Secondary Metabolites from Aspergillus sparsus NBERC_28952 and Their Herbicidal Activities
Abstract
1. Introduction
2. Results
2.1. Compounds Identification
2.2. Evaluation of Herbicidal Activities
3. Discussion
4. Materials and Methods
4.1. General Experimental Procedures
4.2. Fungal Material
4.3. Cultivation, Extraction, and Isolation
4.4. X-ray Crystallographic Data Analysis
4.5. Herbicidal Activity Assays
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gaines, T.A.; Busi, R.; Küpper, A. Can new herbicide discovery allow weed management to outpace resistance evolution? Pest Manag. Sci. 2021, 77, 3036–3041. [Google Scholar] [CrossRef] [PubMed]
- Korres, N.E.; Burgos, N.R.; Travlos, I.; Vurro, M.; Gitsopoulos, T.K.; Varanasi, V.K.; Duke, S.O.; Kudsk, P.; Brabham, C.; Rouse, C.E.; et al. New directions for integrated weed management: Modern technologies, tools and knowledge discovery. Adv. Agron. 2019, 155, 243–319. [Google Scholar] [CrossRef]
- Lamberth, C. Naturally occurring amino acid derivatives with herbicidal, fungicidal or insecticidal activity. Amino Acids 2016, 48, 929–940. [Google Scholar] [CrossRef] [PubMed]
- Cantrell, C.L.; Dayan, F.E.; Duke, S.O. Natural Products As Sources for New Pesticides. J. Nat. Prod. 2012, 75, 1231–1242. [Google Scholar] [CrossRef] [PubMed]
- Duke, S.O.; Owens, D.K.; Dayan, F.E. The Growing Need for Biochemical Bioherbicides. In Biopesticides: State of the Art and Future Opportunities; American Chemical Society: Washington, DC, USA, 2014; pp. 31–43. [Google Scholar] [CrossRef]
- Hussain, H.; Nazir, M.; Saleem, M.; Al-Harrasi, A.; Elizbit; Green, I.R. Fruitful decade of fungal metabolites as anti-diabetic agents from 2010 to 2019: Emphasis on α-glucosidase inhibitors. Phytochem. Rev. 2021, 20, 145–179. [Google Scholar] [CrossRef]
- Strange, R.N. Phytotoxins produced by microbial plant pathogens. Nat. Prod. Rep. 2006, 24, 127–144. [Google Scholar] [CrossRef]
- Zhu, H.; Chen, C.; Xue, Y.; Tong, Q.; Li, X.; Chen, X.; Wang, J.; Yao, G.; Luo, Z.; Zhang, Y. Asperchalasine A, a Cytochalasan Dimer with an Unprecedented Decacyclic Ring System, from Aspergillus flavipes. Angew. Chem. Int. Ed. 2015, 54, 13374–13378. [Google Scholar] [CrossRef]
- Zhu, H.; Chen, C.; Tong, Q.; Li, X.-N.; Yang, J.; Xue, Y.; Luo, Z.; Wang, J.; Yao, G.; Zhang, Y. Epicochalasines A and B: Two Bioactive Merocytochalasans Bearing Caged Epicoccine Dimer Units from Aspergillus flavipes. Angew. Chem. Int. Ed. 2016, 55, 3486–3490. [Google Scholar] [CrossRef]
- Wei, G.Z.; Chen, C.M.; Tong, Q.Y.; Huang, J.F.; Wang, W.J.; Wu, Z.D.; Yang, J.; Liu, J.J.; Xue, Y.B.; Luo, Z.W.; et al. Aspergilasines A−D: Four merocytochalasans with new carbon skeletons from Aspergillus flavipes QCS12. Org. Lett. 2017, 19, 4399–4402. [Google Scholar] [CrossRef]
- Yin, G.P.; Wu, Y.R.; Han, C.; Wang, X.B.; Gao, H.L.; Yin, Y.; Kong, L.Y.; Yang, M.H. Asperones A–E, five dimeric polyketides with new carbon skeletons from the fungus Aspergillus sp. AWG 1–15. Org. Chem. Front. 2018, 5, 2432–2436. [Google Scholar] [CrossRef]
