Mixtures of Macro and Micronutrients Control Grape Powdery Mildew and Alter Berry Metabolites
Abstract
:1. Introduction
2. Results
2.1. Effect on Powdery Mildew Development in Vineyards
2.2. Effects of Nutrients and Fungicide on Must Oenological Parameters and Berry Weight
2.3. Effect of Nutrients on Berry Metabolites
2.3.1. Vitis vinifera cv. Riesling
2.3.2. Vitis vinifera cv. Carignan
2.4. Activity of Macro and Micronutrients In Vitro and in Planta
2.4.1. Prophylactic Efficacy of Macro and Micronutrients against Powdery Mildew
2.4.2. Direct Effect of Macro and Micronutrients on Powdery Mildew
3. Discussion
4. Materials and Methods
4.1. Nutrients and Fungicides
4.2. Experimental Vineyards and Location
4.3. Nutrient and Fungicide Applications
4.4. Recording Powdery Mildew on Leaves and Fruit Clusters
4.5. Effects of Nutrients and Fungicide on Must Oenological Parameters and Berry Weight
4.6. Effect of Nutrients on Berry Metabolites
4.6.1. Sample Collection and Preparation
4.6.2. HPLC Analysis
4.6.3. LC–MS/MS Analysis
4.6.4. LC–MS/MS Data Preprocessing
4.7. Mode of Activity of Macro and Micronutrients In Vitro and in Planta
4.7.1. Plants
4.7.2. Inoculum Production and Inoculation
4.7.3. Inhibitory Effect of Macro and Micronutrients on Conidial Germination In Vitro
4.7.4. Prophylactic Efficacy of Macro and Micronutrients against Powdery Mildew
4.7.5. Direct Effect of Macro and Micronutrients on Powdery Mildew
4.7.6. Microscopic Examination of Suppression Activity
4.8. Data Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pertot, I.; Caffi, T.; Rossi, V.; Mugnai, L.; Hoffmann, C.; Grando, M.S.; Gary, C.; Lafond, D.; Duso, C.; Thiery, D. A critical review of plant protection tools for reducing pesticide use on grapevine and new perspectives for the implementation of IPM in viticulture. Crop. Prot. 2017, 97, 70–84. [Google Scholar] [CrossRef]
- Wilcox, W.F.; Gubler, W.D.; Uyemoto, J.K. Compendium of Grape Diseases, Disorders, and Pests; The American Phytopathological Society Press: Tomball, TX, USA, 2015. [Google Scholar]
- Rallos, L.E.E.; Johnson, N.G.; Schmale, D.G., III; Prussin, A.J.; Baudoin, A.B. Fitness of Erysiphe necator with G143A-based resistance to quinone outside inhibitors. Plant Dis. 2014, 98, 1494–1502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colcol, J.F.; Rallos, L.E.; Baudoin, A.B. Sensitivity of Erysiphe necator to demethylation inhibitor fungicides in Virginia. Plant Dis. 2012, 96, 111–116. [Google Scholar] [CrossRef] [Green Version]
- Kunova, A.; Pizzatti, C.; Saracchi, M.; Pasquali, M.; Cortesi, P. Grapevine powdery mildew: Fungicides for its management and advances in molecular detection of markers associated with resistance. Microorganisms 2021, 9, 1541. [Google Scholar] [CrossRef]
- Schepers, H.T.A.M. Decreased sensitivity of Sphaerotheca fuliqinea to fungicides which inhibit ergosterol biosynthesis. Neth. J. Plant Pathol. 1983, 89, 185–187. [Google Scholar] [CrossRef]
- Steva, H.; Clerjeau, M. Cross resistance to sterol biosynthesis inhibitor fungicides in strains of Uncinula necator isolated in France and Portugal. Meded. Fac. Landbouwwet. Rijksuniv. Gent. 1990, 55, 983–988. [Google Scholar]
- Baudoin, A.; Olaya, G.; Delmotte, F.; Colcol, J.F.; Sierotzki, H. QoI resistance of Plasmopara viticola and Erysiphe necator in the mid-Atlantic United States. Plant Health Prog. 2008, 9, 25. [Google Scholar] [CrossRef] [Green Version]
- Kunova, A.; Pizzatti, C.; Bonaldi, M.; Cortesi, P. Metrafenone resistance in a population of Erysiphe necator in northern Italy. Pest Manag. Sci. 2016, 72, 398–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dekker, J. Build-up and persistence of fungicide resistance. In Rational Pesticide Use; Brent, K.J., Atkin, R.K., Eds.; Cambridge University Press: Cambridge, UK, 1987; pp. 153–168. [Google Scholar]
- Horst, R.K.; Kawamoto, S.O.; Porter, L.L. Effect of sodium bicarbonate and oils on the control of powdery mildew and black spot of roses. Plant Dis. 1992, 76, 247–251. [Google Scholar] [CrossRef]
