In Vitro Study of the Biological Potential of Wastewater Obtained after the Distillation of Four Bulgarian Oil-Bearing Roses
Abstract
:1. Introduction
2. Results
2.1. Determination of Total Polyphenols in Wastewaters (WWs)
2.2. Antioxidant and Radical Scavenging Properties of WWs
2.3. Antimicrobial Activities
2.4. In Vitro Cytotoxicity Evaluation (MTT Assay)
2.5. Antiherpes Viral Activities
3. Discussion
4. Materials and Methods
4.1. General
4.2. Preparation, Polyphenol, and Antioxidant analysis of Wastewater from the Industrial Cycle of Water–Steam Distillation of R. damascena Mill., R. alba L., R. gallica L., and R. centifolia L. Oils
4.2.1. Preparation
4.2.2. Total Polyphenols Determination
4.2.3. Antioxidant and Radical Scavenging Properties of Wastewater
DPPH Assay
ABTS+ Assay
Inhibition of Superoxide (O2−) Generation
Inhibition of O2− generation
4.3. Antibacterial Properties of Wastewater against Human Pathogens and Their Mode of Action
4.3.1. Test Microorganisms
4.3.2. Culture Medium and Growth Conditions
4.3.3. Minimal Inhibitory (MIC) and Bactericidal (MBC) Concentrations
4.3.4. Dehydrogenase (DEHA) Activity
4.4. Cytotoxicity of Wastewaters
4.4.1. Cell Lines and Culture Conditions
4.4.2. In Vitro Cytotoxicity Evaluation (MTT Assay) on Cell Lines
4.5. Antiviral Properties of Wastewaters against the Replication of Herpes Simplex Virus Type-1 (HSV-1)
4.5.1. Cells
4.5.2. Viruses
HSV-1 Victoria Strain
HSV-1 Resistant to ACV
4.5.3. Cytotoxicity Assay
4.5.4. Antiviral Activity Assay
4.6. Mathematical Modeling of the In Vitro Cytotoxicity Data
4.7. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feng, L.G.; Chen, C.; Sheng, L.X.; Liu, P.; Tao, J.; Su, J.L.; Zhao, L.-Y. Comparative analysis of headspace volatiles of chinese Rosa rugosa. Molecules 2010, 15, 8390–8399. [Google Scholar] [CrossRef] [PubMed]
- Pal, P.K. Evaluation, genetic diversity, recent development of distillation method, challenges and opportunities of Rosa damascena: A review. J. Essent. Oil Bear. Plants 2013, 16, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Younis, A.; Khan, M.; Ali, A.; Pervez, M. Performance of four Rosa species under Faisalabad agro-climatic conditions. Cad. Pesqui. J. 2006, 18, 8–15. [Google Scholar]
- Caissard, J.C.; Bergougnoux, V.; Martin, M.; Mauriat, M.; Baudino, S. Chemical and histochemical analysis of Quatre Saisons Blanc Mousseux, a moss rose of the Rosa x damascena group. Ann. Bot. 2006, 97, 231–238. [Google Scholar] [CrossRef] [Green Version]
- Ginova, A.; TsveTkov, I.; Kondakova, V. Rosa damascena Mill.—An overview for evaluation of propagation methods. Bulg. J. Agric. Sci. 2012, 18, 545–556. [Google Scholar]
- Kovatcheva, N.; Zheljazkov, V.D.; Astatkie, T. Productivity, oil content, composition, and bioactivity of oil-bearing rose accessions. HortScience 2011, 46, 710–714. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, N.; Piacente, S.; Pizza, C.; Burke, A.; Khan, A.I.; Hayt, A.J. The anti-HIV activity and mechanisms of action of pure compounds isolated from Rosa damascena. Biochem. Biophys. Res. Commun. 1996, 229, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Shafei, M.N.; Rakhshandah, H.; Boskabady, M.H. Antitussive effect of Rosa damascena in Guinea pigs. Iran. J. Pharm. Res. 2003, 2, 231–234. [Google Scholar] [CrossRef]
