Secondary Metabolites from Aspergillus sparsus NBERC_28952 and Their Herbicidal Activities
Abstract
:1. Introduction
2. Results
2.1. Compounds Identification
2.2. Evaluation of Herbicidal Activities
3. Discussion
4. Materials and Methods
4.1. General Experimental Procedures
4.2. Fungal Material
4.3. Cultivation, Extraction, and Isolation
4.4. X-ray Crystallographic Data Analysis
4.5. Herbicidal Activity Assays
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gaines, T.A.; Busi, R.; Küpper, A. Can new herbicide discovery allow weed management to outpace resistance evolution? Pest Manag. Sci. 2021, 77, 3036–3041. [Google Scholar] [CrossRef] [PubMed]
- Korres, N.E.; Burgos, N.R.; Travlos, I.; Vurro, M.; Gitsopoulos, T.K.; Varanasi, V.K.; Duke, S.O.; Kudsk, P.; Brabham, C.; Rouse, C.E.; et al. New directions for integrated weed management: Modern technologies, tools and knowledge discovery. Adv. Agron. 2019, 155, 243–319. [Google Scholar] [CrossRef]
- Lamberth, C. Naturally occurring amino acid derivatives with herbicidal, fungicidal or insecticidal activity. Amino Acids 2016, 48, 929–940. [Google Scholar] [CrossRef] [PubMed]
- Cantrell, C.L.; Dayan, F.E.; Duke, S.O. Natural Products As Sources for New Pesticides. J. Nat. Prod. 2012, 75, 1231–1242. [Google Scholar] [CrossRef] [PubMed]
- Duke, S.O.; Owens, D.K.; Dayan, F.E. The Growing Need for Biochemical Bioherbicides. In Biopesticides: State of the Art and Future Opportunities; American Chemical Society: Washington, DC, USA, 2014; pp. 31–43. [Google Scholar] [CrossRef]
- Hussain, H.; Nazir, M.; Saleem, M.; Al-Harrasi, A.; Elizbit; Green, I.R. Fruitful decade of fungal metabolites as anti-diabetic agents from 2010 to 2019: Emphasis on α-glucosidase inhibitors. Phytochem. Rev. 2021, 20, 145–179. [Google Scholar] [CrossRef]
- Strange, R.N. Phytotoxins produced by microbial plant pathogens. Nat. Prod. Rep. 2006, 24, 127–144. [Google Scholar] [CrossRef]
- Zhu, H.; Chen, C.; Xue, Y.; Tong, Q.; Li, X.; Chen, X.; Wang, J.; Yao, G.; Luo, Z.; Zhang, Y. Asperchalasine A, a Cytochalasan Dimer with an Unprecedented Decacyclic Ring System, from Aspergillus flavipes. Angew. Chem. Int. Ed. 2015, 54, 13374–13378. [Google Scholar] [CrossRef]
- Zhu, H.; Chen, C.; Tong, Q.; Li, X.-N.; Yang, J.; Xue, Y.; Luo, Z.; Wang, J.; Yao, G.; Zhang, Y. Epicochalasines A and B: Two Bioactive Merocytochalasans Bearing Caged Epicoccine Dimer Units from Aspergillus flavipes. Angew. Chem. Int. Ed. 2016, 55, 3486–3490. [Google Scholar] [CrossRef]
- Wei, G.Z.; Chen, C.M.; Tong, Q.Y.; Huang, J.F.; Wang, W.J.; Wu, Z.D.; Yang, J.; Liu, J.J.; Xue, Y.B.; Luo, Z.W.; et al. Aspergilasines A−D: Four merocytochalasans with new carbon skeletons from Aspergillus flavipes QCS12. Org. Lett. 2017, 19, 4399–4402. [Google Scholar] [CrossRef]
- Yin, G.P.; Wu, Y.R.; Han, C.; Wang, X.B.; Gao, H.L.; Yin, Y.; Kong, L.Y.; Yang, M.H. Asperones A–E, five dimeric polyketides with new carbon skeletons from the fungus Aspergillus sp. AWG 1–15. Org. Chem. Front. 2018, 5, 2432–2436. [Google Scholar] [CrossRef]
