A Core Set of Snap Bean Genotypes Established by Phenotyping a Large Panel Collected in Europe
Abstract
:1. Introduction
2. Results
2.1. Phenotypic Variation
2.2. Hierarchical Clustering on Principal Components
- Cluster A included 121 lines with significantly lower values for PL, PLA, PLP, PLW, PSA, PSH, PSP, and 25 seed weight (Table S1). The group included lines with small pods characterized by a round cross-section. Moreover, this group included old and well-known cultivars such as ‘Harvester’, ‘Widusa’, ‘Midas’, ‘Slendergreen’, ‘Beurre de Rocquencourt’, ‘Manteca de los Mercados‘, and ‘Cherokee Trail of Tears’. Most lines in this cluster had determinate growth habits (118).
- Cluster B included 109 lines with intermediate values for PL, PLA, PLP, PLW, PSA, PSP, PSH, PSW, and 25-seed weight, which were significantly different from those for the other three groups (Table S1). This group exhibited higher values for PSW, indicating lines with pods characterized by a round cross-section or a cross-section like an eight. Well-known cultivars such as ‘Slenderwax’, ‘Improvement Tendergreen’, ‘Topcrop’, ‘Fin de Bagnols’, ‘Gloire de Saumur’, ‘Contender’, ‘La Victorie’, and ‘Tendergreen’ belonged to this cluster.
- Cluster C included 63 lines with intermediate values for PL, PLA, PLP, PLPLC, PLW, PSA, PSC, PSH, PSHPSW, and PSP that were significantly different from those for the other three groups (Table S1). This group exhibited lower values for the PL/PLC ratio, indicating very straight pods. Interestingly, many lines provided by the KIS (Agricultural Institute of Slovenia, Ljubljana, Slovenia) were grouped into this cluster.
- Cluster D included 18 lines with significantly higher values for most traits (PL, PLA, PLC, PLP, PLW, PSA, PSC, PSH, PSHPSW, PSP, and NSP). The group included lines with large pods and flat pod cross-sections (Table S1). Within this cluster were lines such as the well-known ‘Garrafal Oro’, a Spanish traditional cultivar, and ‘Musica’ and ‘Marconi’, two Romano types. This cluster only included lines with indeterminate climbing habits.
2.3. Establishment of a Core-SBP
2.4. Core-SBP Evaluation
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.1.1. Phenotyping
4.1.2. Statistical Analysis
4.1.3. Establishment of a Core Set for the SBP
4.1.4. Core SBP Phenotyping and Genotyping
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Schoonhoven, A.; Pastor Corrales, M.A. (Eds.) Standard System for the Evaluation of Bean Germplasm; Centro Internacional de Agricultura Tropical (CIAT): Cali, Colombia, 1987; p. 53. [Google Scholar]
- Murgia, M.; Attene, G.; Rodriguez, M.; Bitocchi, E.; Bellucci, E.; Fois, D.; Nanni, L.; Gioia, T.; Albani, D.M.; Papa, R.; et al. Comprehensive Phenotypic Investigation of the “pod-shattering syndrome” in Common Bean. Front. Plant Sci. 2017, 8, 251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaurasia, S. Green beans. In Nutritional Composition and Antioxidant Properties of Fruits and Vegetables; Jaiswal, A.K., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 289–300. [Google Scholar] [CrossRef]
- Myers, J.R.; Wallace, L.T.; Moghaddam, S.; Kleintop, A.E.; Echeverria, D.; Thompson, H.J.; Brick, M.A.; Lee, R.; McClean, P.E. Improving the Health Benefits of Snap Bean: Genome-Wide Association Studies of Total Phenolic Content. Nutrients 2019, 18, 2509. [Google Scholar] [CrossRef] [Green Version]
- Ganesan, K.; Xu, B. Polyphenol-Rich Dry Common Beans (Phaseolus vulgaris L.) and Their Health Benefits. Int. J. Mol. Sci. 2017, 18, 2331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gepts, P.; Osborn, T.C.; Rashka, K.; Bliss, F.A. Phaseolin-protein variability in wild forms and landraces of the common bean (Phaseolus vulgaris): Evidence for multiple centers of domestication. Econ. Bot. 1986, 40, 451–468. [Google Scholar] [CrossRef]
