeling | 10 mg/kg (p.o) on alternate days for 4 weeks | ↓ cardiomyocyte size ↓ NT-proBNP, ↓ titin | [6] |
Rats | Doxorubicin-induced cardiac injury | 1, 2, 5, 10, and 20 mg/kg/d on alternates for 3 injections (i.p.) (pretreatment) | ↑ BW, ↑ HW ↔ HW/BW ↓ serum LDH | [7] |
H9c2 cardiomyocytes | Doxorubicin-induced injury | 5, 10, 20, and 50 μM for 4 h (pretreatment) | ↑ cell viability ↓ LDH | [7] |
Mice | Cisplatin-induced cardiotoxicity | 10 mg/kg/d (p.o.) for 2 weeks (pretreatment) | ↓ BNP gene ↓ ANP gene ↓ serum CK-MB ↓ HW/BW | [8] |
Rats | 5-Fluorouracil-induced cardiotoxicity | 1 mg/kg/d (i.p.) for 14 days (post-treatment) | ↓ serum CK-MB ↓ serum LDH ↓ cardiac necrosis ↓ cardiac hyaline ↓ cardiac hyperemia | [9] |
Rat cardiomyocytes | Clozapine-induced cardiac injury | 10, 20, and 50 μM for 4 h | ↑ cell viability | [10] |
Diabetic rats | ISO-induced heart failure | 10 and 20 mg/kg/d (p.o.) for 42 days (pretreatment) | ↓ HW/BW, ↓ serum LDH ↓ serum troponin I ↓ serum CK-MB, ↓ serum BNP | [11] |
Mice | STZ-induced diabetes | 10 mg/kg (p.o.) on alternate days for 8 weeks (post-treatment) | ↓ serum CK ↓ serum CK-MB ↓ serum LDH | [13] |
Rats | ISO-induced cardiac injury | 3 and 10 mg/kg/d for 7 days (pretreatment) | ↓ infarct area ↓ serum LDH ↓ serum troponin I ↓ serum CK-MB | [25] |
Rats | I/R-induced cardiac injury (Langendorff isolated heart) | 15 mmol/L for 15 min (pretreatment) | ↓ CK, ↓ LDH ↓ infarct size | [27] |
Diabetic rats | I/R-induced cardiac injury | 20 mg/kg/d (i.p.) for 28 days (pretreatment) | ↓ serum LDH ↑ serum CK-MB | [28] |
Mice | Ang-II-induced cardiac dysfunction | 10 mg/kg (i.p.) for 2 weeks | ↓ IVSD, ↓ HW/BW ↓ HW/TL ↓ cardiomyocyte size ↓ ANP gene, ↓ BNP gene ↓ vimentin protein | [30] |
Rats | I/R-induced myocardial injury | 20 mg/kg/d (i.p.) for 15 days (pretreatment) | ↓ serum LDH ↑ serum CK-MB | [31] |
H9c2 cardiomyocytes | I/R-induced injury | 10 μM (pretreatment) | ↑ cell viability | [32] |
H9c2 cardiomyocytes | I/R-induced injury | 5 μM for 24 h (pretreatment) | ↑ cell viability | [33] |
Animals | Model | Dose and Duration of Kaempferol | Findings | Reference |
---|---|---|---|---|
Rats | Acute myocardial infarction | 10 mg/kg (i.g.) for 4 weeks | ↓ LVSP, ↓ LVEDP ↑ +dp/dtmax, ↓ −dp/dtmax | [2] |
Mice | Aorta-banding-induced cardiac remodeling | 100 mg/kg/d (i.g.) for 6 weeks | ↓ LVVd, ↓ LVVs, ↑ LVFS, ↑ LVEF | [3] |
Mice | Ang-II-induced cardiac remodeling | 10 mg/kg (p.o.) on alternate days for 4 weeks | ↑ LVFS, ↑ LVEF, ↓ E/E′ | [6] |
Mice | Cisplatin-induced cardiotoxicity | 10 mg/kg/d (p.o.) for 2 weeks (pretreatment) | ↑ LVEF, ↑ LVFS | [8] |
Rats | I/R-induced cardiac injury | 15 mmol/L for 15 min (pretreatment) | ↑ LVDP, ↑ +dp/dt, ↑ −dp/dt ↑ CF, ↑ HR | [27] |