- Li, H.Q.; Zhang, R.G.; Cao, F.; Wang, J.P.; Hu, Z.X.; Zhang, Y.H. Discovery of an oxepine-containing diketopiperazine derivative active against concanavalin A-induced hepatitis. J. Nat. Prod. 2020, 83, 12065–12073. [Google Scholar]
- Hu, Z.; Zhu, Y.; Chen, J.; Chen, J.; Li, C.; Gao, Z.; Li, J.; Liu, L. Sesquiterpenoids with Phytotoxic and Antifungal Activities from a Pathogenic Fungus Aspergillus alabamensis. J. Agric. Food Chem. 2022, 70, 11207–11214. [Google Scholar] [CrossRef] [PubMed]
- Liao, L.; Zhang, X.; Lou, Y.; Zhou, C.; Yuan, Q.; Gao, J. Discovery of Three New Phytotoxins from the Fungus Aspergillus nidulans by Pathway Inactivation. Molecules 2019, 24, 515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, D.-L.; Han, X.-B.; Wang, M.; Zeng, Y.-T.; Li, Y.-Q.; Ma, G.-Y.; Liu, J.; Zheng, C.-J.; Wen, M.-X.; Zhang, Z.-F.; et al. Herbicidal and Antifungal Xanthone Derivatives from the Alga-Derived Fungus Aspergillus versicolor D5. J. Agric. Food Chem. 2020, 68, 11207–11214. [Google Scholar] [CrossRef]
- Wu, Z.Y.; Zhang, Y.N.; Fang, W.; Shi, L.Q.; Wan, Z.Y. Four new anthraquinones from a soil actinomycete Streptomyces sp. WS-13394 and their bioactivities. Nat. Prod. Res. 2018, 32, 412–417. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, M.; Li, K.; Liu, F.; Zhang, F.; Zhang, Y.; Wang, K.; Fang, W. 1,4,6-trihydroxy-8-alkylated-9,10-anthraquinones with antibacterial activities from soil-derived Streptomyces sp. WS-13394. J. Antibiot. 2022, 75, 375–379. [Google Scholar] [CrossRef]
- Liu, M.; Wan, Z.; Yang, S.; Liu, F.; Yang, X.; Wu, Z.; Zhang, Y.; Wang, K.; Fang, W. Two new dipimprinine alkaloids from soil-derived Streptomyces sp. 44414B. J. Antibiot. 2021, 74, 474–476. [Google Scholar] [CrossRef]
- Hayashi, K.; Tokura, K.; Okabe, K.; Yamamoto, K.; Tawara, K. Syntheses and antimicrobial activities of fomecins A and B, asperugin, and related compounds. Chem. Pharm. Bull. 1982, 30, 2860–2869. [Google Scholar] [CrossRef] [Green Version]
- Kudo, S.; Murakami, T.; Miyanishi, J.; Tanaka, K.; Takada, N.; Hashimoto, M. Isolation and absolute stereochemistry of optically active sydonic acid from Glonium sp. (Hysteriales, Ascomycota). Biosci. Biotechnol. Biochem. 2009, 73, 203–204. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.-P.; Huang, R.; Li, F.-F.; Wei, H.-X.; Fang, X.-W.; Xie, X.-S.; Lin, D.-G.; Wu, S.-H.; He, J. Antiviral anthraquinones and azaphilones produced by an endophytic fungus Nigrospora sp. from Aconitum carmichaeli. Fitoterapia 2016, 112, 85–89. [Google Scholar] [CrossRef]
- Huo, C.; Lu, X.; Zheng, Z.; Li, Y.; Xu, Y.; Zheng, H.; Niu, Y. Azaphilones with protein tyrosine phosphatase inhibitory activity isolated from the fungus Aspergillus deflectus. Phytochemistry 2019, 170, 112224. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, M.; Wang, X.B.; Li, Y.Q.; Ding, J.L.; Lan, M.X.; Gao, X.; Zhao, D.L.; Zhang, C.S.; Wu, G.X. Phytotoxic azaphilones from the mangrove-derived fungus Penicillium sclerotiorum HY5. Front. Microbiol. 2022, 19, 880874. [Google Scholar]