- Bitocchi, E.; Nanni, L.; Bellucci, E.; Rossi, M.; Giardini, A.; Zeuli, P.S.; Logozzo, G.; Stougaard, J.; McClean, P.; Attene, G.; et al. Mesoamerican origin of the common bean [Phaseolus vulgaris L.] is revealed by sequence data. Proc. Natl. Acad. Sci. USA 2012, 109, E788–E796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bitocchi, E.; Rau, D.; Bellucci, E.; Rodriguez, M.; Murgia, M.L.; Gioia, T.; Santo, D.; Nanni, L.; Attene, G.; Papa, R. Beans (Phaseolus ssp.) as a Model for Understanding Crop Evolution. Front. Plant Sci. 2017, 8, 722. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.P. Patterns of variation in cultivated common bean (Phaseolus vulgaris, Fabaceae). Econ. Bot. 1989, 43, 39–57. [Google Scholar] [CrossRef]
- Myers, J.R.; Baggett, J.R. Improvement of Snap Bean. In Common Bean Improvement in the Twenty-First Century. Developments in Plant Breeding; Singh, S.P., Ed.; Springer: Dordrecht, The Netherlands, 1989; Volume 7, pp. 289–329. [Google Scholar] [CrossRef]
- Wallace, L.; Arkwazee, H.; Vining, K.; Myers, J.R. Genetic diversity within snap beans and their relation to dry beans. Genes 2018, 9, 587. [Google Scholar] [CrossRef] [Green Version]
- Wade, B.L. Breeding and improvement of peas and beans. In Yearbook of Agriculture; United States Government Printing Office: Washington, DC, USA, 1937; pp. 251–282. [Google Scholar]
- Vilmorin-Andrieux, S.A. Dictionnaire Vilmorin des Plantes Potagères; Vilmorin: Paris, France, 1947. [Google Scholar]
- Puerta Romero, J. Variedades de Judías Cultivadas en España; Monografia, N., Ed.; INIA: Madrid, Spain, 1961; Volume 11, p. 798. [Google Scholar]
- García-Fernández, C.; Campa, A.; Garzón-Soler, A.; Miklas, P.; Ferreira, J.J. GWAS of pod morphological and color characters in common bean. BMC Plant Biol. 2021, 21, 184. [Google Scholar] [CrossRef]
- Voysest, O. Mejoramiento Genético de Frijol (Phaseolus vulgaris L.): Legado de Variedades de America Latina 1930–1999; CIAT: Cali, Colombia, 2000; p. 195. [Google Scholar]
- Campa, A.; Murube, E.; Ferreira, J.J. Genetic Diversity, Population Structure, and Linkage Disequilibrium in a Spanish Common Bean Diversity Panel Revealed through Genotyping-by-Sequencing. Genes 2018, 9, 518. [Google Scholar] [CrossRef] [Green Version]
- Silbernagel, M.J.; Janssen, W.; Davis, J.H.C.; Montes de Oca, G. Snap bean production in the tropics: Implications for genetic improvement. In Common Beans: Research for Crop Improvement; van Schoonhoven, A., Voysest, O., Eds.; C.AR Int.: Wallingford, UK; CIAT: Cali, Colombia, 1991; pp. 835–862. [Google Scholar]
- Blair, M.W.; Chaves, A.; Tofiño, A.; Calderón, J.F.; Palacio, J.D. Extensive diversity and inter-gene pool introgression in a world-wide collection of indeterminate snap bean accessions. Theor. Appl. Genet. 2010, 120, 1381–1391. [Google Scholar] [CrossRef] [PubMed]
- Cunha, C.; Hintz, T.; Griffiths, P. Genetic diversity of snap bean cultivars determined using randomly amplified polymorphic DNA [RAPD] markers. HortScience 2004, 39, 481–484. [Google Scholar] [CrossRef] [Green Version]
- Silbernagel, M.J. Snap Bean Breeding. In Breeding Vegetable Crops; Bassett, M., Ed.; AVI: Westport, CT, USA, 1986; pp. 243–282. [Google Scholar]
- Araus, J.L.; Kefauver, S.C.; Zaman-Allah, M.; Olsen, M.S.; Cairns, J.E. Translating High-Throughput Phenotyping into Genetic Gain. Trends Plant Sci. 2018, 23, 451–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trail, M.A.; Wahem, I.A.; Bizri, J.N. Snap Bean Quality Changed Minimally When Stored in Low-Density Polyolefin Film Package. J. Food Sci. 1992, 57, 977–979. [Google Scholar] [CrossRef]