Diabetic rats | I/R-induced cardiac injury | 20 mg/kg/d (i.p.) for 28 days (pretreatment) | ↑ +dp/dtmax, ↑ −dp/dtmax ↓ LVEDP | [28] |
Mice | Ang-II-induced cardiac dysfunction | 10 mg/kg (i.p.) for 2 and 4 weeks | ↓ LVEDD, ↔ LVEF ↔ LVESD (2 weeks) ↓ LVESD (4 weeks) | [30] |
Rats | I/R-induced myocardial injury | 20 mg/kg/d (i.p.) for 15 days (pretreatment) | ↓ LVEDP, ↑ +dp/dtmax ↑ −dp/dtmax | [31] |
Langendorff isolated heart | I/R injury | 10 μM for 20 min pre-ischemia and 50 min post-ischemia | ↑ LVDP, ↓ LVEDP | [32] |
Mice | I/R-induced cardiac injury | 10 mg/kg (pretreatment) | ↑ LVEF, ↑ LVFS | [33] |
Mice | LADCA-ligation-induced HF | 12 mg/kg/d for 3 days | ↔ LVSP, ↔ LVEDP ↔ +dp/dtmax, ↔ −dp/dtmin | [44] |
Rats | ISO-induced cardiac injury | 5, 10, and 20 mg/kg/d (i.p.) for 15 days (pretreatment) | 20 mg/kg/d: ↑ +dp/dtmax, ↑ −dp/dtmax ↓ LVEDP | [43] |
Animals | Model | Dose and Duration of Kaempferol | Findings | Reference |
---|---|---|---|---|
Rats | STZ-induced diabetes | 100 mg/kg bw (p.o.) for 45 days | ↑ total ATPase, ↑ Na+/K+-ATPase ↑ Ca2+-ATPase | [26] |
Mouse cardiomyocytes | LADCA-ligation-induced HF | 10 mM for 80 s | ↑ mt Ca2+ uptake, ↓ diastolic Ca2+ waves, ↓ diastolic Ca2+ sparks ↓ caffeine-induced Ca2+ transients ↔ amplitude of Ca2+ transients ↑ tau decay of Ca2+ transients ↓ spontaneous AP ↓ resting potentials ↓ ventricular arrythmia | [44] |
Primary rat ventricular myocytes | FCCP-induced Ca2+ waves | 10 μM (post-treatment) | ↓ Ca2+ waves ↓ basal Ca2+ | [41] |
Mice | High-fat sucrose (obese with T2DM and overweight with insulin resistance) | 1 mL/h (i.v.) for 7 days | ↓ AF, ↓ P wave duration ↓ SNRT120, ↑ MCUC opening | [50] |
C57BL/6 mice | Ang-II-induced cardiac sinus dysfunction | 0.5 mmol per kg (s.c) for 3 weeks | ↓ sinus pauses | [51] |
Langendorff isolated rat heart | Thoracic aortic banding-induced cardiac hypertrophy + ISO-induced arrhythmia | 1 μM | ↑ ISO-induced PVC ↔ ISO-induced VF frequency ↓ mt Ca2+ transient amplitude | [52] |
Mouse primary cardiomyocytes | Thoracic aortic banding-induced cardiac hypertrophy. ISO was added to induce arrythmia | 10 μM | ↔ amplitude of Ca2+ transients ↔ tau decay of mt Ca2+ transients ↑ mt Ca2+ accumulation pace ↓ cytosolic Ca2+, ↑ VF frequency ↓ cytosolic spontaneous Ca2+ waves latency | [52] |
Cardiomyocytes | Caffeine induced Ca2+ uptake | 10 μM | ↑ mt Ca2+ uptake | [53] |
HL-1 cardiomyocytes | Caffeine induced Ca2+ uptake | 10 μM | ↑ mt Ca2+ uptake | [54] |
Cardiomyocytes from RyR2R4496C/WT mice | ISO-induced Ca2+ waves | 10 μM | ↓ spontaneous diastolic Ca2+ waves | [54] |
Animals | Model | Dose and Duration of Kaempferol | Findings | Reference |
---|---|---|---|---|
Mice | Hemorrhagic shock | 10 mg/kg (i.p.) (pre- and post-treatment) | Pretreatment: ↓ MPO activity, ↓ MDA ↑ SOD activity, ↑ HO-1 protein | [63] |