- Boskabady, M.H.; Kiani, S.; Rakhshandah, H. Relaxant effects of Rosa damascena on guinea pig tracheal chains and its possible mechanism(s). J. Ethnopharmacol. 2006, 106, 377–382. [Google Scholar] [CrossRef]
- Ozkan, G.; Sagdiç, O.; Baydar, N.G.; Baydar, H. Note: Antioxidant and antibacterial activities of Rosa damascena flower extracts. Food Sci. Technol. Int. 2004, 10, 277–281. [Google Scholar] [CrossRef]
- Mohammed, S.A.S.; Anhar, A.A.A.; Rana, M.J. Antimicrobial activity of Palestinian medicinal plants against acne-inducing bacteria. Afr. J. Microbiol. Res. 2013, 7, 2560–2573. [Google Scholar] [CrossRef] [Green Version]
- Caliskan, U.K.; Aka, C.; Oz, M.G. Plants used in Anatolian traditional medicine for the treatment of hemorrhoid. Rec. Nat. Prod. 2017, 11, 235–250. [Google Scholar] [CrossRef]
- Lee, M.H.; Nam, T.G.; Lee, I.; Shin, E.J.; Han, A.R.; Lee, P.; Lee, S.-Y.; Lim, T.-G. Skin anti-inflammatory activity of rose petal extract (Rosa gallica) through reduction of MAPK signaling pathway. Food Sci. Nutr. 2018, 6, 2560–2567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, E.J.; Han, A.R.; Lee, M.H.; Song, Y.R.; Lee, K.M.; Nam, T.G.; Lee, P.; Lee, S.-Y.; Lim, T.-G. Extraction conditions for Rosa gallica petal extracts with anti-skin aging activities. Food Sci. Biotechnol. 2019, 28, 1439–1446. [Google Scholar] [CrossRef] [PubMed]
- Ueno, H.; Shimada, A.; Suemitsu, S.; Murakami, S.; Kitamura, N.; Wani, K.; Matsumoto, Y.; Okamoto, M.; Fujiwara, Y.; Ishihara, T. Anti-stress effects of the hydroalcoholic extract of Rosa gallica officinalis in mice. Heliyon 2019, 5, e01945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kovacheva, N.; Rusanov, K.; Atanassov, I. Industrial cultivation of oil bearing rose and rose oil production in Bulgaria during 21ST century, directions and challenges. Biotechnol. Biotechnol. Equip. 2010, 24, 1793–1798. [Google Scholar] [CrossRef] [Green Version]
- Solimine, J.; Garo, E.; Wedler, J.; Rusanov, K.; Fertig, O.; Hamburger, M.; Atanassov, I.; Butterweck, V. Tyrosinase inhibitory constituents from a polyphenol enriched fraction of rose oil distillation wastewater. Fitoterapia 2016, 108, 13–19. [Google Scholar] [CrossRef]
- Jaimand, K.; Rezaee, M.B.; Tabaei, A.S.R.; Nadery, H.K.M.; Meshkizadeh, S. Determination of tannins in rose water, wastewater and petal residue of Rosa damascena Mill. Iran. J. Med. Aromat. Plants 2011, 27, 348–357. [Google Scholar]
- Rusanov, K.; Garo, E.; Rusanova, M.; Fertig, O.; Hamburger, M.; Atanassov, I.; Butterweck, V. Recovery of polyphenols from rose oil distillation wastewater using adsorption resins—A pilot study. Planta Med. 2014, 80, 1657–1664. [Google Scholar] [CrossRef] [Green Version]
- Mikanagi, Y.; Saito, N.; Yokoi, M.; Tatsuzawa, F. Anthocyanins in flowers of genus Rosa, sections Cinnamomeae (= Rosa), Chinenses, Gallicanae and some modern garden roses. Biochem. Syst. Ecol. 2000, 28, 887–902. [Google Scholar] [CrossRef]