- Ziv, O.; Zitter, T.A. Effect of bicarbonates and film-forming polymers on cucurbit foliar diseases. Plant Dis. 1992, 76, 513–517. [Google Scholar] [CrossRef]
- Reuveni, R.; Reuveni, M. Foliar-fertilizer therapy—A concept in integrated pest management. Crop Prot. 1998, 17, 111–118. [Google Scholar] [CrossRef]
- Sun, C.W.; Chen, Z.; Zhao, Y.Z.; Niu, S.K.; Yang, L.L. Absorption, distribution and utilization of 15 N in Jumeigui seedlings under different fertilization methods. Acta Agric. Boreali-Sinica. 2017, 32, 260–264. [Google Scholar]
- Zhang, C.; Jia, H.F.; Wang, J.; Jiu, S.T.; Wang, M.Q. Effectiveness and concentration of foliar-application of potassium fertilizers on grapevine evaluated by expression of potassium uptake related genes. J. Plant Nutr. Fertil. 2016, 22, 1091–1101. [Google Scholar]
- Niu, J.; Liu, C.; Huang, M.; Liu, K.; Yan, D. Effects of foliar fertilization: A review of current status and future perspectives. J. Soil Sci. Plant Nutr. 2021, 21, 104–118. [Google Scholar] [CrossRef]
- Bowen, P.; Menzies, J.; Ehret, D.; Samuels, L.; Glass, A.D. Soluble silicon sprays inhibit powdery mildew development on grape leaves. J. Am. Soc. Hort. Sci. 1992, 117, 906–912. [Google Scholar] [CrossRef]
- Reuveni, M.; Agapov, V.; Reuveni, R. Suppression of cucumber powdery mildew (Sphaerotheca fuliginea) by foliar sprays of phosphate and potassium salts. Plant Pathol. 1995, 44, 31–39. [Google Scholar] [CrossRef]
- Reuveni, M.; Reuveni, R. Efficacy of foliar sprays of phosphates in controlling powdery mildews in field-grown nectarine, mango trees and grapevines. Crop Prot. 1995, 14, 311–314. [Google Scholar] [CrossRef]
- Reuveni, M.; Agapov, V.; Reuveni, R. A foliar spray of micronutrient solutions induces local and systemic protection against powdery mildew (Sphaerotheca fuliginia) in cucumber plants. Eur. J. Plant Pathol. 1997, 103, 581–588. [Google Scholar] [CrossRef]
- Simoglou, K.B.; Dordas, C. Effect of foliar applied boron, manganese and zinc on tan spot in winter durum wheat. Crop Prot. 2016, 25, 657–663. [Google Scholar] [CrossRef]
- Calzarano, F.; Di Marco, S.; D’agostino, V.; Schiff, S.; Mugnai, L. Grapevine leaf stripe disease symptoms (esca complex) are reduced by a nutrients and seaweed mixture. Phytopathol. Mediterr. 2014, 53, 543–558. [Google Scholar]
- Figueiredo, A.; Fortes, A.M.; Ferreira, S.; Sebastiana, M.; Choi, Y.H.; Sousa, L.; Acioli-Santos, B.; Pessoa, F.; Verpoorte, R.; Pais, M.S. Transcriptional and metabolic profiling of grape (Vitis vinifera L.) leaves unravel possible innate resistance against pathogenic fungi. J. Exp. Bot. 2008, 59, 3371–3381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maia, M.; Ferreira, A.E.; Nascimento, R.; Monteiro, F.; Traquete, F.; Marques, A.P.; Cunha, J.; Eiras-Dias, J.E.; Cordeiro, C.; Figueiredo, A.; et al. Integrating metabolomics and targeted gene expression to uncover potential biomarkers of fungal/oomycetes-associated disease susceptibility in grapevine. Sci. Rep. 2020, 10, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Ali, K.; Maltese, F.; Figueiredo, A.; Rex, M.; Fortes, A.M.; Zyprian, E.; Pais, M.S.; Verpoorte, R.; Choi, Y.H. Alterations in grapevine leaf metabolism upon inoculation with Plasmopara viticola in different time-points. Plant Sci. 2012, 191, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Pimentel, D.; Amaro, R.; Erban, A.; Mauri, N.; Soares, F.; Rego, C.; Martínez-Zapater, J.M.; Mithöfer, A.; Kopka, J.; Fortes, A.M. Transcriptional, hormonal, and metabolic changes in susceptible grape berries under powdery mildew infection. J. Exp. Bot. 2021, 72, 6544–6569. [Google Scholar] [CrossRef]
- Bell, S.J.; Henschke, P.A. Implications of nitrogen nutrition for grapes, fermentation and wine. Aust. J. Grape Wine Res. 2005, 11, 242–295. [Google Scholar] [CrossRef]
- Schreiner, R.P.; Scagel, C.F.; Lee, J. N, P, and K supply to Pinot noir grapevines: Impact on berry phenolics and free amino acids. Am. J. Enol. Vitic. 2014, 65, 43–49. [Google Scholar] [CrossRef]