Rats | Acute myocardial infarction | 10 mg/kg (i.g.) for 4 weeks | ↓ NLRP3, ↓ NLRP3 protein ↓ NLRP3 gene, ↓ GSDMD ↓ GSDMD protein, ↓ GSDMD gene ↓ IL-1β, ↓ IL-1β protein ↓ NF-κB p65 gene ↓ IL-1β gene, ↓ NF-κB p65 protein | [2] |
Mice | Aorta-banding-induced cardiac remodeling | 100 mg/kg/d (i.g.) for 6 weeks | ↓ p-ERK1/2 protein, ↓ p-JNK1/2 protein, ↓ p-p38 protein ↓ p-ASK1 protein, ↓ 4-HNE staining ↑ SOD, ↑ GSH/GSSG | [3] |
H9c2 cardiomyocytes | Phenylephrine-induced cell hypertrophy | 25 µM for 2 h (pretreatment) | ↓ p-ASK1 protein, ↓ p-p38 protein ↓ p-JNK1/2 protein, ↑ SOD activity ↓ oxidative stress, ↑ GSH/GSSG | [3] |
Rat cardiomyocytes | Anoxia/Reperfusion | 10, 20 or 40 μM for 24 h (pretreatment) | ↓ ROS | [4] |
H9c2 cardiomyocytes | H/R-induced injury | 5, 10, 20, or 30 μM for 2 h (pretreatment) | ↓ ROS, ↓ MDA, ↑ SOD activity ↑ GPx activity, ↓ IL-8, ↓ IL-1β ↓ IL-10, ↓ TNF-α, ↓ NO ↓ iNOS activity | [5] |
Cardiac fibroblasts | TGF in Ang-II-stimulated | 2.5 and 10 mM (pretreatment) | ↓ TNF-α, ↓ TNF-α gene, ↓ IL-6 gene ↑ IκB-α protein, ↓ VCAM-1 gene ↓ p-ERK protein, ↓ p-p38 protein ↓ H2O2 level, ↓ O2−• level ↑ p-AMPK protein, ↑ Nrf-2 protein ↑ HO-1 gene ↑ NQO-1 gene In siRNA transfected cells: ↔ NF-κB p65, ↔ IL-6 In siAMPK transfected cells: ↔ Nrf2 protein | [6] |
Rats | Doxorubicin-induced cardiac injury | 1, 2, 5, 10, and 20 mg/kg/d on alternates for 3 injections (i.p.) (pretreatment) | ↑ SOD activity, ↑ catalase activity ↓ p-ERK1/2, ↔ p-p38, ↔ p-JNK | [7] |
Mice | Cisplatin-induced cardiotoxicity | 10 mg/kg/d (p.o.) for 2 weeks (pretreatment) | ↓ IL-6 gene, ↓ IL-6, ↓ HMGB1 gene ↓ TNF-α gene, ↓ TNF-α ↓ p-NF-κB protein, ↓ MCP-1 gene ↓ CD68 | [8] |
H9c2 cardiomyocytes | Cisplatin-induced cardiotoxicity | 1, 5, and 10 μM for 1 h pretreatment | ↓ IL-6 gene, ↓ IL-6, ↓ HMGB1 gene ↓ TNF-α gene, ↓ TNF-α ↓ p-NF-κB protein, ↓ MCP-1 gene ↓ p-STING, ↓ p-TBK-1 | [8] |
Rats | 5-Fluorouracil-induced cardiotoxicity | 1 mg/kg/d (i.p.) for 14 days (post-treatment) | ↔ COX-2, ↑ VEGF ↓ MDA, ↓ total antioxidant capacity | [9] |
Rat cardiomyocytes | Clozapine-induced cardiac injury | 10, 20, and 50 μM for 4 h | All concentrations: ↑ cell viability, ↓ ROS, ↓ MDA 50 μM: ↑ GSH, ↓ GSSG | [10] |
Diabetic rats | ISO-induced heart failure | 10 and 20 mg/kg/d (p.o.) for 42 days (pretreatment) | ↑ Nrf2 gene, ↑ HO-1 gene ↑ γGCS gene, ↓ Keap-1 gene ↓ MDA, ↑ SOD activity ↑ catalase activity, ↑ GPx activity ↑ GST activity, ↑ GR activity ↓ NF-κB p65 activity, ↓ TNF-α ↓ IL-6, ↓ IL-1β, ↓ p-IKKβ protein ↓ nNF-κB p65 protein ↓ COX-2 protein, ↓ iNOS protein ↓ p-ERK protein, ↓ p-p38 protein ↓ PI3K protein, ↑ p-Akt protein ↑ p-GSK3β protein | [11] |