- Li, H.Q.; Zhang, R.G.; Cao, F.; Wang, J.P.; Hu, Z.X.; Zhang, Y.H. Discovery of an oxepine-containing diketopiperazine derivative active against concanavalin A-induced hepatitis. J. Nat. Prod. 2020, 83, 12065–12073. [Google Scholar]
- Hu, Z.; Zhu, Y.; Chen, J.; Chen, J.; Li, C.; Gao, Z.; Li, J.; Liu, L. Sesquiterpenoids with Phytotoxic and Antifungal Activities from a Pathogenic Fungus Aspergillus alabamensis. J. Agric. Food Chem. 2022, 70, 11207–11214. [Google Scholar] [CrossRef] [PubMed]
- Liao, L.; Zhang, X.; Lou, Y.; Zhou, C.; Yuan, Q.; Gao, J. Discovery of Three New Phytotoxins from the Fungus Aspergillus nidulans by Pathway Inactivation. Molecules 2019, 24, 515. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.-L.; Han, X.-B.; Wang, M.; Zeng, Y.-T.; Li, Y.-Q.; Ma, G.-Y.; Liu, J.; Zheng, C.-J.; Wen, M.-X.; Zhang, Z.-F.; et al. Herbicidal and Antifungal Xanthone Derivatives from the Alga-Derived Fungus Aspergillus versicolor D5. J. Agric. Food Chem. 2020, 68, 11207–11214. [Google Scholar] [CrossRef]
- Wu, Z.Y.; Zhang, Y.N.; Fang, W.; Shi, L.Q.; Wan, Z.Y. Four new anthraquinones from a soil actinomycete Streptomyces sp. WS-13394 and their bioactivities. Nat. Prod. Res. 2018, 32, 412–417. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, M.; Li, K.; Liu, F.; Zhang, F.; Zhang, Y.; Wang, K.; Fang, W. 1,4,6-trihydroxy-8-alkylated-9,10-anthraquinones with antibacterial activities from soil-derived Streptomyces sp. WS-13394. J. Antibiot. 2022, 75, 375–379. [Google Scholar] [CrossRef]
- Liu, M.; Wan, Z.; Yang, S.; Liu, F.; Yang, X.; Wu, Z.; Zhang, Y.; Wang, K.; Fang, W. Two new dipimprinine alkaloids from soil-derived Streptomyces sp. 44414B. J. Antibiot. 2021, 74, 474–476. [Google Scholar] [CrossRef]
- Hayashi, K.; Tokura, K.; Okabe, K.; Yamamoto, K.; Tawara, K. Syntheses and antimicrobial activities of fomecins A and B, asperugin, and related compounds. Chem. Pharm. Bull. 1982, 30, 2860–2869. [Google Scholar] [CrossRef]
- Kudo, S.; Murakami, T.; Miyanishi, J.; Tanaka, K.; Takada, N.; Hashimoto, M. Isolation and absolute stereochemistry of optically active sydonic acid from Glonium sp. (Hysteriales, Ascomycota). Biosci. Biotechnol. Biochem. 2009, 73, 203–204. [Google Scholar] [CrossRef]
- Zhang, S.-P.; Huang, R.; Li, F.-F.; Wei, H.-X.; Fang, X.-W.; Xie, X.-S.; Lin, D.-G.; Wu, S.-H.; He, J. Antiviral anthraquinones and azaphilones produced by an endophytic fungus Nigrospora sp. from Aconitum carmichaeli. Fitoterapia 2016, 112, 85–89. [Google Scholar] [CrossRef]
- Huo, C.; Lu, X.; Zheng, Z.; Li, Y.; Xu, Y.; Zheng, H.; Niu, Y. Azaphilones with protein tyrosine phosphatase inhibitory activity isolated from the fungus Aspergillus deflectus. Phytochemistry 2019, 170, 112224. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, M.; Wang, X.B.; Li, Y.Q.; Ding, J.L.; Lan, M.X.; Gao, X.; Zhao, D.L.; Zhang, C.S.; Wu, G.X. Phytotoxic azaphilones from the mangrove-derived fungus Penicillium sclerotiorum HY5. Front. Microbiol. 2022, 19, 880874. [Google Scholar]