- Ciampa, A.; Dell’Abate, M.T.; Florio, A.; Tarricone, L.; Di Gennaro, D.; Picone, G.; Trimigno, A.; Capozzi, F.; Benedetti, A. Combined magnetic resonance imaging and high resolution spectroscopy approaches to study the fertilization effects on metabolome, morphology and yeast community of wine grape berries, cultivar Nero di Troia. Food Chem. 2019, 274, 831–839. [Google Scholar] [CrossRef] [PubMed]
- Villette, J.; Cuéllar, T.; Verdeil, J.L.; Delrot, S.; Gaillard, I. Grapevine potassium nutrition and fruit quality in the context of climate change. Front. Plant Sci. 2020, 11, 123. [Google Scholar] [CrossRef] [Green Version]
- Lacroux, F.; Trégoat, O.; van Leeuwen, C.; Pons, A.; Tominaga, T.; Lavigne-Cruege, V.; Dubourdieu, D. Effect of foliar nitrogen and sulphur application on aromatic expression of Vitis vinifera L. cv. Sauvignon blanc. Oeno One 2008, 42, 125–132. [Google Scholar] [CrossRef] [Green Version]
- Portu, J.; López-Alfaro, I.; Gómez-Alonso, S.; López, R.; Garde-Cerdán, T. Changes on grape phenolic composition induced by grapevine foliar applications of phenylalanine and urea. Food Chem. 2015, 180, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Gamboa, G.; Romanazzi, G.; Garde-Cerdán, T.; Pérez-Álvarez, E.P. A review of the use of biostimulants in the vineyard for improved grape and wine quality: Effects on prevention of grapevine diseases. J. Sci. Food Agric. 2019, 99, 1001–1009. [Google Scholar] [CrossRef] [PubMed]
- Pardo-García, A.I.; Martínez-Gil, A.M.; Cadahía, E.; Pardo, F.; Alonso, G.L.; Salinas, M.R. Oak extract application to grapevines as a plant biostimulant to increase wine polyphenols. Food Res. Int. 2014, 55, 150–160. [Google Scholar] [CrossRef]
- Balint, G.; Reynolds, A.G. Impact of exogenous abscisic acid on vine physiology and grape composition of Cabernet Sauvignon. Am. J. Enol. Vitic. 2013, 64, 74–87. [Google Scholar] [CrossRef]
- Egorov, T.A.; Odintsova, T.I.; Pukhalsky, V.A.; Grishin, E.V. Diversity of wheat anti-microbial peptides. Peptides 2005, 26, 2064–2073. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.J.; Gallo, R.L. Antimicrobial peptides. Curr. Biol. 2016, 26, R14–R19. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Mishra, B.; Lau, K.; Lushnikova, T.; Golla, R.; Wang, X. Antimicrobial peptides in 2014. Pharmaceuticals 2015, 8, 123–150. [Google Scholar] [CrossRef] [PubMed]
- Nikolantonaki, M.; Julien, P.; Coelho, C.; Roullier-Gall, C.; Ballester, J.; Schmitt-Kopplin, P.; Gougeon, R.D. Impact of glutathione on wines oxidative stability: A combined sensory and metabolomic study. Front. Chem. 2018, 6, 182. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Tokuoka, M.; Kohno, H.; Sawamura, N.; Myoken, Y.; Mizuno, A. Comprehensive analysis of dipeptides in alcoholic beverages by tag-based separation and determination using liquid chromatography/electrospray ionization tandem mass spectrometry and quadrupole-time-of-flight mass spectrometry. J. Chromatogr. A. 2012, 1242, 17–25. [Google Scholar] [CrossRef]
- Sherman, E.; Coe, M.; Grose, C.; Martin, D.; Greenwood, D.R. Metabolomics approach to assess the relative contributions of the volatile and non-volatile composition to expert quality ratings of pinot noir wine quality. J. Agric. Food Chem. 2020, 68, 13380–13396. [Google Scholar] [CrossRef] [PubMed]
- Saide, A.; Lauritano, C.; Ianora, A. Pheophorbide a: State of the Art. Mar. Drugs 2020, 18, 257. [Google Scholar] [CrossRef] [PubMed]
- Lanfer-Marquez, U.M.; Barros, R.M.; Sinnecker, P. Antioxidant activity of chlorophylls and their derivatives. Food Res. Int. 2005, 38, 885–891. [Google Scholar] [CrossRef]
- Shoji, K.; Ubukata, M.; Momonoi, K.; Tsuji, T.; Morimatsu, T. Anther-specific production of antimicrobial tuliposide B in tulips. J. Jpn. Soc. Hortic. Sci. 2005, 74, 469–475. [Google Scholar] [CrossRef] [Green Version]
- Shigetomi, K.; Shoji, K.; Mitsuhashi, S.; Ubukata, M. The antibacterial properties of 6-tuliposide B. Synthesis of 6-tuliposide B analogues and structure–Activity relationship. Phytochemistry 2010, 71, 312–324. [Google Scholar] [CrossRef] [PubMed]