Mice | STZ-induced diabetes | 10 mg/kg (p.o) on alternate days for 8 weeks | ↓ TNF-α, ↓ F4/80, ↓ 3-NT ↑ IκB-α protein, ↓ DHE ↑ Nrf-2 protein, ↑ NQO-1 protein | [13] |
Rat cardiomyocytes | High-glucose-induced cell injury | 2.5 µM for 1 h (pretreatment) | ↓ TNF-α gene, ↓ IL-6 gene ↓ NF-κB p65 protein, ↓ MDA, ↓ DHE, ↑ IκB-α protein, ↑ SOD activity, ↑ Nrf-2 protein ↑ HO-1 protein, ↑ NQO-1 protein | [13] |
Rats | ISO-induced cardiac injury | 10 mg/kg/d for 7 days (pretreatment) | ↑ SOD activity, ↑ catalase activity ↓ MDA, ↔ GSH level, ↔ TNF-α gene | [25] |
Rats | I/R-induced cardiac injury | 15 mmol/L for 15 min (pretreatment) | ↑ GSH/GSSG, ↓ TNF-α, ↓ MDA ↑ SOD activity, ↑ p-GSK-3β(ser) protein | [27] |
Diabetic rats | I/R-induced cardiac injury | 20 mg/kg/d (i.p.) for 28 days (pretreatment) | ↓ MDA, ↑ GSH, ↑ SOD activity ↑ catalase activity, ↓ NF-κB protein ↑ p-ERK protein, ↓ p-JNK protein ↓ p-p38 protein | [28] |
Rats | I/R-induced myocardial injury | 20 mg/kg/d (i.p.) for 15 days (pretreatment) | ↓ MDA, ↑ GSH, ↑ SOD activity ↑ catalase activity, ↓NF-κB protein ↓ p-ERK1/2 protein ↓ p-JNK protein, ↓ p-p38 protein | [31] |
H9c2 cardiomyocytes | I/R-induced injury | 1 and 5 μM for 24 h (pretreatment) | ↓ ROS, ↓ NOX activity ↑ GSH, ↑ SIRT3 protein | [33] |
Rats | ISO-induced cardiac injury | 5, 10, and 20 mg/kg/d (i.p.) for 15 days (pretreatment) | 20 mg/kg/d: ↓ MDA, ↑ GSH, ↑ SOD activity ↑ catalase activity | [43] |
C57BL/6 mice | Ang-II-induced cardiac sinus dysfunction | 0.5 mmol per kg (s.c) for 3 weeks | ↓ ox-CaMKII | [51] |
Mouse primary cardiomyocytes | Thoracic aortic banding-induced cardiac hypertrophy + ISO-induced arrhythmia | 10 μmol/L | ↑ mt ROS | [52] |
Rats | STZ-induced diabetes | 100 mg/kg bw (p.o) for 45 days | ↓ TBARS, ↓ LOOH, ↑ GSH ↓ conjugated diene, ↑ vitamin C ↑ α-Tocopherol, ↑ SOD activity ↑ Catalase activity, ↑ GPx activity ↑ GST activity | [61] |
Cardiac fibroblasts | LPS + ATP-induced inflammation | 12.5 and 25 μg/mL for 2 h (pretreatment) | ↓ TNF-α, ↓ IL-1β, ↓ IL-6 ↓ IL-18, ↓ p-Akt protein ↓ p-NF-κB p65 protein | [62] |
Animals | Model | Dose and Duration of Kaempferol | Findings | Reference |
---|---|---|---|---|
Rat cardiomyocytes | Anoxia/reperfusion | 10, 20 or 40 μM for 24 h (pretreatment) | ↓ mMP loss, ↓ mPTP opening ↓ cytochrome c release ↑ SIRT1 protein | [4] |
H9c2 cardiomyocytes | Doxorubicin-induced injury | 20 μM for 4 h (pretreatment) | ↓ cytochrome c release ↓ mMP loss | [7] |
Rat cardiomyocytes | Clozapine-induced cardiac injury | 10, 20, and 50 μM for 4 h | ↓ mMP collapse ↓ lysosomal damage | [10] |
Rats | I/R-induced cardiac injury | 15 mmol/L for 15 min (pretreatment) | ↓ cytochrome c release | [27] |