- Wang, D.; Zhang, Y.; Li, X.; Pan, H.; Chang, M.; Zheng, T.; Sun, J.; Qiu, D.; Zhang, M.; Wei, D.; et al. Potential allelopathic azaphilones produced by the endophytic Chaetomium globosum TY1 inhabited in Ginkgo biloba using the one strain−many compounds method. Nat. Prod. Res. 2016, 31, 724–728. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Xu, Y.; Shao, C.-L.; Yang, R.-Y.; Zheng, C.-J.; Chen, Y.-Y.; Fu, X.-M.; Qian, P.-Y.; She, Z.-G.; De Voogd, N.J.; et al. Antibacterial Bisabolane-Type Sesquiterpenoids from the Sponge-Derived Fungus Aspergillus sp. Mar. Drugs 2012, 10, 234–241. [Google Scholar] [CrossRef]
- Riga, R.; Happyana, N.; Hakim, E.H. Sesquiterpenes produced by Pestalotiopsis microspora HF 12440 isolated from Artocarpus heterophyllus. Nat. Prod. Res. 2019, 34, 2229–2231. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. Olex2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. Sect. A 2008, A64, 112–122. [Google Scholar] [CrossRef]
- Mata, R.; Bye, R.; Linares, E.; Macías, M.; Rivero-Cruz, I.; Pérez, O.; Timmermann, B.N. Phytotoxic compounds from Flourensia cernua. Phytochemistry 2003, 64, 285–291. [Google Scholar] [CrossRef]
- Wu, H.-B.; Ma, L.-H.; Li, X.-M.; Liu, T.-T. Selective Phytotoxic Effects of Sesquiterpenoids from Sonchus arvensis as a Preliminary Approach for the Biocontrol of Two Problematic Weeds of Wheat. J. Agric. Food Chem. 2022, 70, 9412–9420. [Google Scholar] [CrossRef]
Position | 1 | 2 | 3 | 4 |
---|---|---|---|---|
2-OH | 12.84 (s) | 12.54 (s) | ||
5 | 7.17 (s) | 7.16 (s) | 7.18 (s) | 6.56 (s) |
7 | 10.73 (s) | 10.73 (s) | 10.74 (s) | 10.12 (s) |
8 | 10.11 (s) | 10.09 (s) | 10.11 (s) | 5.32 (2H, s) |
1′ | 4.78 (2H, d, 7.3) | 4.80 (2H, d, 7.3) | 4.26 (2H, t, 7.2) | 4.68 (2H, d, 7.2) |
2′ | 5.52 (t, 7.3) | 5.50 (td, 7.3, 1.2) | 2.46 (2H, t, 7.2) | 5.50 (m) |
4′ | 2.02 (2H, m) | 1.97 (2H, t, 7.4) | 5.24 (td, 6.9, 1.1) | 1.97 (2H, t, 7.6) |
5′ | 2.05 (2H, m) | 1.47 (2H, m) | 2.13 (2H, dd, 14.9, 7.3) | 1.50 (2H, m) |
6′ | 5.08 (1H, m) | 1.88 (2H, t, 7.5) | 2.04 (2H, overlapped) | 1.92 (2H, t, 7.6) |
8′ | 1.95 (2H, t, 7.2) | 5.71 (d, 10.8) | 5.77 (d, 10.8) | 5.75 (d, 10.7) |
9′ | 2.05 (2H, overlapped) | 6.20 (ddd, 15.1, 10.8, 1.0) | 6.21 (ddd, 15.1, 10.8, 1.0) | 6.22 (ddd, 15.1, 10.8, 1.1) |
10′ | 5.08 (m) | 5.53 (dd, 15.2, 7.1) | 5.50 (dd, 15.1, 7.0) | 5.53 (dd, 15.2, 7.0) |
11′ | - | 2.33 (sext, 6.8) | 2.31 (sext, 6.8) | 2.33 (sext, 6.8) |
12′ | 1.65 (3H, s) | 0.99 (3H, d, 6.8) | 0.97 (3H, d, 6.8) | 0.99 (3H, d, 6.8) |
13′ | 1.58 (3H, s) | 0.99 (3H, d, 6.8) | 0.97 (3H, d, 6.8) | 0.99 (3H, d, 6.8) |
14′ | 1.58 (3H, s) | 1.67 (3H, s) | 1.72 (3H, s) | 1.70 (3H, s) |
15′ | 1.65 (3H, s) | 1.63 (3H, s) | 1.67 (3H, s) | 1.62 (3H, s) |
2″ | - | - | - | 2.86 (3H, s) |
Position | 1 | 2 | 3 | 4 |
---|---|---|---|---|
1 | 137.8 s | 137.6 s | 138.2 s | 133.5 s |
2 | 159.7 s | 159.7 s | 159.2 s | 159.4 s |
3 | 113.6 s | 113.6 s | 113.7 s | 113.4 s |
4 | 134.6 s | 134.5 s | 134.4 s | 137.0 s |