- Wang, D.; Zhang, Y.; Li, X.; Pan, H.; Chang, M.; Zheng, T.; Sun, J.; Qiu, D.; Zhang, M.; Wei, D.; et al. Potential allelopathic azaphilones produced by the endophytic Chaetomium globosum TY1 inhabited in Ginkgo biloba using the one strain−many compounds method. Nat. Prod. Res. 2016, 31, 724–728. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Xu, Y.; Shao, C.-L.; Yang, R.-Y.; Zheng, C.-J.; Chen, Y.-Y.; Fu, X.-M.; Qian, P.-Y.; She, Z.-G.; De Voogd, N.J.; et al. Antibacterial Bisabolane-Type Sesquiterpenoids from the Sponge-Derived Fungus Aspergillus sp. Mar. Drugs 2012, 10, 234–241. [Google Scholar] [CrossRef] [Green Version]
- Riga, R.; Happyana, N.; Hakim, E.H. Sesquiterpenes produced by Pestalotiopsis microspora HF 12440 isolated from Artocarpus heterophyllus. Nat. Prod. Res. 2019, 34, 2229–2231. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. Olex2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. Sect. A 2008, A64, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Mata, R.; Bye, R.; Linares, E.; Macías, M.; Rivero-Cruz, I.; Pérez, O.; Timmermann, B.N. Phytotoxic compounds from Flourensia cernua. Phytochemistry 2003, 64, 285–291. [Google Scholar] [CrossRef]
- Wu, H.-B.; Ma, L.-H.; Li, X.-M.; Liu, T.-T. Selective Phytotoxic Effects of Sesquiterpenoids from Sonchus arvensis as a Preliminary Approach for the Biocontrol of Two Problematic Weeds of Wheat. J. Agric. Food Chem. 2022, 70, 9412–9420. [Google Scholar] [CrossRef]
Position | 1 | 2 | 3 | 4 |
---|---|---|---|---|
2-OH | 12.84 (s) | 12.54 (s) | ||
5 | 7.17 (s) | 7.16 (s) | 7.18 (s) | 6.56 (s) |
7 | 10.73 (s) | 10.73 (s) | 10.74 (s) | 10.12 (s) |
8 | 10.11 (s) | 10.09 (s) | 10.11 (s) | 5.32 (2H, s) |
1′ | 4.78 (2H, d, 7.3) | 4.80 (2H, d, 7.3) | 4.26 (2H, t, 7.2) | 4.68 (2H, d, 7.2) |
2′ | 5.52 (t, 7.3) | 5.50 (td, 7.3, 1.2) | 2.46 (2H, t, 7.2) | 5.50 (m) |
4′ | 2.02 (2H, m) | 1.97 (2H, t, 7.4) | 5.24 (td, 6.9, 1.1) | 1.97 (2H, t, 7.6) |
5′ | 2.05 (2H, m) | 1.47 (2H, m) | 2.13 (2H, dd, 14.9, 7.3) | 1.50 (2H, m) |
6′ | 5.08 (1H, m) | 1.88 (2H, t, 7.5) | 2.04 (2H, overlapped) | 1.92 (2H, t, 7.6) |
8′ | 1.95 (2H, t, 7.2) | 5.71 (d, 10.8) | 5.77 (d, 10.8) | 5.75 (d, 10.7) |
9′ | 2.05 (2H, overlapped) | 6.20 (ddd, 15.1, 10.8, 1.0) | 6.21 (ddd, 15.1, 10.8, 1.0) | 6.22 (ddd, 15.1, 10.8, 1.1) |
10′ | 5.08 (m) | 5.53 (dd, 15.2, 7.1) | 5.50 (dd, 15.1, 7.0) | 5.53 (dd, 15.2, 7.0) |
11′ | - | 2.33 (sext, 6.8) | 2.31 (sext, 6.8) | 2.33 (sext, 6.8) |
12′ | 1.65 (3H, s) | 0.99 (3H, d, 6.8) | 0.97 (3H, d, 6.8) | 0.99 (3H, d, 6.8) |
13′ | 1.58 (3H, s) | 0.99 (3H, d, 6.8) | 0.97 (3H, d, 6.8) | 0.99 (3H, d, 6.8) |
14′ | 1.58 (3H, s) | 1.67 (3H, s) | 1.72 (3H, s) | 1.70 (3H, s) |
15′ | 1.65 (3H, s) | 1.63 (3H, s) | 1.67 (3H, s) | 1.62 (3H, s) |
2″ | - | - | - | 2.86 (3H, s) |
Position | 1 | 2 | 3 | 4 |
---|---|---|---|---|
1 | 137.8 s | 137.6 s | 138.2 s | 133.5 s |
2 | 159.7 s | 159.7 s | 159.2 s | 159.4 s |
3 | 113.6 s | 113.6 s | 113.7 s | 113.4 s |
4 | 134.6 s | 134.5 s | 134.4 s | 137.0 s |