- Shigetomi, K.; Omoto, S.; Kato, Y.; Ubukata, M. Asymmetric total synthesis of 6-tuliposide B and its biological activities against tulip pathogenic fungi. Biosci. Biotechnol. Biochem. 2011, 75, 718–722. [Google Scholar] [CrossRef] [PubMed]
- Sundaram, S.; Hertweck, C. On-line enzymatic tailoring of polyketides and peptides in thiotemplate systems. Curr. Opin. Chem. Biol. 2016, 31, 82–94. [Google Scholar] [CrossRef]
- Li, Y.; Peng, Q.; Selimi, D.; Wang, Q.; Charkowski, A.O.; Chen, X.; Yang, C. The plant phenolic compound p-coumaric acid represses gene expression in the Dickeya dadantii type III secretion system. Appl. Environ. Microbiol. 2009, 75, 1223–1228. [Google Scholar] [CrossRef] [Green Version]
- Matsuda, K.; Toyoda, H.; Yokoyama, K.; Wakita, K.; Nishio, H.; Nishida, T.; Dogo, M.; Kakutani, K.; Hamada, M.; Ouchi, S. Growth inhibition of Pseudomonas solanacearum by substituted 3-indolepropionic acids and related compounds. Biosci. Biotechnol. Biochem. 1993, 57, 1766–1767. [Google Scholar] [CrossRef] [Green Version]
- Dohgo, M.; Toyoda, H.; Matsuda, Y.; Matsuda, K.; Kokuryo, Y.; Ouvhi, S. Screening of chemical compounds for selectively inhibiting haustorial formation of powdery mildew pathogen in barley coleoptile epidermis. Japan. J. Phytol. 1996, 62, 153–155. [Google Scholar] [CrossRef]
- Ye, M.; Liu, M.; Erb, M.; Glauser, G.; Zhang, J.; Li, X.; Sun, X. Indole primes defense signaling and increases herbivore resistance in tea plants. Plant Cell Environ. 2021, 44, 1165–1177. [Google Scholar] [CrossRef]
- Li, C.; Tian, Q.; u Rahman, M.K.; Wu, F. Effect of anti-fungal compound phytosphingosine in wheat root exudates on the rhizosphere soil microbial community of watermelon. Plant Soil 2020, 456, 223–240. [Google Scholar] [CrossRef]
- Seo, S.Y.; Kim, Y.J.; Kim, J.; Nam, M.H.; Park, K.Y. Phytosphingosine induces systemic acquired resistance through activation of sphingosine kinase. Plant Direct 2021, 5, e351. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Bielawski, J.; Mu, J.; Dong, H.; Teng, C.; Zhang, J.; Yang, X.; Tomishige, N.; Hanada, K.; Hannun, Y.A.; et al. Involvement of sphingoid bases in mediating reactive oxygen intermediate production and programmed cell death in Arabidopsis. Cell Res. 2007, 17, 1030–1040. [Google Scholar] [CrossRef] [PubMed]
- Khushbaktova, Z.A.; Yusupova, S.M.; Zamaraeva, M.V.; Tadzhibaeva, E.T.; Syrov, V.N.; Batirov, E.K.; Yuldashev, M.P. Interrelationships of the structures and antioxidant activities of some flavonoids from the plants of Central Asia. Chem. Nat. Compd. 1996, 32, 338–343. [Google Scholar] [CrossRef]
- Manthey, J.A. Fractionation of orange peel phenols in ultrafiltered molasses and mass balance studies of their antioxidant levels. J. Agric. Food Chem. 2004, 52, 7586–7592. [Google Scholar] [CrossRef] [PubMed]
- Vishwakarma, K.; Upadhyay, N.; Kumar, N.; Yadav, G.; Singh, J.; Mishra, R.K.; Kumar, V.; Verma, R.; Upadhyay, R.G.; Pandey, M.; et al. Abscisic acid signaling and abiotic stress tolerance in plants: A review on current knowledge and future prospects. Front. Plant Sci. 2017, 8, 161. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.P. Abscisic Acid: Metabolism, Transport and Signaling; Springer: Dordrecht, The Netherlands, 2014. [Google Scholar]
- Kjøller, R.; Rosendahl, S. Effects of fungicides on arbuscular mycorrhizal fungi: Differential responses in alkaline phosphatase activity of external and internal hyphae. Biol. Fertil. Soils. 2000, 31, 361–365. [Google Scholar] [CrossRef]
- Teas, H.J. Effect of Canavanine on Mutants of Neurospora and Bacillus-Subtilis. J. Biol. Chem. 1951, 190, 369–375. [Google Scholar] [CrossRef]
- Walker, J.B. Canavanine and homoarginine as antimetabolites of arginine and lysine in yeast and algae. J. Biol. Chem. 1955, 212, 207–215. [Google Scholar] [CrossRef]
- Simola, L.K.; Lonnrothl, K. The effect of some protein and non-protein amino acids on the growth of Cladosporium herbarum and Trichothecium roseum. Physiol. Plant. 1979, 46, 381–387. [Google Scholar] [CrossRef]
- Iribarren, A.M.; Iglesias, L.E. An update of biocatalytic selective acylation and deacylation of monosaccharides. RSC Adv. 2016, 6, 16358–16386. [Google Scholar] [CrossRef]