H9c2 cardiomyocytes | I/R-induced injury | 10 μM for 30 min (pretreatment) | ↓ GRP78 protein, ↓ ATF-6α protein ↓ IRE-1α protein, ↓ p-eIF2-α protein ↓ XBP-1 protein, ↓ CHOP protein | [32] |
Langendorff isolated heart | I/R-induced injury | 10 μM for 20 min pre-ischemia and 50 min post-ischemia | ↓ GRP78 protein, ↓ CHOP protein | [32] |
Mouse cardiomyocytes | LADCA-ligation-induced HF | 10 mM for 80 s | ↔ mMP | [44] |
Mouse primary cardiomyocytes | Thoracic aortic banding-induced cardiac hypertrophy. ISO was added to induce arrythmia | 10 μmol/L | ↓ mPTP opening | [52] |
Animals | Model | Dose and Duration of Kaempferol | Findings | Reference |
---|---|---|---|---|
Rats | Acute myocardial infarction | 10 mg/kg (i.g.) for 4 weeks | ↓ TUNEL, ↓ caspase 1, ↓ caspase 1 protein ↓ caspase 1 gene, ↓ ASC protein | [2] |
Rat cardiomyocytes | Anoxia/Reperfusion | 10, 20 or 40 μM for 24 h (pretreatment) | ↓ caspase 3 activity ↓ caspase 3 protein ↓ apoptotic cells, ↑ Bcl-2 protein | [4] |
H9c2 cardiomyocytes | H/R-induced injury | 5, 10, 20, or 30 μM for 2 h (pretreatment) | ↓ apoptosis, ↑ Bcl-2 protein ↓ Bax protein, ↓ miR-21 gene ↓ caspase 3 activity | [5] |
Rats | Doxorubicin-induced cardiac injury | 10 mg/kg/d on alternates for 3 injections (i.p.) (pretreatment) | ↓ TUNEL, ↓ caspase 3 protein ↑ Bcl-2 protein, ↓ Bax protein ↓ Bax gene, ↑ Bcl-2 gene | [7] |
H9c2 cardiomyocytes | Doxorubicin-induced injury | 20 μM for 4 h (pretreatment) | ↓ TUNEL, ↓ PAPR cleavage ↓ caspase 3 protein, ↓ p53 gene ↓ p53 protein, ↔ Fas gene ↑ Bcl-2 protein, ↓ Bax protein ↓ Bax gene, ↑ Bcl-2 gene | [7] |
Mice | Cisplatin-induced cardiotoxicity | 10 mg/kg/d (p.o.) for 2 weeks (pretreatment) | ↓ TUNEL, ↓ Bax protein ↑ Bcl-2 protein | [8] |
H9c2 cardiomyocytes | Cisplatin-induced cardiotoxicity | 1, 5, and 10 μM for 1 h pretreatment | ↓ TUNEL, ↓ Bax protein ↑ Bcl-2 protein | [8] |
Diabetic rats | ISO-induced heart failure | 10 and 20 mg/kg/d (p.o.) for 42 days (pretreatment) | ↓ Bax protein, ↑ Bcl-2 protein ↓ caspase 3, ↓ TUNEL | [11] |
Primary and H9c2 rat cardiomyocytes | High-glucose-induced cell injury | 2.5 µM for 1 h (pretreatment) | ↑ Bcl-2 protein, ↓ Bax protein | [13] |
Mice | STZ-induced diabetes | 10 mg/kg (p.o) on alternate days for 8 weeks | ↑ Bcl-2 protein, ↓ Bax protein ↓ TUNEL | [13] |
Rats | I/R-induced cardiac injury | 15 mmol/L for 15 min (pretreatment) | ↓ apoptotic index ↓ cleaved caspase-3 protein | [27] |
Diabetic rats | I/R-induced cardiac injury | 20 mg/kg/d (i.p.) for 28 days (pretreatment) | ↓ Bax protein, ↑ Bcl-2 protein ↓ caspase 3 | [28] |
Rats | I/R-induced myocardial injury | 20 mg/kg/d (i.p.) for 15 days (pretreatment) | ↓ Bax protein, ↑ Bcl-2 protein ↓ caspase 3 | [31] |
H9c2 cardiomyocytes | I/R-induced injury | 10 μM for 30 min (pretreatment) | ↑ Bcl-2 protein, ↓ Bax protein ↓ caspase 3 activity, ↓ apoptosis | [32] |