- Koinange, E.M.K.; Singh, S.P.; Gepts, P. Genetic Control of the Domestication Syndrome in Common Bean. Crop Sci. 1996, 36, 1037–1045. [Google Scholar] [CrossRef] [Green Version]
- Weller, J.L.; Vander Schoor, J.K.; Perez-Wright, E.C.; Hecht, V.; González, A.M.; Capel, C.; Yuste-Lisbona, F.J.; Lozano, R.; Santalla, M. Parallel Origins of Photoperiod Adaptation Following Dual Domestications of Common Bean. J. Exp. Bot. 2019, 70, 1209–1219. [Google Scholar] [CrossRef]
- Kwak, M.; Toro, O.; Debouck, D.G.; Gepts, P. Multiple Origins of the Determinate Growth Habit in Domesticated Common Bean (Phaseolus vulgaris). Ann. Bot. 2012, 110, 1573–1580. [Google Scholar] [CrossRef] [Green Version]
- Murube, E.; Campa, A.; Song, Q.; McClean, P.; Ferreira, J.J. Toward Validation of QTLs Associated with Pod and Seed Size in Common Bean Using Two Nested Recombinant Inbred Line Populations. Mol. Breed. 2020, 40, 7. [Google Scholar] [CrossRef]
- Miklas, P. List of genes—Phaseolus vulgaris L. Ann. Rep. Bean. Improv. Coop. 2018. Available online: http://www.bic.uprm.edu/wp-content/uploads/2019/10/Bean-Genes-List-2018-v2-1.pdf (accessed on 27 September 2021).
- Yang, X.; Liu, C.; Li, Y.; Yan, Z.; Liu, D.; Feng, G. Identification and Fine Genetic Mapping of the Golden Pod Gene (pv-ye) from the Snap Bean (Phaseolus vulgaris L.). Theor. Appl. Genet. 2021, 134, 3773–3784. [Google Scholar] [CrossRef]
- Beninger, C.W.; Hosfield, G.L.; Bassett, M.J.; Owens, S. Chemical and Morphological Expression of the B and Asp Seedcoat Genes in P. vulgaris L. J. Am. Soc. Hortic. Sci. 2000, 125, 52–58. [Google Scholar] [CrossRef]
- Bassett, M.J. Tight Linkage of Purple Pod Character and the Complex C Locus in Common Bean. J. Hered. 1994, 85, 288–290. [Google Scholar] [CrossRef]
- Freyre, R.; Skroch, P.W.; Geffroy, V.; Adam-Blondon, A.-F.; Shirmohamadali, A.; Johnson, W.C.; Llaca, V.; Nodari, R.O.; Pereira, P.A.; Tsai, S.-M.; et al. Towards an integrated linkage map of common bean. 4. Development of a core linkage map and alignment of RFLP maps. Theor. Appl. Genet. 1998, 97, 847–856. [Google Scholar] [CrossRef]
- Scott, M.F.; Ladejobi, O.; Amer, S.; Bentley, A.R.; Biernaskie, J.; Boden, S.A.; Clark, M.; Dell’Acqua, M.; Dixon, L.E.; Filippi, C.V.; et al. Multiparent populations in crops: A toolbox integrating genomics and genetic mapping with breeding. Heredity 2020, 125, 396–416. [Google Scholar] [CrossRef] [PubMed]
- Brewer, M.T.; Lang, L.; Fujimura, K.; Dujmovic, N.; Gray, S.; van der Knaap, E. Development of a Controlled Vocabulary and Software Application to Analyze Fruit Shape Variation in Tomato and Other Plant Species. Plant Physiol. 2006, 141, 15–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, S.P. A key for Identification of Different Growth Habits of Phaseolus vulgaris L. Annu. Rep. Bean Improv. Coop. 1982, 25, 92–95. [Google Scholar]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; Available online: https://ggplot2.tidyverse.org (accessed on 16 June 2021).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 30 September 2021).
- Fox, J.; Bouchet-Valat, M. Rcmdr: R Commander. R Package Version 2.7-1. 2021. Available online: https://socialsciences.mcmaster.ca/jfox/Misc/Rcmdr/ (accessed on 16 June 2021).
- Russell, V.L. Least-Squares Means: The R Package lsmeans. J. Stat. Softw. 2016, 69, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Wei, T.; Simko, V. R Package “Corrplot”: Visualization of a Correlation Matrix [Version 0.84]. 2017. Available online: https://github.com/taiyun/corrplot (accessed on 16 June 2021).