- Chong, H.H.; Cleary, M.T.; Dokoozlian, N.; Ford, C.M.; Fincher, G.B. Soluble cell wall carbohydrates and their relationship with sensory attributes in Cabernet Sauvignon wine. Food Chem. 2019, 298, 124745. [Google Scholar] [CrossRef] [PubMed]
- Fowles, G.W.A. Acids in grapes and wines: A review. J. Wine Res. 1992, 3, 25–41. [Google Scholar] [CrossRef]
- Hufnagel, J.C.; Hofmann, T. Quantitative reconstruction of the nonvolatile sensometabolome of a red wine. J. Agric. Food Chem. 2008, 56, 9190–9199. [Google Scholar] [CrossRef] [PubMed]
- Prévost, B. Mémoire sur la Cause Immédiate de la Carie ou Charbon des Blés, et de Plusieurs Autres Maladies des Plantes, et sur les Préservatifs de la Carie; Fontanel: Paris, France, 1807. [Google Scholar]
- Russell, P.E. The development of commercial disease control. Plant Pathol. 2006, 55, 585–594. [Google Scholar] [CrossRef]
- Schneiderhan, F.J. The discovery of Bordeaux mixture. Phytopathol. Class. 1933, 3, 1–25. [Google Scholar]
- Homma, Y.; Arimoto, Y.; Misato, T. Studies on the control of plant diseases by sodium bicarbonate formulation 2. Effect of sodium bicarbonate on each growth stage of cucumber powdery mildew fungus (Sphaerotheca fuliginea) in its life cycle. J. Pestic. Sci. 1981, 6, 201–209. [Google Scholar] [CrossRef] [Green Version]
- Menzies, J.; Bowen, P.; Ehret, D.; Glass, A.D. Foliar application of potassium silicate reduce severity of powdery mildew on cucumber, muskmelon, and zucchini squash. J. Am. Soc. Hort. Sci. 1992, 117, 902–905. [Google Scholar] [CrossRef] [Green Version]
- Yildirim, I.; Onogur, E.; Irshad, M. Investigations on the efficacy of some natural chemicals against powdery mildew [Uncinula necator (Schw.) Burr.] of grape. J. Phytopathol. 2002, 150, 697–702. [Google Scholar]
- Oprica, D.I.; Cioroianu, T.M.; Lungu, M.; Badea, I.A. A new eco-friendly foliar fertilizer with bone glue suitable for crops of maize and sunflower. Rev. Chim. 2014, 65, 1–7. [Google Scholar]
- Younis, A.; Riaz, A.; Sajid, M.; Mushtaq, N.; Ahsan, M.; Hameed, M.; Tariq, U.; Nadem, M. Foliar application of macro-and micronutrients on the yield and quality of Rosa hybrida cvs. Cardinal and Whisky Mac. Afr. J. Biotechnol. 2013, 12, 702–708. [Google Scholar]
- Awan, Z.A.; Shoaib, A.; Khan, K.A. Crosstalk of Zn in combination with other fertilizers underpins interactive effects and induces resistance in tomato plant against early blight disease. Plant Pathol. J. 2019, 35, 330–340. [Google Scholar] [CrossRef] [PubMed]
- Elderfield, J.A.; Lopez-Ruiz, F.J.; van den Bosch, F.; Cunniffe, N.J. Using epidemiological principles to explain fungicide resistance management tactics: Why do mixtures outperform alternations? Phytopathology 2018, 108, 803–817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christensen, P. Timing of zinc foliar sprays. I. Effects of application intervals preceding and during the bloom and fruit-set stages. II. Effects of day vs. night application. Am. J. Enol. Vitic. 1980, 31, 53–59. [Google Scholar]
- Alva, O.; Roa-Roco, R.N.; Pérez-Díaz, R.; Yáñez, M.; Tapia, J.; Moreno, Y.; Ruiz-Lara, S.; Gonzalez, E. Pollen morphology and boron concentration in floral tissues as factors triggering natural and GA-induced parthenocarpic fruit development in grapevine. PLoS ONE 2015, 10, e0139503. [Google Scholar] [CrossRef] [Green Version]
- Gisi, U. Synergistic interaction of fungicides in mixtures. Phytopathology 1996, 86, 1273–1279. [Google Scholar]
- van den Bosch, F.; Paveley, N.; van den Berg, F.; Hobbelen, P.; Oliver, R. Mixtures as a fungicide resistance management tactic. Phytopathology 2014, 104, 1264–1273. [Google Scholar] [CrossRef] [PubMed]
- Huber, D.M. The role of mineral nutrition in defense. Plant Dis. 1980, 5, 381–405. [Google Scholar]
- Graham, R.D. Effects of nutrient stress on susceptibility of plants to disease with particular reference to the trace elements. In Advances in Botanical Research; Academic Press: Cambridge, MA, USA, 1983; Volume 10, pp. 221–276. [Google Scholar]