5 | 117.6 d | 117.6 d | 117.6 d | 111.3 d |
6 | 157.9 s | 157.9 s | 157.3 s | 158.5 s |
7 | 196.5 d | 196.5 d | 196.6 d | 195.0 d |
8 | 193.1 d | 193.0 d | 193.1 d | 63.2 t |
1′ | 69.5 t | 69.4 t | 72.2 t | 69.2 t |
2′ | 120.8 d | 120.8 d | 40.4 t | 121.2 d |
3′ | 143.4 s | 143.6 s | 132.3 s | 142.8 s |
4′ | 40.5 t | 39.9 t | 127.5 d | 39.9 t |
5′ | 27.5 t | 26.5 t | 27.3 t | 26.6 t |
6′ | 124.7 d | 39.8 t | 40.7 t | 39.9 t |
7′ | 136.0 s | 136.6 s | 136.4 s | 136.7 s |
8′ | 40.4 t | 126.2 d | 126.2 d | 126.2 d |
9′ | 27.1 t | 124.8 d | 124.7 d | 124.8 d |
10′ | 125.2 d | 140.1 d | 140.1 d | 140.0 d |
11′ | 131.8 s | 32.1 d | 32.1 d | 32.2 d |
12′ | 26.0 q | 23.0 q | 23.0 q | 23.0 q |
13′ | 17.9 q | 23.0 q | 23.0 q | 23.0 q |
14′ | 16.2 q | 16.5 q | 16.6 q | 16.5 q |
15′ | 16.5 q | 16.3 q | 16.3 q | 16.3 q |
1″ | - | - | - | 170.6 s |
2″ | 20.9 q |
Position | δH (J in Hz) | δC |
---|---|---|
1 | 8.72 (s) | 153.2 d |
3 | - | 160.3 s |
4 | 6.44 (s) | 108.1 d |
4a | - | 146.0 s |
5 | 5.35 (s) | 103.7 d |
6 | - | 191.5 s |
7 | - | 87.7 s |
8 | - | 165.2 s |
8a | - | 111.1 s |
9 | 1.69 (3H, 3) | 24.6 q |
10 | 2.28 (3H, s) | 17.9 q |
11 | - | 168.3 s |
12 | - | 124.2 s |
1′ | - | 200.7 s |
2′ | 3.58 (m) | 43.3 d |
3′ | 1.56 (m), 1.34 (m) | 33.3 t |
4′ | 1.32 (2H, m) | 28.9 t |
5′ | 1.04 (2H, m) | 27.5 t |
6′ | 1.35 (2H, m) | 26.3 d |
7′ | 1.20 (2H, m) | 22.1 s |
8′ | 0.86 (t, 7.3) | 13.0 t |
9′ | 1.16 (3H, d, 6.6) | 13.8 t |
Compounds a | Inhibition Rates (%) b | ||
---|---|---|---|
E. crusgalli | A. retroflexus | ||
Root | Shoot | Radicle and Germ | |
1 | 16.15 ± 0.97 | 13.93 ± 0.53 | 22.25 ± 1.15 |
2 | 23.15 ± 1.19 | 14.92 ± 0.29 | 18.42 ± 0.90 |
3 | 23.22 ± 1.13 | 16.11 ± 0.38 | 15.31 ± 1.38 |
4 | 30.05 ± 1.50 | 21.61 ± 1.06 | 38.01 ± 1.56 |
5 | 51.74 ± 0.60 | 56.66 ± 0.67 | 53.38 ± 0.52 |
6 | 46.78 ± 0.63 | 52.74 ± 0.82 | 78.34 ± 1.39 |
2,4-Dc | 94.18 ± 0.49 | 77.84 ± 0.45 | 80.70 ± 0.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Liu, F.; Ke, S.; Zhang, Z.; Hu, H.; Fang, W.; Xiao, S.; Zhang, Y.; Wang, Y.; Wang, K. Secondary Metabolites from Aspergillus sparsus NBERC_28952 and Their Herbicidal Activities. Plants 2023, 12, 203. https://doi.org/10.3390/plants12010203
Wu Z, Liu F, Ke S, Zhang Z, Hu H, Fang W, Xiao S, Zhang Y, Wang Y, Wang K. Secondary Metabolites from Aspergillus sparsus NBERC_28952 and Their Herbicidal Activities. Plants. 2023; 12(1):203. https://doi.org/10.3390/plants12010203
Chicago/Turabian StyleWu, Zhaoyuan, Fang Liu, Shaoyong Ke, Zhigang Zhang, Hongtao Hu, Wei Fang, Shaoyujia Xiao, Yani Zhang, Yueying Wang, and Kaimei Wang. 2023. "Secondary Metabolites from Aspergillus sparsus NBERC_28952 and Their Herbicidal Activities" Plants 12, no. 1: 203. https://doi.org/10.3390/plants12010203
APA StyleWu, Z., Liu, F., Ke, S., Zhang, Z., Hu, H., Fang, W., Xiao, S., Zhang, Y., Wang, Y., & Wang, K. (2023). Secondary Metabolites from Aspergillus sparsus NBERC_28952 and Their Herbicidal Activities. Plants, 12(1), 203. https://doi.org/10.3390/plants12010203