5 | 117.6 d | 117.6 d | 117.6 d | 111.3 d |
6 | 157.9 s | 157.9 s | 157.3 s | 158.5 s |
7 | 196.5 d | 196.5 d | 196.6 d | 195.0 d |
8 | 193.1 d | 193.0 d | 193.1 d | 63.2 t |
1′ | 69.5 t | 69.4 t | 72.2 t | 69.2 t |
2′ | 120.8 d | 120.8 d | 40.4 t | 121.2 d |
3′ | 143.4 s | 143.6 s | 132.3 s | 142.8 s |
4′ | 40.5 t | 39.9 t | 127.5 d | 39.9 t |
5′ | 27.5 t | 26.5 t | 27.3 t | 26.6 t |
6′ | 124.7 d | 39.8 t | 40.7 t | 39.9 t |
7′ | 136.0 s | 136.6 s | 136.4 s | 136.7 s |
8′ | 40.4 t | 126.2 d | 126.2 d | 126.2 d |
9′ | 27.1 t | 124.8 d | 124.7 d | 124.8 d |
10′ | 125.2 d | 140.1 d | 140.1 d | 140.0 d |
11′ | 131.8 s | 32.1 d | 32.1 d | 32.2 d |
12′ | 26.0 q | 23.0 q | 23.0 q | 23.0 q |
13′ | 17.9 q | 23.0 q | 23.0 q | 23.0 q |
14′ | 16.2 q | 16.5 q | 16.6 q | 16.5 q |
15′ | 16.5 q | 16.3 q | 16.3 q | 16.3 q |
1″ | - | - | - | 170.6 s |
2″ | 20.9 q |
Position | δH (J in Hz) | δC |
---|---|---|
1 | 8.72 (s) | 153.2 d |
3 | - | 160.3 s |
4 | 6.44 (s) | 108.1 d |
4a | - | 146.0 s |
5 | 5.35 (s) | 103.7 d |
6 | - | 191.5 s |
7 | - | 87.7 s |
8 | - | 165.2 s |
8a | - | 111.1 s |
9 | 1.69 (3H, 3) | 24.6 q |
10 | 2.28 (3H, s) | 17.9 q |
11 | - | 168.3 s |
12 | - | 124.2 s |
1′ | - | 200.7 s |
2′ | 3.58 (m) | 43.3 d |
3′ | 1.56 (m), 1.34 (m) | 33.3 t |
4′ | 1.32 (2H, m) | 28.9 t |
5′ | 1.04 (2H, m) | 27.5 t |
6′ | 1.35 (2H, m) | 26.3 d |
7′ | 1.20 (2H, m) | 22.1 s |
8′ | 0.86 (t, 7.3) | 13.0 t |
9′ | 1.16 (3H, d, 6.6) | 13.8 t |
Compounds a | Inhibition Rates (%) b | ||
---|---|---|---|
E. crusgalli | A. retroflexus | ||
Root | Shoot | Radicle and Germ | |
1 | 16.15 ± 0.97 | 13.93 ± 0.53 | 22.25 ± 1.15 |
2 | 23.15 ± 1.19 | 14.92 ± 0.29 | 18.42 ± 0.90 |
3 | 23.22 ± 1.13 | 16.11 ± 0.38 | 15.31 ± 1.38 |
4 | 30.05 ± 1.50 | 21.61 ± 1.06 | 38.01 ± 1.56 |
5 | 51.74 ± 0.60 | 56.66 ± 0.67 | 53.38 ± 0.52 |
6 | 46.78 ± 0.63 | 52.74 ± 0.82 | 78.34 ± 1.39 |
2,4-Dc | 94.18 ± 0.49 | 77.84 ± 0.45 | 80.70 ± 0.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Liu, F.; Ke, S.; Zhang, Z.; Hu, H.; Fang, W.; Xiao, S.; Zhang, Y.; Wang, Y.; Wang, K. Secondary Metabolites from Aspergillus sparsus NBERC_28952 and Their Herbicidal Activities. Plants 2023, 12, 203. https://doi.org/10.3390/plants12010203
Wu Z, Liu F, Ke S, Zhang Z, Hu H, Fang W, Xiao S, Zhang Y, Wang Y, Wang K. Secondary Metabolites from Aspergillus sparsus NBERC_28952 and Their Herbicidal Activities. Plants. 2023; 12(1):203. https://doi.org/10.3390/plants12010203
Chicago/Turabian StyleWu, Zhaoyuan, Fang Liu, Shaoyong Ke, Zhigang Zhang, Hongtao Hu, Wei Fang, Shaoyujia Xiao, Yani Zhang, Yueying Wang, and Kaimei Wang. 2023. "Secondary Metabolites from Aspergillus sparsus NBERC_28952 and Their Herbicidal Activities" Plants 12, no. 1: 203. https://doi.org/10.3390/plants12010203
APA StyleWu, Z., Liu, F., Ke, S., Zhang, Z., Hu, H., Fang, W., Xiao, S., Zhang, Y., Wang, Y., & Wang, K. (2023). Secondary Metabolites from Aspergillus sparsus NBERC_28952 and Their Herbicidal Activities. Plants, 12(1), 203. https://doi.org/10.3390/plants12010203