- Walters, D.R.; Bingham, I.J. Influence of nutrition on disease development caused by fungal pathogens: Implications for plant disease control. Ann. Appl. Biol. 2007, 151, 307–324. [Google Scholar] [CrossRef]
- Reuveni, R.; Dor, G.; Reuveni, M. Local and systemic control of powdery mildew (Leveillula taurica) on pepper plants by foliar spray of mono-potassium phosphate. Crop Prot. 1998, 17, 703–709. [Google Scholar] [CrossRef]
- Wicks, T.J.; Magarey, P.A.; Wachtel, M.F.; Frensham, A.B. Effect of postinfection application of phosphorous (phosphonic) acid on the incidence and sporulation of Plasmopara viticola on grapevine. Plant Dis. 1991, 75, 40–43. [Google Scholar] [CrossRef] [Green Version]
- Mucharromah, E.; Kuc, J. Oxalate and phosphates induce systemic resistance against diseases caused by fungi, bacteria and viruses in cucumber. Crop Prot. 1991, 10, 265–270. [Google Scholar] [CrossRef]
- Reuveni, R.; Agapov, V.; Reuveni, M. Foliar spray of phosphates induces growth increase and systemic resistance to Puccinia sorghi in maize. Plant Pathol. 1994, 43, 245–250. [Google Scholar] [CrossRef]
- Reuveni, R.; Reuveni, M.; Agapov, V. Induction of growth increase and systemic resistance to Exserohilum turcicum in maize by foliar spray of phosphates. J. Phytopathol. 1994, 141, 337–346. [Google Scholar] [CrossRef]
- Reuveni, M.; Reuveni, R. Efficacy of foliar application of phosphates in controlling powdery mildew fungus on field-grown winegrapes: Effects on cluster yield and peroxidase activity in berries. J. Phytopathol. 1995, 143, 21–25. [Google Scholar] [CrossRef]
- Villaño, D.; Fernández-Pachón, M.S.; Troncoso, A.M.; García-Parrilla, M.C. Comparison of antioxidant activity of wine phenolic compounds and metabolites in vitro. Anal. Chim. Acta. 2005, 538, 391–398. [Google Scholar] [CrossRef]
- Jeandet, P.; Douillet-Breuil, A.C.; Bessis, R.; Debord, S.; Sbaghi, M.; Adrian, M. Phytoalexins from the Vitaceae: Biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. J. Agric. Food Chem. 2002, 50, 2731–2741. [Google Scholar] [CrossRef] [PubMed]
- Langcake, P. Disease resistance of Vitis spp. and the production of the stress metabolites resveratrol, ε-viniferin, α-viniferin and pterostilbene. Physiol. Plant Pathol. 1981, 18, 213–226. [Google Scholar] [CrossRef]
- Espín, J.C.; García-Conesa, M.T.; Tomás-Barberán, F.A. Nutraceuticals: Facts and fiction. Phytochemistry 2007, 68, 2986–3008. [Google Scholar] [CrossRef] [PubMed]
- Romero-Pérez, A.I.; Lamuela-Raventós, R.M.; Andrés-Lacueva, C.; de la Torre-Boronat, M.C. Method for the quantitative extraction of resveratrol and piceid isomers in grape berry skins. Effect of powdery mildew on the stilbene content. J. Agric. Food Chem. 2001, 49, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Atak, A.; Göksel, Z.; Yılmaz, Y. Changes in major phenolic compounds of seeds, skins, and pulps from various Vitis spp. and the effect of powdery and downy mildew diseases on their levels in grape leaves. Plants 2021, 10, 2554. [Google Scholar] [CrossRef] [PubMed]
- Horowitz, N.H.; Srb, A.M. Growth inhibition of Neurospora by canavanine, and its reversal. J. Biol. Chem. 1948, 174, 371–378. [Google Scholar] [CrossRef]
- Garde-Cerdán, T.; Mancini, V.; Carrasco-Quiroz, M.; Servili, A.; Gutiérrez-Gamboa, G.; Foglia, R.; Perez-Alvarez, E.P.; Romanazzi, G. Chitosan and Laminarin as alternatives to copper for Plasmopara viticola control: Effect on grape amino acid. J. Agric. Food Chem. 2017, 65, 7379–7386. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, M.L. Beyond brown: Polyphenol oxidases as enzymes of plant specialized metabolism. Front. Plant Sci. 2015, 5, 783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cabot, C.; Martos, S.; Llugany, M.; Gallego, B.; Tolrà, R.; Poschenrieder, C. A role for zinc in plant defense against pathogens and herbivores. Front Plant Sci. 2019, 10, 1171. [Google Scholar] [CrossRef] [PubMed]
- Gur, L.; Reuveni, M.; Cohen, Y.; Ovadia, S.; Frenkel, O. Fungicides resistance in Erysiphe necator the causal agent of grape powdery mildew. Phytoparasitica 2019, 47, 248. [Google Scholar] [CrossRef]