- An, H.J.; Kim, I.T.; Park, H.J.; Kim, H.M.; Choi, J.H.; Lee, K.T. Tormentic acid, a triterpenoid saponin, isolated from Rosa rugosa, inhibited LPS-induced iNOS, COX-2, and TNF-α expression through inactivation of the nuclear factor-κb pathway in RAW 264.7 macrophages. Int. Immunopharmacol. 2011, 11, 504–510. [Google Scholar] [CrossRef] [PubMed]
- Scalbert, A.; Manach, C.; Morand, C.; Rémésy, C.; Jiménez, L. Dietary polyphenols and the prevention of diseases. Crit. Rev. Food Sci. Nutr. 2005, 45, 287–306. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.P.; Wu, H.K.; Wu, T.; Shi, H.; Hang, B.; Aisa, H.A. Kaempferol and quercetin flavonoids from Rosa rugosa. Chem. Nat. Compd. 2006, 42, 736–737. [Google Scholar] [CrossRef]
- Velioglu, Y.S.; Mazza, G. Characterization of flavonoids in petals of Rosa damascena by HPLC and Spectral Analysis. J. Agric. Food Chem. 1991, 39, 463–467. [Google Scholar] [CrossRef]
- Borbulevych, O.Y.; Jankun, J.; Selman, S.H.; Skrzypczak-Jankun, E. Lipoxygenase interactions with natural flavonoid, quercetin, reveal a complex with protocatechuic acid in its x-ray structure at 2.1 Å resolution. Proteins Struct. Funct. Genet. 2004, 54, 13–19. [Google Scholar] [CrossRef]
- Takahama, U. Inhibition of lipoxygenase-dependent lipid peroxidation by quercetin: Mechanism of antioxidative function. Phytochemistry 1985, 24, 1443–1446. [Google Scholar] [CrossRef]
- Gong, J.H.; Shin, D.; Han, S.Y.; Kim, J.L.; Kang, Y.H. Kaempferol suppresses eosionphil infiltration and airway inflammation in airway epithelial cells and in mice with allergic asthma. J. Nutr. 2012, 142, 47–56. [Google Scholar] [CrossRef]
- Ng, T.B.; He, J.S.; Niu, S.M.; Pi, Z.F.; Shao, W.; Liu, F.; Zhao, L. A gallic acid derivative and polysaccharides with antioxidative activity from rose (Rosa rugosa) flowers. J. Pharm. Pharmacol. 2010, 56, 537–545. [Google Scholar] [CrossRef]
- Georgieva, A.; Ilieva, Y.; Kokanova-Nedialkova, Z.; Zaharieva, M.M.; Nedialkov, P.; Dobreva, A.; Kroumov, A.D.; Najdenski, H.; Mileva, M. Redox-modulating capacity and antineoplastic activity of wastewater obtained from the distillation of the essential oils of four bulgarian oil-bearing roses. Antioxidants 2021, 10, 1615. [Google Scholar] [CrossRef]
- ISO 10993-5:2009; Biological evaluation of medical devices—Part 5: Tests for in vitro cytotoxicity In ICS 11.100.20. International Organization for Standardization: Geneva, Switzerland, 2017.
- Nazarenko, L.; Minkov, B.; Mustyatse, G.; Murin, A. Culture Oil-Bearing Rose; Shtinitsa: Kishinev, Moldova, 1983. (In Russian) [Google Scholar]
- Nedkov, N.; Dobreva, A.; Kovacheva, N.; Bardarov, V.; Velcheva, A. Bulgarian rose oil of white oil-bearing rose. Bulg. J. Agric. Sci. 2009, 15, 318–322. [Google Scholar]