Langendorff isolated heart | I/R injury | 10 μM for 20 min pre-ischemia and 50 min post-ischemia | ↑ Bcl-2 protein, ↓ Bax protein | [32] |
H9c2 cardiomyocytes | I/R-induced injury | 1 and 5 μM for 24 h (pretreatment) | ↓ Bax protein, ↑ Bcl-2 protein | [33] |
Mice | LADCA-ligation-induced HF | 12 mg/kg/d for 3 days | ↔ TUNEL | [44] |
Rats | ISO-induced cardiac injury | 5, 10, and 20 mg/kg/d (i.p.) for 15 days (pretreatment) | 20 mg/kg/d: ↓ Bax protein, ↑ Bcl-2 protein ↑ Bcl-2/Bax protein | [43] |
C57BL/6 mice | Ang-II-induced cardiac sinus dysfunction | 0.5 mmol per kg (s.c.) for 3 weeks | ↓ TUNEL ↓ caspase-3 activity | [51] |
Animals | Model | Dose and Duration of Kaempferol | Findings | Reference |
---|---|---|---|---|
Rats | Acute myocardial infarction | 10 mg/kg (i.g.) for 4 weeks | ↓ collagen volume fraction ↓ fibrosis | [2] |
Mice | Aorta-banding-induced cardiac remodeling | 100 mg/kg/d (i.g.) for 6 weeks | ↓ LV collagen, ↓ fibronectin gene ↓ Col 1 gene, ↓ Col 3 gene ↓ CTGF gene, ↓ TGF-β protein ↓ p-Smad1/5, ↓ p-Smad3 | [3] |
Cardiac fibroblasts | Ang-II-stimulated | 2.5 and 10 mM (pretreatment) | ↓ Col 1 and Col 3 protein, ↓ Col 3 gene ↓ TGF-β protein, ↓ TGF-β gene ↓ fibrosis content | [6] |
Primary and H9c2 rat cardiomyocytes | High-glucose-induced cell injury | 2.5 µM for 1 h (pretreatment) | ↓ collagen-4 protein ↓ TGF-β protein | [13] |
Mice | STZ-induced diabetes | 10 mg/kg (p.o) on alternate days for 8 weeks | ↓ collagen-4 protein, ↓ TGF-β protein ↓ Masson-stained connective tissue | [13] |
Rats | ISO-induced cardiac injury | 10 mg/kg/d for 7 days (pretreatment) | ↓ MMP-9 | [25] |
Mice | Ang-II-induced cardiac dysfunction | 10 mg/kg (i.p.) for 2 weeks | ↓ LV collagen volume, ↓ Col 1 gene ↓ Col 3 gene, ↓ CTGF gene ↓ TGF-β1 gene, ↓ α-SMA protein ↓ CD31 protein | [30] |
Cardiac fibroblasts | TGF-β1-induced fibrosis | 50 μM (concurrent) | ↓ Col 1 gene, ↓ Col 3 gene ↓ α-SMA, ↑ MMP-1 | [30] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamisah, Y.; Jalil, J.; Yunos, N.M.; Zainalabidin, S. Cardioprotective Properties of Kaempferol: A Review. Plants 2023, 12, 2096. https://doi.org/10.3390/plants12112096
Kamisah Y, Jalil J, Yunos NM, Zainalabidin S. Cardioprotective Properties of Kaempferol: A Review. Plants. 2023; 12(11):2096. https://doi.org/10.3390/plants12112096
Chicago/Turabian StyleKamisah, Yusof, Juriyati Jalil, Nurhanan Murni Yunos, and Satirah Zainalabidin. 2023. "Cardioprotective Properties of Kaempferol: A Review" Plants 12, no. 11: 2096. https://doi.org/10.3390/plants12112096
APA StyleKamisah, Y., Jalil, J., Yunos, N. M., & Zainalabidin, S. (2023). Cardioprotective Properties of Kaempferol: A Review. Plants, 12(11), 2096. https://doi.org/10.3390/plants12112096