- Ovadia, S. Epidemiology of Uncinula necator, the causal agent of grape powdery mildew, and development of a decision support system for its management. PhD Dissertation, Hebrew University of Jerusalem, Jerusalem, Israel, 2005. [Google Scholar]
- Gur, L.; Reuveni, M.; Cohen, Y.; Cadle-Davidson, L.; Kisselstein, B.; Ovadia, S.; Frenkel, O. Population structure of Erysiphe necator on domesticated and wild vines in the Middle East raises questions on the origin of the grapevine powdery mildew pathogen. Environ. Microbiol. 2021, 23, 6019–6037. [Google Scholar] [CrossRef] [PubMed]
- Cohen, Y.; Eyal, H.; Hanania, J. Ultrastructure, autofluorescence, callose deposition and lignification in susceptible and resistant muskmelon leaves infected with the powdery mildew fungus Sphaerotheca fuliginea. Physiol. Mol. Plant Pathol. 1990, 36, 191–204. [Google Scholar] [CrossRef]
- Chong, J.; Soufan, O.; Li, C.; Caraus, I.; Li, S.; Bourque, G.; Wishart, D.S.; Xia, J. MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018, 46, W486–W494. [Google Scholar] [CrossRef] [Green Version]
Treatment 1 | 6 Days Post Sixth Application | |
---|---|---|
Incidence (Clusters) | Severity (Clusters) | |
Control | 100 a 4 | 86.4 a |
Top KP+ (1%) + Nanovatz (0.1%) | 95 ab | 4.5 b |
Top KP+ (1%) + TruPhos (0.25%) | 94.5 ab | 2.8 c |
Abir 250SC 2 (0.02%) | 79.5 b | 1.6 c |
Heliosulfur 700SC 3 (0.5%) | 88.5 ab | 2.2 c |
Treatment 1 | Eshtaol (Trial 2) 4 | Meron (Trial 3) | ||
---|---|---|---|---|
Incidence (Clusters) | Severity (Clusters) | Incidence (Clusters) | Severity (Clusters) | |
Control | 35 a 5 | 10.3 a | 100 a | 33.6 a |
Top KP+ (1%) | 12.7 ab | 0.5 b | 88 ab | 7.4 b |
Top KP+ (1%) + Nanovatz (0.1%) | 2 b | 0.1 b | 68.5 bc | 4.8 cd |
Top KP+ (1%) + TruPhos (0.25%) | 4 b | 0.2 b | 60 c | 3.8 d |
Abir 250SC 2 (0.02%) | 0 b | 0 b | 70.5 bc | 5.2 c |
Heliosulfur 700SC 3 (0.5%) | 2.7 b | 0.1 b | n.t 6 | n.t |
Treatment 1 | Incidence (Leaves) 4 | Severity (Leaves) | Incidence (Clusters) 5 | Severity (Clusters) |
---|---|---|---|---|
Control | 73.5 a 6 | 26.2 a | 98.3 a | 55.8 a |
Top KP+ (0.5%) + TruPhos (0.25%) | 22 b | 1.7 b | 3.8 b | 0.7 b |
Top KP+ (1%) + TruPhos (0.25%) | 11 bc | 0.5 b | 0 c | 0 b |
Top KP+ (1%) + TruPhos (0.25%) + Folicur (0.02%) 2 | 1.3 c | 0.2 b | 0.6 bc | 0 b |
Top KP+ (1%) + TruPhos (0.25%)/Folicur (0.02%) 3 | 4 c | 0.1 b | 0.6 bc | 0 b |
Top KP+ (1%) + Nanovatz (0.1%) | 4 c | 0.7 b | 1.9 bc | 0.3 b |
Top KP+ (1%) + Nanovatz (0.1%) + Folicur (0.02%) 2 | 2.7 c | 0.1 b | 0 c | 0 b |
Folicur 250EC (0.02%) | 1.3 c | 0.1 b | 1.3 bc | 0 b |
Treatment 1 | Incidence (Leaves) 4 | Severity (Leaves) | Incidence (Clusters) 5 | Severity (Clusters) |
---|---|---|---|---|
Control | 98.8 a 6 | 55.8 a | 69.4 a | 36.3 a |
Top KP+ (0.5%) + TruPhos (0.25%) | 68.1 ab | 10.9 b | 29.4 b | 10.5 b |
Top KP+ (1%) + TruPhos (0.25%) | 74.4 ab | 12.3 b | 26.3 b | 4.4 cd |
Top KP+ (1%) + TruPhos (0.25%) + Folicur (0.02%) 2 | 26.9 cd | 1.8 b | 10.0 b | 0.5 e |
Top KP+ (1%) + TruPhos (0.25%)/Folicur (0.02%) 3 | 63.8 b | 16.1 b | 25.0 b | 9.1 bc |
Top KP+ (1%) + Nanovatz (0.1%) | 54.4 bc | 6.3 b | 16.9 b | 3.8 de |
Top KP+ (1%) + Nanovatz (0.1%) + Folicur (0.02%) 2 | 11.9 d | 0.2 b | 3.8 b | 0.4 e |
Folicur 250EC (0.02%) | 61.3 b | 5.5 b | 25.6 b | 5.5 cd |
Metabolites Up-Produced in Sprayed Berries (Fertilizers or Fungicide) vs. Untreated Berries | |||||
Compound | Class/Function | Anti-Microbial Effect | Antioxidant | Wine Quality | References |
cv. Riesling | |||||
Leu-Arg | Dipeptides | antifungal, plant defense mechanism, disrupting microbial membranes | [36,37,38] | ||
dihydroxy-phenylalanine | antioxidant stability of wines | [39] | |||
Boc-Ser-OH Boc-Gln-OH | impart tastes, including umami, and sweetness | [40,41] | |||
L-gamma-Glutamyl-L-leucine | |||||
Pheophorbide A | Product of chlorophyll breakdown in plants | antiviral, anti-parasite activities | high antioxidant activity | [42,43] | |
6-tuliposide B | Tuliposides | antifungal, antimicrobial, antibacterial | [44,45,46] | ||
Nocardicin E | Monocyclic β-lactam antibiotics | antibacterial | [47] | ||
cv. Carignan | |||||