- Lê, S.; Josse, J.; Husson, F. FactoMineR: A Package for Multivariate Analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Van Hintum, T.J.L.; Brown, A.H.D.; Spillane, C.; Hodgkin, T. Core Collections of Plant Genetic Resources. IPGRI Technical Bulletin. No. 3; International Plant Genetic Resources Institute: Rome, Italy, 2000; p. 48. [Google Scholar]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Simpson, E.H. Measurement of Diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Moghaddam, S.M.; Song, Q.; Mamidi, S.; Schmutz, J.; Lee, R.; Cregan, P.; Osorno, J.M.; McClean, P.E. Developing Market Class Specific InDel Markers from Next Generation Sequence Data in Phaseolus vulgaris L. Front. Plant Sci. 2014, 5, 185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vilanova, S.; Alonso, D.; Gramazio, P.; Plazas, M.; García-Fortea, E.; Ferrante, P.; Schmidt, M.; Díez, M.J.; Usadel, B.; Giuliano, G.; et al. SILEX: A fast and inexpensive high-quality DNA extraction method suitable for multiple sequencing platforms and recalcitrant plant species. Plant Methods 2020, 16, 110. [Google Scholar] [CrossRef] [PubMed]
Characters | Traits | Unit | Description |
---|---|---|---|
Pod section (PS) 1 | Pod Section Perimeter (PSP) | cm | The perimeter of section, measure of 10 randomly chosen green pods |
Pod Section Area (PSA) | cm2 | Area of section, measure of 10 randomly chosen green pods | |
Pod Section Width (PSW) | cm | Width of section, measure of 10 randomly chosen green pods, taken perpendicular to suture | |
Pod Section Height (PSH) | cm | Height of section, measure of 10 randomly chosen green pods, taken parallel to the suture | |
Pod Section index (PSHPSW) | PSH/PSW ratio | ||
Pod Section circular (PSC) | Fit of a circular shape of the section | ||
Pod length (PL) | Pod Length Perimeter (PLP) | cm | The perimeter of longitudinal section, measure of 10 randomly chosen green pods |
Pod Length Area (PLA) | cm2 | Area of longitudinal section, measure of 10 randomly chosen green pods | |
Pod Length Width (PLW) | cm | Width of transversal section, measure of 10 randomly chosen green pods at the mid-length | |
Pod Length (PL) | cm | Length of measure of 10 randomly chosen green pods | |
Pod Length Curved (PLC) | cm | Length of measure along a curved line through the pod of 10 randomly chosen green pods | |
Pod Length index (PLPLC) | Index for the level of curvature measure as PL/PLC ratio |
SBP | Core-SBP | ||||||||
---|---|---|---|---|---|---|---|---|---|
Traits | Unit | Mean | Min | Max | SE | Mean | Min | Max | SE |
PL | cm | 13.61 | 7.31 | 25.86 | 0.18 | 11.93 | 7.07 | 19.01 | 0.39 |
PLA | cm2 | 13.48 | 4.58 | 50.69 | 0.45 | 16.69 | 6.48 | 35.66 | 1.05 |
PLC | cm | 13.36 | 7.32 | 25.66 | 0.17 | 14.31 | 9.96 | 22.05 | 0.40 |
PLP | cm | 30.19 | 15.95 | 57.28 | 0.41 | 32.44 | 21.63 | 50.24 | 0.95 |
PLPLC | 1.02 | 0.84 | 1.09 | 0.00 | 0.84 | 0.52 | 0.97 | 0.02 | |
PLW | cm | 1.04 | 0.49 | 2.29 | 0.02 | 1.21 | 0.58 | 2.01 | 0.06 |