- Mileva, M.; Ilieva, Y.; Jovtchev, G.; Gateva, S.; Zaharieva, M.M.; Georgieva, A.; Dimitrova, L.; Dobreva, A.; Angelova, T.; Vilhelmova-Ilieva, N.; et al. Rose flowers—A delicate perfume or a natural healer? Biomolecules 2021, 11, 127. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, D.; Zhelev, Z.; Aoki, I.; Bakalova, R.; Higashi, T. Overproduction of reactive oxygen species – obligatory or not for induction of apoptosis by anticancer drugs. Chin. J. Cancer Res. 2016, 28, 383–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, L.; He, T.; Farrar, S.; Ji, L.; Liu, T.; Ma, X. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell Physiol. Biochem. 2017, 44, 532–553. [Google Scholar] [CrossRef] [PubMed]
- Gottlieb, O.R.; de Borin, M.R.M. Medicinal products: Regulation of biosynthesis in space and time. Mem. Inst. Oswaldo Cruz 2000, 95, 115–120. [Google Scholar] [CrossRef] [Green Version]
- Mollov, P.; Mihalev, K.; Shikov, V.; Yoncheva, N.; Karagyozov, V. Colour stability improvement of strawberry beverage by fortification with polyphenolic copigments naturally occurring in rose petals. Innov. Food Sci. Emerg. Technol. 2007, 8, 318–321. [Google Scholar] [CrossRef]
- Prasain, J.K.; Barnes, S. Uptake and metabolism of dietary proanthocyanidins. In Polyphenols in Human Health and Disease; Watson, R., Preedy, V., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2013; pp. 553–560. [Google Scholar] [CrossRef]
- Rice, E.L.; Pancholy, S.K. Inhibition of nitrification by climax ecosystems. II. Additional evidence and possible role of tannins. Am. J. Bot. 1973, 60, 691–702. [Google Scholar] [CrossRef]
- Horner, J.D.; Gosz, J.R.; Cates, R.G. The role of carbon-based plant secondary metabolites in decomposition in terrestrial ecosystems. Am. Nat. 1988, 132, 869–883. [Google Scholar] [CrossRef]
- Kuiters, A.T. Role of phenolic substances from decomposing forest litter in plant-soil interactions. Acta Bot. Neerlandica 1990, 39, 329–348. [Google Scholar] [CrossRef]
- Schlesier, K.; Harwat, M.; Böhm, V.; Bitsch, R. Assessment of antioxidant activity by using different in vitro methods. Free Radic. Res. 2002, 36, 177–187. [Google Scholar] [CrossRef]
- Imura, K.; Chambers, J.K.; Uchida, K.; Nomura, S.; Suzuki, S.; Nakayama, H.; Miwa, Y. Herpes simplex virus type 1 infection in two pet marmosets in Japan. J. Vet. Med. Sci. 2014, 76, 1667–1670. [Google Scholar] [CrossRef] [Green Version]
- Shannon, T.E.; Griffin, S.L. Managing aggression in global amnesia following herpes simplex virus encephalitis: The case of E.B. Brain Inj. 2015, 29, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Kopp, S.J.; Ranaivo, H.R.; Wilcox, D.R.; Karaba, A.H.; Wainwright, M.S.; Muller, W.J. Herpes simplex virus serotype and entry receptor availability alter CNS disease in a mouse model of neonatal HSV. Pediatr. Res. 2014, 76, 528–534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vilhelmova, N.; Jacquet, R.; Quideau, S.; Stoyanova, A.; Galabov, A.S. Three-dimensional analysis of combination effect of ellagitannins and acyclovir on herpes simplex virus types 1 and 2. Antivir. Res. 2011, 89, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Vilhelmova-Ilieva, N.; Jacquet, R.; Quideau, S.; Galabov, A.S. Ellagitannins as synergists of ACV on the replication of ACV-resistant strains of HSV 1 and 2. Antivir. Res. 2014, 110, 104–114. [Google Scholar] [CrossRef]