trans-3-Indoleacrylic acid | Organic acids, Plant growth hormone | antibacterial | [48,49] | ||
Indole | Aromatic organic compound | antifungal (powdery mildew), boosts defense signaling and herbivore resistance | [50,51] | ||
Phytosphingosine 6-hydroxysphing-4E-enine | Sphingoid base | antifungal, Induces systemic acquired resistance, Induces programmed cell death associated with plant defense | [52,53,54] | ||
Limocitrin | Flavonols | antioxidant activity | [55,56] | ||
(±)-(2E)-Abscisic acid | Sesquiterpenes, Phytohormone | regulator in plant biotic defense responses and abiotic stress tolerance | [57,58] | ||
Metabolites up-produced in fertilizers treated berries vs. fungicide treated berries | |||||
Compound | Class/function | Anti-microbial effect | Antioxidant | Wine quality | References |
cv. Riesling | |||||
L-Homoarginine | Non-protein amino acids | antifungal, alkaline phosphatase inhibitor | [59,60,61,62] | ||
2-Deoxy-2-(methacryloylamino)-D-glucopyranose | Carbohydrates | starting materials of bioactive compounds | [63] | ||
6-O-Acetyl-D-glucose | Esters | improve the mouthfeel of wine | [64] | ||
L-2-Hydroxyglutaric acid | Organic acids | conserve wine color, buffer the wine’s pH, impact on bouquet and sourness | [65,66] | ||
(2S)-2-(beta-D-Glucopyranosyloxy)succinic acid | |||||
4-O-Acetyl-D-galacturonic acid |
Trial | Year | Location, Region | Treatments 1 | Grape Cultivar | Age of Vines (Years) | # of Sprays | Date of Bloom 2 | First Spray | Last Spray |
---|---|---|---|---|---|---|---|---|---|
1 | 2018 | Merom-Golan, | Top KP+ (1%) + Nanovatz (0.1%), Top KP+ (1%) + TruPhos (0.25%), Abir (0.02%), Heliosulfur (0.5%), Control untreated | Cabernet Sauvignon | 9 | 6 | 6 May | 8 April (BBCH-13 3) | 7 June (BBCH-77) |
Golan | |||||||||
2 | 2019 | Eshtaol, Judean-Foothills | Top KP+ (1%), Top KP+ (1%) + Nanovatz (0.1%), Top KP+ (1%) + TruPhos (0.25%), Abir (0.02%), Heliosulfur (0.5%), Control untreated | Chardonnay | 19 | 5 | 25 April | 27 March (BBCH-13) | 5 June (BBCH-79) |
3 | 2019 | Meron, Upper-Galilee | Top KP+ (1%), Top KP+ (1%) + Nanovatz (0.1%), Top KP+ (1%) + TruPhos (0.25%), Abir (0.02%), Control untreated | Chardonnay | 19 | 4 | 12 May | 23 April (BBCH-15) | 10 June (BBCH-77) |
4 | 2020 | Eshtaol, Judean-Foothills | Top KP+ (0.5%) + TruPhos (0.25%), Top KP+ (1%) + TruPhos (0.25%), Folicur (0.02%), Top KP+ (1%) + TruPhos (0.25%) + Folicur (0.02%) (TM 4), Top KP+ (1%) + Nanovatz (0.1%), Top KP+ (1%) + Nanovatz (0.1%) + Folicur (0.02%) (TM 3), Top KP+ (1%) + TruPhos (0.25%) + Folicur (0.02%) (Alt 5), Control untreated | Riesling | 20 | 5 | 30 April | 14 April (BBCH-13) | 3 June (BBCH-79) |
5 | 2020 | Mazkeret-Batya, Judean-Foothills | Top KP+ (0.5%) + TruPhos (0.25%), Top KP+ (1%) + TruPhos (0.25%), Folicur (0.02%), Top KP+ (1%) + TruPhos (0.25%) + Folicur (0.02%) (TM 4), Top KP+ (1%) + Nanovatz (0.1%), Top KP+ (1%) + Nanovatz (0.1%) + Folicur (0.02%) (TM 3), Top KP+ (1%) + TruPhos (0.25%) + Folicur (0.02%) (Alt 5), Control untreated | Carignan | 20 | 6 | 28 April | 6 April (BBCH-13) | 8 June (BBCH-79) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gur, L.; Cohen, Y.; Frenkel, O.; Schweitzer, R.; Shlisel, M.; Reuveni, M. Mixtures of Macro and Micronutrients Control Grape Powdery Mildew and Alter Berry Metabolites. Plants 2022, 11, 978. https://doi.org/10.3390/plants11070978
Gur L, Cohen Y, Frenkel O, Schweitzer R, Shlisel M, Reuveni M. Mixtures of Macro and Micronutrients Control Grape Powdery Mildew and Alter Berry Metabolites. Plants. 2022; 11(7):978. https://doi.org/10.3390/plants11070978
Chicago/Turabian StyleGur, Lior, Yigal Cohen, Omer Frenkel, Ron Schweitzer, Meir Shlisel, and Moshe Reuveni. 2022. "Mixtures of Macro and Micronutrients Control Grape Powdery Mildew and Alter Berry Metabolites" Plants 11, no. 7: 978. https://doi.org/10.3390/plants11070978
APA StyleGur, L., Cohen, Y., Frenkel, O., Schweitzer, R., Shlisel, M., & Reuveni, M. (2022). Mixtures of Macro and Micronutrients Control Grape Powdery Mildew and Alter Berry Metabolites. Plants, 11(7), 978. https://doi.org/10.3390/plants11070978