PSA | cm2 | 0.64 | 0.23 | 1.30 | 0.01 | 0.68 | 0.33 | 1.18 | 0.03 |
PSC | 0.11 | 0.02 | 0.35 | 0.01 | 0.18 | 0.03 | 0.34 | 0.01 | |
PSH | cm | 1.08 | 0.56 | 2.18 | 0.02 | 1.23 | 0.66 | 1.91 | 0.05 |
PSHPSW | 1.51 | 0.88 | 3.59 | 0.04 | 1.88 | 0.89 | 3.45 | 0.09 | |
PSP | cm | 3.21 | 1.83 | 5.32 | 0.04 | 3.39 | 2.17 | 4.80 | 0.09 |
PSW | cm | 0.74 | 0.50 | 1.04 | 0.01 | 0.68 | 0.44 | 0.85 | 0.01 |
NSP | seeds | 5.87 | 3.70 | 8.75 | 0.05 | 5.78 | 4.1 | 8.12 | 0.12 |
25 Seedweight | g | 9.18 | 1.92 | 22.60 | 0.23 | 11.65 | 3.355 | 21.27 | 0.54 |
Marker Loci | Physical Position (1) | Associated Pod Traits | N Alleles | MAF | Pod Length | Pod Section | NSP | Pod Color | |
---|---|---|---|---|---|---|---|---|---|
Ind_1_19.1533 | Pv01 | 16039072 | NSP | 4 | 0.04 | ns | sa | sa | |
Ind_1_38.7943 | Pv01 | 38145306 | PL, PS | 2 | 0.13 | ns | ns | ns | |
Gene Fin | Pv01 | 44857680 | PL, PS | 2 | 0.38 | sa | sa | sa | |
Ind_1_47.2870 | Pv01 | 46596666 | PL | 3 | 0.04 | ns | ns | sa | |
Ind_2_0.8980 | Pv02 | 855516 | Color | 3 | 0.15 | sa | |||
Ind_2_2.4495 | Pv02 | 2405590 | Color | 3 | 0.02 | ns | |||
Ind_2_3.6382 | Pv02 | 3615508 | PL, PS | 3 | 0.20 | sa | sa | ns | |
Ind_2_28.4405 | Pv02 | 29688140 | PL | 2 | 0.49 | sa | sa | ||
Ind_2_48.6551 | Pv02 | 49273667 | NSP, PL, PS, Color | 2 | 0.31 | ns | ns | ns | sa |
Ind_3_48.9580 | Pv03 | 50111660 | PL, NSP | 2 | 0.08 | ns | ns | ns | |
Ind_4_39.8831 | Pv04 | 41925005 | PL, PS | 3 | 0.18 | sa | sa | sa | |
Ind_4_42.2659 | Pv04 | 44371105 | PL, PS | 3 | 0.07 | ns | ns | ns | |
Ind_5_29.0512 | Pv05 | 30358343 | PL | 3 | 0.22 | sa | sa | ||
Ind_5_39.3321 | Pv05 | 39571081 | PS | 3 | 0.11 | sa | sa | ||
Ind_5_39.8141 | Pv05 | 40039649 | PS | 5 | 0.04 | sa | sa | ||
Ind_6_18.2115 | Pv06 | 17449107 | NSP, PL, PS, | 2 | 0.29 | sa | sa | sa | |
Ind_7_6.6340 | Pv07 | 6784415 | NSP, PS | 2 | 0.22 | sa | sa | sa | |
Ind_8_57.1490 | Pv08 | 60556455 | PS, Color | 3 | 0.07 | ns | ns | ns | ns |
Ind_8_57.3095 | Pv08 | 60743579 | PS, Color | 2 | 0.11 | ns | ns | ns | ns |
Ind_11_2.3017 | Pv11 | 2471919 | PL | 5 | 0.09 | ns | ns | ns | |
Ind_11_4.2292 | Pv11 | 4391403 | PS | 2 | 0.29 | ns | ns | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Fernández, C.; Jurado, M.; Campa, A.; Brezeanu, C.; Geffroy, V.; Bitocchi, E.; Papa, R.; Ferreira, J.J. A Core Set of Snap Bean Genotypes Established by Phenotyping a Large Panel Collected in Europe. Plants 2022, 11, 577. https://doi.org/10.3390/plants11050577
García-Fernández C, Jurado M, Campa A, Brezeanu C, Geffroy V, Bitocchi E, Papa R, Ferreira JJ. A Core Set of Snap Bean Genotypes Established by Phenotyping a Large Panel Collected in Europe. Plants. 2022; 11(5):577. https://doi.org/10.3390/plants11050577
Chicago/Turabian StyleGarcía-Fernández, Carmen, Maria Jurado, Ana Campa, Creola Brezeanu, Valérie Geffroy, Elena Bitocchi, Roberto Papa, and Juan Jose Ferreira. 2022. "A Core Set of Snap Bean Genotypes Established by Phenotyping a Large Panel Collected in Europe" Plants 11, no. 5: 577. https://doi.org/10.3390/plants11050577