- Lyu, S.Y.; Rhim, J.Y.; Park, W.B. Antiherpetic activities of flavonoids against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) in vitro. Arch. Pharm. Res. 2005, 28, 1293–1301. [Google Scholar] [CrossRef]
- Gateva, S.; Jovchev, G.; Angelova, T.; Dobreva, A.; Mileva, M. The anti-genotoxic activity of wastewaters produced after water-steam distillation of Bulgarian Rosa damascena Mill. and Rosa alba L. essential oils. Life 2022, 12, 455. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Beauchamp, C.; Fridovich, I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 1971, 44, 276–287. [Google Scholar] [CrossRef]
- Dimitrova, L.; Zaharieva, M.M.; Popova, M.; Kostadinova, N.; Tsvetkova, I.; Bankova, V.; Najdenski, H. Antimicrobial and antioxidant potential of different solvent extracts of the medicinal plant Geum urbanum L. Chem. Central J. 2017, 11, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grozdanova, T.; Trusheva, B.; Alipieva, K.; Popova, M.; Dimitrova, L.; Najdenski, H.; Zaharieva, M.M.; Ilieva, Y.; Vasileva, B.; Miloshev, G.; et al. Extracts of medicinal plants with natural deep eutectic solvents: Enhanced antimicrobial activity and low genotoxicity. BMC Chem. 2020, 14, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ilieva, Y.; Dimitrova, L.; Zaharieva, M.M.; Kaleva, M.; Alov, P.; Tsakovska, I.; Pencheva, T.; Tibi, I.P.-E.; Najdenski, H.; Pajeva, I. Cytotoxicity and microbicidal activity of commonly used organic solvents: A comparative study and application to a standardized extract from Vaccinium macrocarpon. Toxics 2021, 9, 92. [Google Scholar] [CrossRef] [PubMed]
- Zaharieva, M.M.; Trochopoulos, A.; Dimitrova, L.; Berger, M.R.; Najdenski, H.; Konstantinov, S.; Kroumov, A.D. New insights in Routine procedure for mathematical evaluation of in vitro cytotoxicity data from cancer cell lines. Int. J. Bioautom. 2018, 22, 87–106. [Google Scholar] [CrossRef] [Green Version]
Roses WW | WW from R. centifolia L. | WW from R. gallica L. | WW fromR. damascena Mill. | WW from R. alba L. | |
---|---|---|---|---|---|
Antiradical Activity | |||||
DPPH scavenging | |||||
HillSlope | 0.61 | 1.57 | 1.74 | 2.52 | |
EC50 | 0.14 * | 0.07 * | 0.09 * | 0.07 * | |
R (correlation coefficient) | 0.97 | 0.99 | 0.95 | 0.95 | |
ABST+ scavenging | |||||
HillSlope | 0.139 | 1.67 | 1.44 | 1.56 | |
EC50 | 0.84 * | 0.86 * | 0.92 * | 0.69 * | |
R (correlation coefficient) | 0.99 | 0.99 | 0.99 | 0.99 | |
•O2− scavenging | |||||
HillSlope | 1.78 | 1.59 | 3.20 | 2.55 | |
EC50 | 0.04 * | 0.04 * | 0.04 | 0.04 * | |
R (correlation coefficient) | 0.99 | 0.99 | 0.99 | 0.99 |
Rose WWs | WW fromR. alba L. | WW fromR. damascena Mill. | WW fromR. centifolia L. | WW fromR. gallica L. | Controls (Reference Drugs) | |
---|---|---|---|---|---|---|
Microorganisms | ||||||
S. aureus | Gentamicin | |||||
MIC | 3.8 | 3.6 | 1.9 | 4.36 | 0.25 | |
DEHA (%±SD) | 32.53 ± 0.03 | 29.4 ± 0.01 | 45.28 ± 0.05 | 35.8 ± 0.03 | ||
MBC | >3.8 | >3.6 | >3.9 | >4.47 | ||
P. aeruginosa | Gentamicin | |||||
MIC | >3.8 | >3.6 | >3.9 | >4.36 | 0.5 | |
DEHA (%±SD) | - | - | - | - | ||
MBC | >3.8 | >3.6 | >3.9 | >4.36 | ||
E. coli | Gentamicin | |||||
MIC | >3.8 | >3.6 | >3.9 | >4.36 | 2.0 | |
DEHA (%±SD) | - | - | - | - | ||
MBC | >3.8 | >3.6 | >3.9 | >4.36 | ||
C. albicans | Amphotericin B | |||||
MIC | >3.8 | >3.6 | >3.9 | >4.36 | 1.25 | |
DEHA (%±SD) | - | - | - | - | ||
MBC | >3.8 | >3.6 | >3.9 | >4.36 |
Wastewaters From: | Model Parameters | Incubation Time [h] | CCL-1 | HEK-293 |
---|---|---|---|---|
R. damascena Mill. | IC50 | 24 | 6.5% * (= 467 µg QuE/mL) ** | 2.6% (= 183 µg QuE/mL) |
48 | 1.4% (= 102 µg QuE/mL) | 1.9% (= 137 µg QuE/mL) | ||
MTC | 24 | 2.2% (= 158 µg QuE/mL) | 2.2% (= 158 µg QuE/mL) | |
48 | 0.4% (= 29 µg QuE/mL) | 1.5% (= 108 µg QuE/mL) | ||
R. alba L. | IC50 | 24 | 3.4% (= 255 µg QuE/mL) | 2.2% (= 168 µg QuE/mL) |
48 | 0.8% (= 63 µg QuE/mL) | 1.2% (= 93 µg QuE/mL) | ||
MTC | 24 | 1.7% (= 129 µg QuE/mL) | 1.7% (= 129 µg QuE/mL) | |
48 | 0.2% (= 15 µg QuE/mL) | 0.9% (= 68 µg QuE/mL) | ||
R. centifolia L. | IC50 | 24 | 11.1% (= 867 µg QuE/mL) | 2.3% (= 176 µg QuE/mL) |
48 | 1.0% (= 80 µg QuE/mL) | 1.9% (= 146 µg QuE/mL) | ||
MTC | 24 | 3.4% (= 265 µg QuE/mL) | 1.8% (= 140 µg QuE/mL) | |
48 | 0.4% (= 31 µg QuE/mL) | 1.6% (= 125 µg QuE/mL) | ||
R. gallica L. | IC50 | 24 | 5.3% (= 459 µg QuE/mL) | 2.4% (=208 µg QuE/mL) |
48 | 1.0% (=86 µg QuE/mL) | 1.3% (= 114 µg QuE/mL) | ||
MTC | 24 | 1.7% (= 148 µg QuE/mL) | 2.0% (= 174 µg QuE/mL) | |
48 | 0.4% (= 35 µg QuE/mL) | 1.0% (= 87 µg QuE/mL) |
Roses WW | Cytotoxicity | Antiviral Activity | ||||
---|---|---|---|---|---|---|
CC50 (%) | MTC (%) | Victoria Strain | R-100 Strain | |||
IC50 (%) | SI | IC50 (%) | SI | |||
R. alba L. | 2.5 ± 0.2 | 0.1 | 0.43 ± 0.02 | 5.8 | 0.55 ± 0.05 | 4.5 |
R. damascene Mill. | 2.3 ± 0.1 | 0.1 | 0.52 ± 0.02 | 4.4 | 0.63 ± 0.04 | 3.6 |
R. centifolia L. | 1.4 ± 0.09 | 0.1 | 0.15 ± 0.01 | 9.3 | 0.16 ± 0.01 | 8.7 |
R. gallica L. | 1.5 ± 0.08 | 0.1 | 0.12 ± 0.01 | 12.5 | 0.18 ± 0.02 | 8.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ilieva, Y.; Dimitrova, L.; Georgieva, A.; Vilhelmova-Ilieva, N.; Zaharieva, M.M.; Kokanova-Nedialkova, Z.; Dobreva, A.; Nedialkov, P.; Kussovski, V.; Kroumov, A.D.; et al. In Vitro Study of the Biological Potential of Wastewater Obtained after the Distillation of Four Bulgarian Oil-Bearing Roses. Plants 2022, 11, 1073. https://doi.org/10.3390/plants11081073
Ilieva Y, Dimitrova L, Georgieva A, Vilhelmova-Ilieva N, Zaharieva MM, Kokanova-Nedialkova Z, Dobreva A, Nedialkov P, Kussovski V, Kroumov AD, et al. In Vitro Study of the Biological Potential of Wastewater Obtained after the Distillation of Four Bulgarian Oil-Bearing Roses. Plants. 2022; 11(8):1073. https://doi.org/10.3390/plants11081073
Chicago/Turabian StyleIlieva, Yana, Lyudmila Dimitrova, Almira Georgieva, Neli Vilhelmova-Ilieva, Maya Margaritova Zaharieva, Zlatina Kokanova-Nedialkova, Ana Dobreva, Paraskev Nedialkov, Vesselin Kussovski, Alexander D. Kroumov, and et al. 2022. "In Vitro Study of the Biological Potential of Wastewater Obtained after the Distillation of Four Bulgarian Oil-Bearing Roses" Plants 11, no. 8: 1073. https://doi.org/10.3390/plants11081073